СПИН-ПОЛЯРОННЫЙ РЕЖИМ ТРАНСПОРТА И МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА МОНОСИЛИЦИДА ЖЕЛЕЗА

В. В. Глушков^{а,b*}, И. Б. Воскобойников^а, С. В. Демишев^{а,b}, И. В. Кривицкий^а,

А. Меновски^с, В. В. Мощалков^d, Н. А. Самарин^a, Н. Е. Случанко^{a,b}

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^c Van der Waals – Zeeman Laboratory, University of Amsterdam 1018 XE, Amsterdam, the Netherlands

^d Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven B-3001, Leuven, Belgium

Поступила в редакцию 17 февраля 2004 г.

В результате исследования гальваномагнитных, магнитных и магнитооптических характеристик моносилицида железа, выполненного в широком диапазоне температур (1.8–40 К) и магнитных полей (до 120 кЭ), выяснена природа низкотемпературной инверсии знака коэффициента Холла в FeSi. Показано, что указанный эффект обусловлен ростом амплитуды аномальной компоненты холловского сопротивления ho_H , увеличивающейся более чем в 10^5 раз при понижении температуры в интервале $1.8-20\,$ К. Возникновение аномального вклада в ho_H связывается с переходом от спин-поляронного к когерентному режиму флуктуаций электронной плотности в окрестности Fe-центров и формированием ферромагнитных областей наноразмера (около 10 Å) — ферронов — в матрице FeSi при $T < T_C = 15$ К. В окрестности температуры инверсии знака ho_H обнаружен дополнительный вклад в эффект Холла, проявляющийся в виде второй гармоники на угловых зависимостях $ho_H(arphi)$ и не имеющий объяснения в рамках традиционно используемых феноменологических моделей. Исследование магнитосопротивления FeSi в спин-поляронном и когерентном режимах спиновых флуктуаций показало, что в непосредственной окрестности границы миктомагнитной фазы при $T_m=7$ K наблюдается смена знака отношения $\Delta
ho(H)/
ho$, сопровождаемая переходом от положительного ($\Delta
ho/
ho$ > 0, T > T_m) к отрицательному ($\Delta
ho/
ho$ < 0, T < T_m) магнитосопротивлению. Линейная асимптотика отрицательного магнитосопротивления $\Delta
ho/
ho\propto-H$ в малых магнитных полях до 10 кЭ объясняется формированием магнитных нанокластеров из взаимодействующих ферронов в миктомагнитной фазе FeSi при $T < T_m$. На основе полученных результатов впервые построена низкотемпературная магнитная фазовая диаграмма FeSi. Количественно оценены эффекты обменного усиления и определены эффективные параметры, характеризующие электронную подсистему в парамагнитной $(T > T_C)$, ферромагнитной $(T_m < T < T_C)$ и миктомагнитной $(T < T_m)$ фазах. В результате анализа совокупности аномалий транспортных, магнитных и магнитооптических характеристик, наблюдаемых в окрестности $H_mpprox 35$ кm 35 при $T < T_m$, сделан вывод о существовании новой коллинеарной магнитной фазы $\mathbf{M} \parallel \mathbf{H}$ на низкотемпературной фазовой диаграмме моносилицида железа.

PACS: 71.27.+a

1. ВВЕДЕНИЕ

Необычные электрофизические и магнитные свойства узкозонного полупроводника FeSi опреде-

ляют его особое положение среди объектов физики магнитных явлений. Моносилицид железа является одним из наиболее ярких примеров успешного применения самосогласованной перенормировочной

^{*}E-mail: glushkov@lt.gpi.ru

теории спиновых флуктуаций [1,2], объясняющей эффект возникновения и усиления температурно-индуцированных локализованных магнитных моментов на Fe-центрах в матрице FeSi при температурах выше 100 К [1-4]. Результаты зонных расчетов [5-8] и экспериментов, выполненных в сверхсильных магнитных полях [9, 10], показывают, что FeSi является также удобным модельным объектом для изучения индуцированного полем метамагнетизма в системе коллективизированных электронов. В соответствии с выводами авторов работ [11,12], моносилицид железа и твердые растворы на его основе представляют значительный интерес и для изучения особенностей перехода металл-диэлектрик в системе с тяжелыми фермионами. Наконец, несмотря на более чем полувековой период изучения этого соединения с достаточно простой кубической (тип B20) кристаллической структурой (см., например, [13]), в последнее время продолжают активно обсуждаться вопросы о природе и особенностях формирования основного состояния и адекватных подходах к теоретическому описанию низкотемпературных свойств моносилицида железа [14-21].

Сравнительно недавно на основе результатов измерений магнитных, транспортных и термоэлектрических характеристик [22,23] было показано, что наиболее адекватным подходом к описанию низкотемпературного основного состояния, по-видимому, является интерпретация в терминах модели Мотта-Хаббарда [24]. В рамках указанного подхода при T < 100 К моносилицид железа следует рассматривать как металл с сильными электронными корреляциями и спин-поляронным режимом транспорта носителей [22, 23]. В частности, авторами было установлено [23], что с понижением температуры в интервале T < 100 К в узкозонном полупроводнике FeSi вокруг носителей заряда в верхней хаббардовской (t_{2q}) полосе формируются многочастичные (спин-поляронные) состояния с существенно большей эффективной массой $m^* \sim 100m_0 \ (m_0 - \text{мас-}$ са свободного электрона). Такие тяжелые фермионы, образовавшиеся в результате быстрых флуктуаций электронной плотности, оказывают определяющее влияние на низкотемпературный транспорт и термодинамические характеристики FeSi. Дальнейшее понижение температуры в системе спиновых поляронов обусловливает переход к когерентному режиму спиновых флуктуаций с возникновением анизотропных ферромагнитных областей наноразмера (ферронов) при $T_C \approx 15$ К (T_C — температура Кюри ферромагнитного «фазового перехода» в системе спиновых поляронов) и затем инициирует установление миктомагнитного основного состояния при $T < T_m \approx 7$ К (T_m — температура перехода системы ферронов в фазу спинового стекла) [23]. Указанная последовательность трансформации многочастичных состояний в матрице FeSi схематически представлена на рис. 1, где изображены низкотемпературные фазы моносилицида железа (невзаимодействующие спиновые поляроны обозначены кружками на рис. 1*a*, ферроны с одноосной магнитной анизотропией приведены в виде эллипсов с легкой осью намагничивания на рис. 1*б*, кластеры взаимодействующих ферронов выделены штриховкой на рис. 1*6*).

В такой ситуации характеристики основного состояния моносилицида железа оказываются непосредственно связанными как с особенностями перенормировки зонной структуры (формированием многочастичного спин-поляронного резонанса) в окрестности энергии Ферми E_F, так и с достаточно сложной перестройкой магнитной системы в режиме низкой плотности носителей заряда $(10^{17} - 10^{18} \text{ cm}^{-3}).$ Уникальность моносилицида железа связана с тем, что в спин-поляронном режиме низкотемпературного транспорта измерения гальваномагнитных свойств FeSi оказываются наиболее чувствительной методикой для исследования особенностей установления когерентного режима спиновых флуктуаций и трансформации многочастичных состояний в ферромагнитные области наноразмера и нанокластеры [23, 25]. Вместе с тем, до недавнего времени практически не существовало надежных и достоверных экспериментальных данных о поведении коэффициента Холла $R_H(H, T)$ в этом узкозонном полупроводнике FeSi. Как отмечалось ранее [25], все выполненные измерения величины $R_H(H,T)$ относились к различным температурным интервалам ($T \ge 4.2$ K [12], 0.05 К $\leq T \leq$ 55 К [15], $T \geq$ 20 К [26]) и не согласовывались между собой даже по знаку эффекта Холла. Кроме того, среди противоречий в результатах работ [12, 15, 26] следует отметить различия в поведении полевых зависимостей холловского сопротивления, а также заметно различающиеся подходы к интерпретации экспериментальных результатов. В работе [25] впервые было показано, что с понижением температуры происходит смена режимов зарядового транспорта, которая, в свою очередь, обусловливает появление двойной инверсии знака коэффициента Холла в FeSi при $T^{H}_{inv1}\,\approx\,75$ K и $T^{H}_{inv2} \approx 12$ –15 К. Результаты недавних исследований [23] позволили связать указанные аномалии с

Рис.1. Различные типы многочастичных состояний в матрице моносилицида железа: a — парамагнитная фаза с носителями заряда — спиновыми поляронами (фаза P, 15 K < T < 100 K); b — фаза невзаимодействующих ферромагнитных областей наноразмера (F, 7 K < T < 15 K); e — миктомагнитное состояние (фаза спинового стекла) (SG, $T \leq 7$ K, H < 35 кЭ); e — фаза с магнитными моментами, ориентированными вдоль направления внешнего магнитного поля ($\mathbf{M} \parallel \mathbf{H}, 35$ кЭ $< H \leq 350$ кЭ). В левой части рисунка представлено схематичное изображение структуры многочастичного резонанса в непосредственной окрестности уровня Ферми E_F в отсутствие (структура II, панель a) и при наличии (структура II, панели b, e и z) обменного расщепления

переходом от режима собственной проводимости к транспорту по спин-поляронным состояниям в щели и, далее, к транспорту носителей в условиях формирования сложной магнитной структуры в матрице FeSi, содержащей ферромагнитные нанокластеры. Существенный прогресс был достигнут благодаря использованию метода вращения с пошаговой фиксацией положения образца в магнитном поле для исследования эффекта Холла в FeSi [23], что позволило выделить аномальную (магнитную) компоненту холловского сопротивления и разделить вклады от двух групп носителей заряда в коэффициент Холла при гелиевых ($T \leq 4.2$ K) температурах. Кроме того, в рамках указанного подхода для интервала температур, отвечающих спин-поляронному транспорту (T < 100 K), была выполнена оценка величины обменного поля на носителях заряда в верхней хаббардовской полосе: $H_{ex} = 350 \pm 100$ кЭ [23]. Вместе с тем, в связи с имевшимися методическими ограничениями осталось практически не исследованным поведение полевых и температурных зависимостей коэффициента Холла в моносилициде железа в области промежуточных температур 4.2-30 К, в котором, согласно заключению авторов работы [15], «холловское сопротивление изменяется хаотически». В частности, основные сложности при организации магнитных и гальваномагнитных криогенных экспериментов

были обусловлены недостаточной точностью (около 0.05 K) стабилизации и регулирования температуры в объеме с образцом, что не позволило авторам [23] провести детальное исследование процессов переноса заряда и определить структуру магнитной фазовой диаграммы моносилицида железа.

В настоящей работе с целью выяснения характера магнитных взаимодействий и особенностей магнитной фазовой H-T-диаграммы FeSi, включая генезис аномального эффекта Холла, проведены прецизионные измерения гальваномагнитных и магнитных свойств монокристаллических образцов моносилицида железа в широком диапазоне температур (1.6–40 K) и магнитных полей (до 120 кЭ), а также исследованы аномалии микроволнового магнитопоглощения в окрестности низкотемпературных магнитных фазовых переходов.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Представленные в настоящей работе измерения транспортных, магнитных и магнитооптических характеристик выполнены на монокристаллических образцах моносилицида железа, выращенных из расплава по методу Чохральского и уже использовавшихся ранее в наших исследованиях [22–23, 25].

Измерения удельного сопротивления и коэффи-

циента Холла проводились на экспериментальной установке оригинальной конструкции, блок-схема которой подробно описана в [27]. При измерениях угловых зависимостей гальваномагнитных характеристик применялась схема с пошаговым вращением образца в магнитном поле с управлением приводом от шагового двигателя и дискретностью вращения 1.8°-3.6°. После поворота держателя с образцом на фиксированный угол проводились измерения сигналов с холловских контактов на образце по стандартной четырехзондовой схеме. Измерения сопротивления и магнитосопротивления образцов FeSi выполнялись также в стандартной четырехзондовой схеме на постоянном токе, причем исследовалось поведение поперечного магнитосопротивления в магнитном поле, перпендикулярном направлению тока в образце. Для прецизионных измерений указанных резистивных характеристик образцов моносилицида железа использовался двухканальный нановольтметр Keithley 2182.

Исследования в магнитном поле в широком диапазоне температур (1.6-40 K) проводились в ампуле с вакуумной изоляцией, располагавшейся в гелиевом криостате в канале сверхпроводящего магнита. Точность стабилизации температуры измерительной ячейки с образцом (около 0.01 K) достигалась применением цифрового температурного контроллера оригинальной конструкции, разработанного и изготовленного в ИОФ РАН. Использование эталонного термометра сопротивления CERNOX 1050 в качестве датчика температуры позволило обеспечить требуемую точность измерений (менее 0.01 К) и минимизировать погрешность термометрии, обусловленную изменением сопротивления датчика в магнитном поле до 70 кЭ. Сбор и обработка данных, а также управление параметрами и режимами работы устройств и блоков, входящих в экспериментальную установку, осуществлялись системой регистрации и управления на базе микропроцессорного устройства, связанной с персональным компьютером. Измерения магнитосопротивления в магнитном поле до 400 кЭ проводились на установке импульсного поля Лаборатории физики твердого тела и магнетизма Католического университета г. Левена

Намагниченность образцов моносилицида железа измерялась на вибрационном магнитометре Oxford Instruments VSM12/V в диапазоне температур 1.5–300 К в магнитном поле до 120 кЭ.

Для исследований микроволнового магнитопоглощения при низких температурах (T < 6 K) в магнитных полях до 70 кЭ с целью получения дополнительной информации о структуре магнитной фазовой H-T-диаграммы моносилицида железа использовалась автоматизированная экспериментальная установка оригинальной конструкции, описанная в работе [28]. Ранее указанная методика успешно применялась для исследования магнитных фазовых переходов в соединениях с сильными электронными корреляциями — в магнитных кондо-решетках CeAl₂ и CeB₆ [28,29], а также в сверхпроводнике CeRu₂ с промежуточной валентностью [30]. В настоящей работе для регистрации микроволнового поглощения использовалась мостовая болометрическая схема, предусматривающая непосредственный контакт исследуемого образца FeSi с одним из низкотемпературных болометров.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. Магнитосопротивление

Полевые зависимости магнитосопротивления FeSi, измеренные в магнитном поле до 70 кЭ, пред-

Рис.2. Полевые зависимости магнитосопротивления моносилицида железа в диапазоне температур 11 К < T < 40 К. Линейная аппроксимация соответствует квадратичной зависимости магнитосопротивления $\Delta \rho / \rho \propto H^2$. На вставке приведено семейство кривых $(\Delta \rho / \rho)_{tr}$, определяющих дополнительный положительный вклад в магнитосопротивление (см. текст)

Рис.3. а) Полевые зависимости магнитосопротивления моносилицида железа в диапазоне температур 5 К < T < 11 К (прямые соответствуют квадратичному вкладу в магнитосопротивление $\Delta \rho / \rho \propto H^2$). б) Полевые зависимости отрицательного магнитосопротивления FeSi при T < 5 К. На вставке представлены температурные зависимости магнитного поля H_s , отвечающего точке перегиба кривой $\Delta \rho / \rho = f(H)$, полученные в экспериментах при увеличении (1) и уменьшении (2) магнитного поля

ставлены на рис. 2, 3. При $T \ge 30$ К моносилицид железа характеризуется положительным магнитосопротивлением, которое в используемых магнитных полях $H \leq 70$ кЭ с хорошей точностью описывается квадратичной функцией вида $\Delta \rho / \rho \approx A H^2$ (рис. 2). С понижением температуры амплитуда положительного магнитосопротивления в FeSi растет и в окрестности $T=T_{max}^{\Delta\rho}\approx 11~{\rm K}$ достигает максимального значения $\Delta \rho / \rho \approx 3 \%$ в магнитном поле 70 кЭ (рис. 2). Дальнейшее уменьшение температуры приводит к подавлению положительного магнитосопротивления и появлению отрицательного вклада в магнитосопротивление при температурах $T \leq T_m \approx 7 \, {
m K}$ (рис. 3). Обнаруженное изменение режима магнитосопротивления в моносилициде железа (переход от положительного к отрицательному магнитосопротивлению) наглядно иллюстрируют данные рис. 4, на котором представлены температурные зависимости амплитуд положительного и отрицательного вкладов в магнитосопротивление FeSi.

Анализируя особенности магниторезистивного эффекта в моносилициде железа, следует отметить, что понижение температуры в интервале от 20 до

11 К не только сопровождается ростом амплитуды квадратичной составляющей магнитосопротивления, но и приводит к заметным отклонениям от квадратичного закона (рис. 2). Вычитание из экспериментальных кривых $\Delta \rho / \rho = f(H)$ вкладов $\Delta
ho \propto H^2$ (показаны на рис. 2 сплошными линиями) позволяет выделить дополнительный положительный вклад в магнитосопротивление $(\Delta \rho / \rho)_{tr}$ в области полей $H \leq 35$ кЭ. При этом семейство кривых $(\Delta \rho / \rho)_{tr} = \Delta \rho / \rho - AH^2$ (см. вставку к рис. 2) обнаруживает структуру в виде ступеньки, амплитуда которой так же, как и для квадратичного вклада, достигает своего максимального значения в окрестности $T=T_{max}^{\Delta\rho}\approx 11$ К (рис. 4, кривая 2). Отметим также, что наиболее крутому участку роста величины $(\Delta \rho / \rho)_{tr}$ в магнитном поле отвечает интервал 15-35 кЭ (вставка к рис. 2).

Уменьшение температуры в интервале $T \leq 11$ К приводит к одновременному подавлению обоих указанных вкладов и, далее, к инверсии знака магнитосопротивления (см. рис. 3 и 4) в окрестности температуры миктомагнитного перехода $T_m \approx 7$ К в системе ферромагнитных нанокластеров в матрице FeSi [23]. Как видно из рис. 36, наиболее су-

Рис. 4. Температурные зависимости величины квадратичного вклада AH^2 в магнитосопротивление (1), нелинейной составляющей $\Delta \rho / \rho - AH^2$ (2), амплитуды отрицательного вклада A_0 в магнитосопротивление в магнитном поле $H = 60 \ \kappa \Im$ (3) и величины магнитосопротивления в импульсном поле $H = 400 \ \kappa \Im$ (4)

щественное возрастание амплитуды отрицательного магнитосопротивления происходит в магнитных полях $H \leq 35$ кЭ с дальнейшей сменой режима на более медленное изменение $\Delta \rho / \rho$ в интервале 35–70 кЭ.

Интересно, что отрицательное магнитосопротивление FeSi в малых магнитных полях ($H \approx 10 \text{ k}\Theta$) при температурах $T < T_m \approx 7~{
m K}$ оказывается линейным по магнитному полю: $\Delta \rho / \rho \propto H$ (рис. 3δ). Максимальное по абсолютной величине отрицательное магнитосопротивление наблюдается при температурах 4-5 К (рис. 4, кривая 3), причем с уменьшением температуры ниже гелиевой амплитуда отрицательного магнитосопротивления существенно снижается. Отметим также, что полевые зависимости отрицательного магнитосопротивления в FeSi при $T \leq 7~\mathrm{K}$ в используемых в работе полях $H \leq 70~\mathrm{\kappa} \Im$ оказываются немонотонными, причем на экспериментальных кривых $\Delta \rho / \rho = f(H)$ в промежуточной области полей наблюдается появление точки перегиба H_s (рис. 36). Зависимость $H_s(T)$ показана на вставке на рис. Зб.

3.2. Коэффициент Холла

Как отмечалось в предыдущем разделе, для выполнения детальных исследований эффекта Холла в FeSi в работе использовалась методика вращения образца с пошаговой фиксацией его положения в магнитном поле (см. схему на рис. 5а). Полученные в рамках используемой экспериментальной процедуры угловые зависимости холловского сопротивления $\rho_H(\varphi)$ моносилицида железа в магнитном поле напряженностью $H \approx 59.3$ кЭ для нескольких фиксированных значений температуры в интервале 1.6–40 К представлены на рис. 5а. Для удобства восприятия кривые смещены друг относительно друга на постоянную величину, причем слева около каждой кривой приведен множитель, позволяющий сопоставить амплитуды эффекта. На рис. 6 представлены семейства экспериментальных кривых $\rho_H(\varphi)$ для FeSi, измеренные при нескольких фиксированных значениях магнитного поля H < 75 к
Э для ряда температур в интервалах $T > T_C$ (T = 20.3 K, рис. 6a), $T_m < T < T_C (T = 13.5$ K, рис. 6б), $T < T_m$ (T = 2.5 K, рис. 6e) и для температуры в непосредственной окрестности миктомагнитного перехода ($T = 8.3 \text{ K} \approx T_m$, рис. 6*г*).

В стандартной ситуации вращение образца в фиксированном магнитном поле Н сопровождает изменение проекции H_{\perp} вектора напряженности внешнего магнитного поля на нормаль к поверхности образца (см. схему на рис. 5а) по гармоническому закону $H_{\perp} = H_0 \cos \varphi$ и приводит к косинусоидальной зависимости холловского сопротивления вида $\rho_H \propto R_H(T,H)H\cos\varphi$ при фиксированной температуре Т. Однако при измерениях эффекта Холла в FeSi такая форма кривых $\rho_H(\varphi, H_0, T_0)$ наблюдается лишь в ограниченном диапазоне температур и магнитных полей. В частности, при температурах T < 5 К близкая к косинусоидальной угловая зависимость холловского сигнала наблюдается в полях выше 50 кЭ (см. рис. 5*a*, кривые для T = 2.5 К и T = 5.1 K). Отметим также, что холловский сигнал вида $\rho_H \propto \cos \varphi$ регистрируется лишь для температур выше 35 К, тогда как с уменьшением температуры до значений $T \approx 30$ К форма кривых $\rho_H(\varphi)$ становится существенно более сложной (см., например, кривые для T = 30.9 К и T = 20.1 К на рис. 5a). В последнем случае во всем диапазоне магнитных полей, используемом в настоящей работе, к основной составляющей сигнала $\rho_H(\varphi) \propto \cos \varphi$ добавляется вклад от четной гармоники $\rho_H(\varphi) \propto \cos 2\varphi$ (рис. 5*a*).

Рис. 5. а) Угловые зависимости холловского сопротивления $\rho_H(\varphi)$ при различных температурах в магнитном поле H = 59.3 кЭ с аппроксимацией в рамках выражения (1), учитывающего вклады от основной $\rho_{H1} \propto \cos \varphi$ и второй $\rho_{H2} \propto \cos 2\varphi$ гармоник. Для удобства сравнения амплитуд эффекта Холла слева от кривых приведены множители сопоставления ρ_H в абсолютной шкале. Вставка на рисунке иллюстрирует схему измерений холловского сопротивления $\rho_H(\varphi)$ с вращением образца относительно магнитного поля **H** (**n** – вектор нормали к плоскости образца). б) Разделение вкладов в $\rho_H(\varphi)$ в рамках соотношения (1) (см. текст) для различных температур при H = 59.3 кЭ (ρ_H – экспериментальные данные, ρ_{H1} – вклад основной составляющей, ρ_{H2} – вклад второй гармоники)

Присутствие составляющей от четной гармоники, значительно усложняющей поведение угловых зависимостей и анализ эффекта Холла в FeSi, особенно наглядно прослеживается в интервале температур 10–20 К (рис. 5*a*), отвечающем непосредственной окрестности температуры инверсии знака основной компоненты холловского сигнала $T^H_{inv} \approx 12.5$ К [25].

В заключение настоящего пункта отметим, что появление четных гармоник на угловых зависимостях холловского сопротивления $\rho_H(\varphi) \propto \cos 2\varphi$ в ряде случаев бывает связано с добавлением к величине $\rho_H(T, H, \varphi)$ четного по магнитному полю вклада от магнитосопротивления за счет асимметричного расположения холловских контактов на образце. Для оценки влияния «неэквипотенциальности» холловских контактов одновременно с холловскими измерениями в работе были выполнены исследова-

ния угловых зависимостей магнитосопротивления $\rho(\varphi, H, T)$ моносилицида железа. Результаты измерений $\rho(\varphi, H, T)$ показали, что во всем исследуемом диапазоне магнитных полей до 70 кЭ амплитуда четных гармоник в зависимости $\Delta \rho / \rho = f(\varphi)$ не превышает 0.5 %, при этом при температурах выше 7 К наблюдается полное подавление особенностей на угловой зависимости $\Delta \rho / \rho$ (см. также [23]). Таким образом, результаты проведенных исследований позволили полностью исключить эффекты влияния обычной резистивной составляющей, возникающей вследствие неэквипотенциальности в расположении холловских контактов, на форму и характер изменения величины холловского сопротивления $\rho_H(T, H, \varphi)$ для всех образцов FeSi, исследованных в настоящей работе.

Рис. 6. Угловые зависимости холловского сопротивления $\rho_H(\varphi)$ моносилицида железа в магнитных полях до 75 кЭ для температур T = 20.3 K (*a*), 13.5 K (*b*), 2.5 K (*b*), 8.3 K (*b*)

3.3. Намагниченность и микроволновое магнитопоглощение

При исследовании эффекта Холла в магнитоупорядоченном состоянии вещества спонтанная намагниченность магнитной подсистемы приводит к возникновению дополнительной (аномальной) составляющей в холловском сопротивлении, пропорциональной внутреннему магнитному полю [31]. С целью получения информации, необходимой для разделения нормального и аномального вкладов в эффект Холла, а также для уточнения особенностей магнитных свойств и фазовых переходов при построении низкотемпературной магнитной фазовой *H*-*T*-диаграммы моносилицида железа в настоящей работе были выполнены измерения намагниченности и микроволнового магнитопоглощения.

По данным прецизионных измерений намагниченности M(H,T) в FeSi, выполненных в работе, для магнитных полей $H \leq 120$ кЭ при фиксированных температурах 1.6 К $\leq T \leq 50$ К методом численного дифференцирования были рассчитаны зависимости дифференциальной магнитной восприимчивости

$$\chi_d(H,T) = \left. \frac{dM}{dH} \right|_T = f(T),$$

приведенные на рис. 7. Как видно на рис. 7, с ростом напряженности внешнего магнитного поля магнитная восприимчивость значительно уменьшается по абсолютной величине: для $T_0 = 1.5$ K в поле H = 110 кЭ значение χ_d уменьшается примерно в 2.5 раза (см. также вставку к рис. 7). В выполненных ранее исследованиях [23, 32] было показано, что при низких температурах $T \leq 50$ K определяющий вклад в величину χ_d вносит паулиевская парамагнитная восприимчивость системы тяжелых фермионов (спиновых поляронов). При этом уменьшению абсолютных значений χ_d отвечает частичное подавление в сильном магнитном поле $H \leq 120$ кЭ особенности в плотности электронных состояний (многочастичного резонанса) на уровне Ферми. Поскольку обменное поле спин-поляронных состояний $H_{ex} \approx 350 \pm 100$ кЭ, найденное в [23, 32] при измерениях аномального эффекта Холла и намагниченности FeSi, оказывается сравнимым с предельным значением $H \approx 120$ кЭ, используемым в настоящей работе, наблюдаемое уменьшение величины $\chi_d(T)$ с ростом H (рис. 7) представляется достаточно обоснованным.

Анализ семейства кривых $\chi_d(T)$ (рис. 7) показывает, что в области температур $T < T_m \approx 7$ K, отвечающих миктомагнитному состоянию FeSi, в поле

Рис.7. Температурные зависимости дифференциальной восприимчивости $\chi_d(T)$ моносилицида железа в магнитном поле до 120 кЭ. На вставке приведены полевые зависимости $\chi_d(H)$ в диапазоне температур 1.5 К $\leq T \leq 15$ К, отвечающем формированию ферромагнитных микрообластей в матрице FeSi

 $H \approx 35 \text{ к}$ Э происходит смена характера зависимости $\chi_d(T)$. При этом уменьшение дифференциальной восприимчивости, наблюдающееся с ростом температуры в области малых полей (H < 35 кЭ), сменяется возрастанием χ_d с температурой для H > 35 кЭ (рис. 7). В результате на зависимостях $\chi_d(T)$ в полях выше 35 кЭ возникает максимум при температуре T_{max}^{χ} , который с ростом магнитного поля смещается вверх по шкале температур вплоть до значений $T_{max}^{\chi} \approx 12$ К при H = 120 кЭ (рис. 7). Немонотонный характер температурной зависимости дифференциальной восприимчивости, очевидно, является причиной «пересечения» полевых зависимостей $\chi_d(H, T < T_m \approx 7 \text{ K})$ в окрестности $H \approx 35 \pm 5 \text{ к} \Im$ (вставка на рис. 7). Указанные аномалии магнитных свойств FeSi, наблюдаемые в окрестности температур T_m и T_C , будут использованы далее в разд. 4 при анализе особенностей низкотемпературной магнитной фазовой Н-Т-диаграммы моносилицида железа

Результаты исследований микроволнового маг-

Рис. 8. Аномалии микроволнового магнитопоглощения моносилицида железа в окрестностях поля анизотропии ферромагнитных микрообластей $H_{an} \approx 15$ кЭ (a) и границы миктомагнитного основного состояния $H_m \approx 35$ кЭ (см. п. 4.3) (б) при различных значениях частоты электромагнитного излучения и температуры: $1 - \nu = 37.55$ ГГц, T = 4.16 K; $2 - \nu = 37.55$ ГГц, T = 4.42 K; $3 - \nu = 37.55$ ГГц, T = 5.16 K; $4 - \nu = 46.33$ ГГц, T = 5.69 K. Стрелками показано направление изменения магнитного поля

нитопоглощения при температуре T < 6 K, отвечающей миктомагнитному состоянию моносилицида железа (фаза SG, рис. 1*в*), представлены на рис. 8. Видно, что на кривых магнитопоглощения электромагнитного излучения в миллиметровом диапазоне длин волн наблюдается гистерезис в окрестности $H \approx 15$ кЭ (рис. 8a) и $H \approx 35$ кЭ (рис. 8b). Интересно отметить, что значения полей, отвечающих аномалиям микроволнового магнитопоглощения в FeSi, хорошо коррелируют с полем анизотропии ферромагнитных нанокластеров $H_{an} \approx 12 \pm 2$ кЭ [23] и с полем $H \approx 35 \pm 5$ кЭ, отвечающим особенностям на кривых дифференциальной восприимчивости $\chi_d(H, T < T_m \approx 7 \text{ K})$ (вставка на рис. 7). В последнем случае совпадение характерных магнитных полей и наличие гистерезисных аномалий, по-видимому, указывают на реализацию индуцированного полем магнитного перехода в низкотемпературной фазе FeSi.

В заключение раздела следует подчеркнуть, что высокая точность методики микроволнового магнитопоглощения позволяет регистрировать слабые гистерезисные аномалии на уровне $\Delta P/P \approx 0.2\%$ (рис. 8). Малая величина эффекта, по-видимому, указывает на относительно небольшую концентрацию магнитных микрообластей, определяющих гистерезис микроволнового магнитопоглощения в моносилициде железа. В такой ситуации отсутствие гистерезисных аномалий на полевых зависимостях дифференциальной восприимчивости в интервале 15-35 кЭ (рис. 7) можно связать с недостаточной точностью метода численного дифференцирования (1-5%), что практически исключает возможность количественного анализа эффектов перемагничивания системы магнитных микрообластей в матрице FeSi на основе данных магнитных измерений. В то же время совместное исследование магнитных и магнитооптических свойств позволяет с хорошей достоверностью установить положение особенностей, связанных с низкотемпературными магнитными переходами в матрице моносилицида железа в магнитных полях до 70 кЭ.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

4.1. Разделение вкладов в эффект Холла

При анализе результатов измерений угловых зависимостей холловского сопротивления образцов FeSi в интервале температур 4.2–30 К (рис. 5, 6) использовалось представление

$$\rho_H(\varphi, T, H) = \rho_{H0} + \rho_{H1} \cos \varphi + \rho_{H2} \cos(2\varphi - \Delta\varphi), \quad (1)$$

которое наряду с основной (нечетной по магнитному полю) составляющей ρ_{H1} и постоянным смещением, возникающим за счет асимметрии холловских контактов, ρ_{H0} , учитывает присутствие вклада второй гармоники ρ_{H2} со сдвигом $\Delta \varphi$ относительно основной. Для наглядности на рис. 56 приведено несколько примеров разделения вкладов в $\rho_H(\varphi, T, H)$ для экспериментальных результатов, полученных при измерениях в магнитном поле H = 59.3 кЭ при различных температурах. Данные, представленные на рис. 56, позволяют сделать вывод об инверсии знака основной составляющей холловского сопротивления $\rho_{H1},$ причем с уменьшением ρ_{H1} в широкой окрестности температуры инверси
и T^H_{inv} вклады ρ_{H1} и ρ_{H2} становятся сравнимы по порядку величины и их конкуренция полностью определяет поведение холловского сигнала. При этом в узкой окрестности температуры инверсии знака основного вклада ρ_{H1} наблюдается существенная зависимость T_{inv}^H от внешнего магнитного поля в условиях, когда доминирующей оказывается составляющая от четной гармоники в ρ_H . Последнее обстоятельство, по-видимому, и объясняет сложности в измерениях и интерпретации эффекта Холла в интервале 4.2–30 К, отмечавшиеся авторами работы [15]. Действительно, при измерениях эффекта Холла в FeSi в общепринятой экспериментальной схеме с регистрацией холловского напряжения для двух взаимно противоположных (перпендикулярных плоскости образца) направлений магнитного поля H, отвечающих значениям $\varphi = 0$ и $\varphi = 180^{\circ}$ на рис. 5, 6, можно ожидать весьма сложного немонотонного по магнитному полю и температуре поведения полного холловского сопротивления в интервале температур 4.2-30 К.

В такой ситуации наиболее наглядная картина изменения составляющих в эффекте Холла в FeSi может быть получена на основе анализа амплитуд

Рис.9. Полевые зависимости основной составляющей холловского сопротивления ρ_{H1} в магнитном поле до 75 кЭ. Для зависимости $\rho_{H1}(H)$ при T = 13.5 К показано разделение нормального $\rho_{H}^{SP} = R_{H}^{SP}H$ и аномального $\rho_{H}^{A} = R_{H}^{A}H_{ex}$ вкладов в основную составляющую холловского сопротивления

вкладов ρ_{H1} и ρ_{H2} , а также фазового сдвига $\Delta \varphi$, найденных из экспериментальных данных (рис. 5, 6) в рамках соотношения (1). На рис. 9 и рис. 10 представлены полевые зависимости соответственно основного (ρ_{H1}) и четного по полю (ρ_{H2}) вкладов в холловское сопротивление, а на вставке к рис. 10 показано изменение с температурой параметра $\Delta \varphi$. Из рис. 9 видно, что основная (положительная по знаку и линейная по магнитному полю) компонента ρ_{H1} холловского сопротивления растет по амплитуде с понижением температуры при T < 40 K. В окрестности температуры Кюр
и $T_C\approx 15$ К в ρ_{H1} наряду с линейной положительной компонентой $\rho_{H1}^{SP}(H)$, отвечающей транспорту по спин-поляронным состояниям [23], появляется не зависящий от Н аномальный отрицательный вклад ρ_{H1}^A (рис. 9). Дальнейшее понижение температуры приводит к значитель-

Рис.10. Полевые зависимости второй гармоники холловского сопротивления ρ_{H2} , представленные в двойных логарифмических координатах по результатам измерений в магнитном поле до 75 кЭ в диапазоне температур 2–32 К. Штриховой линией показана квадратичная зависимость вида $\rho_{H2} \propto H^2$. На вставке приведены температурные зависимости сдвига фаз $\Delta \varphi$ между первой и второй гармониками (см. текст) в магнитных полях 17.2 и 59.3 кЭ

ному росту абсолютной величины аномальной компоненты ρ_{H1}^A холловского сопротивления (более чем в 10⁵ раз при уменьшении температуры от 20 до 1.8 K), причем указанный вклад становится доминирующим при температурах $T \leq 11$ K (рис. 9). Таким образом, анализ полученных экспериментальных данных приводит к однозначному выводу о том, что низкотемпературная инверсия знака основной составляющей в холловском сигнале в FeSi определяется условием равенства амплитуд аномального отрицательного ρ_{H1}^A и нормального положительного ρ_{H1}^{SP} вкладов в $\rho_{H1}(H, T)$.

В условиях значительного роста аномального вклада в эффект Холла естественно ожидать смещения температуры инверсии T_{inv}^H знака основной гармоники ρ_{H1} холловского сопротивления в магнитном поле. На рис. 11 представлены температурные зависимости величин ρ_{H1} и ρ_{H2} для значений напряженности внешнего магнитного поля в начале

Рис.11. Температурные зависимости амплитуд основной составляющей $\rho_{H\,1}(T)$ и второй гармоники $\rho_{H\,2}(T)$ холловского сопротивления в магнитных полях 17.2 и 70.3 кЭ

(H = 17.2 к) и в конце (H = 70.3 к) используемого в работе диапазона изменения H. Для приведенных на рис. 11 результатов смещение величин T_{inv}^{H} с ростом H от 17.2 до 70.3 к \Im составляет около 3 К. В свою очередь, отсутствие заметной зависимости основной составляющей ρ_{H1} холловского сопротивления от внешнего магнитного поля $H \leq 70$ к \Im для температур ниже 10 К (см. рис. 11), на наш взгляд, служит дополнительным аргументом, свидетельствующим об определяющей роли аномального вклада в эффект Холла в этом температурном интервале.

Полевые зависимости второй гармоники $\rho_{H2}(H)$ холловского сопротивления, представленные на рис. 10, в парамагнитной фазе при $T > T_C \approx 15$ К характеризуются близкой к квадратичной зависимостью, $\rho_{H2}(H) \propto H^2$. В окрестности температуры Кюри $T \approx T_C$ на кривых $\rho_{H2}(H)$ в области малых полей появляется участок с $\rho_{H2}(H) = \text{const}$, выше которого при некотором критическом значении напряженности магнитного поля H_c поведение этой компоненты холловского сопротивления вновь возвращается на асимптотику, близкую к квадратичной. С понижением температуры точка смены режима при H_c на кривых $\rho_{H2}(H)$ смещается вверх по шкале H, и при температурах $T < T_m \approx 7$ K, отвечающих миктомагнитному состоянию в матрице FeSi, поле H_c выходит на постоянное значение $H_c \approx 35$ кЭ.

Другим параметром, который также претерпевает заметные изменения при переходе при $T < T_m \approx 7$ К в состояние с замороженными в матрице FeSi магнитными моментами ферромагнитных нанокластеров, является фазовый сдвиг $\Delta \varphi$ между первой и второй гармониками, температурная зависимость которого представлена на вставке к рис. 10. Как видно из приведенных на этой вставке данных, при $T > T_m \approx 7$ К величина $\Delta \varphi$ составляет около 30°, причем при понижении температуры в непосредственной окрестности перехода в миктомагнитное состояние при $T_m \approx 7~{
m K}$ фазовый сдвиг скачком уменьшается до нуля. Температурная зависимость второй гармоники холловского сопротивления (см. рис. 11) показывает, что в целом кривые $ho_{H2}(H)$ повторяют поведение основной компоненты холловского сигнала. Однако поскольку $\rho_{H2}(H)$ является четной по магнитному полю составляющей холловского сопротивления $R_H(T)$, вместо смены знака в окрестности T_C на кривых $\rho_{H2}(H,T)$ наблюдается лишь слабая особенность в виде точки перегиба в интервале температур $T_m < T < T_C$ (см. рис. 11).

Интересно отметить, что аналогичный четный по магнитному полю вклад в эффект Холла (вторая гармоника в угловых зависимостях) наблюдался при исследованиях гальваномагнитных характеристик соединения CeAl₂ с тяжелыми фермионами [33]. В указанном соединении понижение температуры в окрестности перехода в антиферромагнитное состояние ($T < T_N \approx 3.85$ K) сопровождалось значительным ростом амплитуды аномальной компоненты $\rho_{H2}(H,T)$, причем возникновение соответствующей магнитной составляющей коэффициента Холла $R_{H}^{am} = \rho_{H2}(H,T)/H$ было связано авторами [33] с процессами перемагничивания магнитных доменов и существованием короткодействующих ферромагнитных корреляций в матрице CeAl₂ в непосредственной окрестности антиферромагнитной фазы. Вместе с тем, достаточно монотонное изменение $\rho_{H2}(H,T)$ в непосредственной окрестности температуры $T_C \approx 15$ К формирования ферромагнитных микрообластей наряду с существованием четной по магнитному полю компоненты в эффекте Холла в FeSi при температурах, значительно превышающих Т_С (см. рис. 11), по-видимому, позволяет исключить непосредственную связь данной компоненты холловского сигнала с формированием ферронов в FeSi. Таким образом, в настоящее время вопрос о происхождении этой четной аномальной составляющей в холловском сигнале представляется открытым, и для выяснения природы второй гармоники $\rho_{H2}(H,T)$ холловского сопротивления в моносилициде железа и других соединениях с сильными электронными корреляциями требуется проведение дальнейших исследований.

Возвращаясь к обсуждению результатов исследования основной (нечетной по магнитному полю) составляющей ρ_{H1} холловского сопротивления в FeSi, следует подчеркнуть, что аномальный вклад ρ_H в эффект Холла наблюдается при температурах ниже $T_C \approx 15$ K, при которых происходит формирование ферромагнитных нанокластеров [23]. При этом в отличие от поведения, предсказываемого для традиционных магнитных металлов и полупроводников $(R_H^A \rightarrow 0$ при $T \rightarrow 0$ [34]), аномальная компонента холловского сопротивления в FeSi при понижении температуры растет на пять порядков по абсолютной величине, достигая значений $\rho_H^A \approx 1$ Ом · см (см. рис. 9), и не обнаруживает тенденции к уменьшению вплоть до сверхнизких температур $T \approx 0.05$ К [15]. Кроме того, различие знаков спин-поляронного $\rho_{H}^{SP}(H,T)$ и аномального $\rho_H^A(T)$ вкладов в холловское сопротивление FeSi, соответствующих дырочному $(\rho_{H}^{SP}(H,T)>0)$ и электронному ($\rho_{H}^{A}(T) < 0$) типам проводимости, также не характерно для традиционных магнитных материалов. Аналогичное различие знаков аномального и нормального коэффициентов Холла наблюдалось при исследовании гальваномагнитных характеристик манганитов семейства La(Ca,Sr)MnO₃ в широкой окрестности температуры Кюри, отвечающей режиму транспорта по спин-поляронным состояниям (см., например, [35, 36]). Для интерпретации нетривиальной температурной зависимости коэффициентов Холла в манганитах была предложена модель, основанная на предположении об изменении фазы волновой функции электрона под влиянием локального магнитного окружения [37]. В такой ситуации движение носителя заряда в системе некопланарных спинов сопровождается появлением дополнительного фазового сдвига (фазы Берри), аналогичного возникновению эффективного внутреннего магнитного поля для носителя заряда [38]. Учет указанной дополнительной геометрической фазы в условиях сильного спин-орбитального взаимодействия позволяет качественно описать различие знаков и температурную зависимость аномального коэффициента Холла в манганитах [37]. Вместе с тем, непосредственное использование модели [37],

учитывающей влияние поляризованной носителем заряда области на процессы переноса заряда в магнитном поле, при анализе эффекта Холла в режиме спин-поляронного транспорта в FeSi представляется затруднительным.

Учитывая изложенное выше, для количественного описания эффекта Холла в моносилициде железа нами использовалась достаточно обычная процедура разделения составляющих холловского сопротивления в ферромагнетиках (см., например, [31]) с представлением набора экспериментальных данных через «нормальный» (спин-поляронный) R_H^{SP} и аномальный R_H^A коэффициенты Холла в виде

$$\rho_{H1}(H,T) = \rho_H^{SP}(H,T) + \rho_H^A(T) = R_H^{SP}(H,T)H + R_H^A(T)H_{ex}, \quad (2)$$

где

$$\rho_{H}^{SP}(H,T) = R_{H}^{SP}(H,T)H, \quad \rho_{H}^{A}(T) = R_{H}^{A}(T)H_{ex},$$

 $H_{ex} = 350 \pm 100$ кЭ — обменное поле на носителе заряда [23, 27]. Подчеркнем, что в отличие от предыдущей работы [23], в правой части соотношения (2) вместо слагаемого $R_{H}^{A}(T)M(T)$, традиционно применяемого для описания аномального эффекта Холла [31], используется представление $ho_{H}^{A}(T) = R_{H}^{A}(T)H_{ex}$, в котором температурная зависимость намагниченности M(T) содержится непосредственно в $R_{H}^{A}(T)$. На наш взгляд, такой подход является оправданным, поскольку структура магнитоупорядоченной фазы (ферромагнитные нанокластеры малой концентрации в слабомагнитной матрице FeSi) требует замены объемной намагниченности Mматериала в выражении для ρ^A_H ее локальным значением $M_{loc}(T)$, определяемым эффективным магнитным полем на носителе заряда в верхней (t_{2q}) хаббардовской полосе. Пример представления экспериментальных данных $\rho_{H1}(H,T)$ в рамках модели (2) показан на рис. 9.

Изложенный выше подход был применен в работе при расчете коэффициентов Холла R_H^A и R_H^{SP} для значений магнитного поля 17.2 и 70.3 кЭ (рис. 12*a*). Используя значения R_H^A и R_H^{SP} (рис. 12*a*), можно оценить локальную намагниченность ферромагнитных микрообластей $M_{loc}(T)$ в FeSi при температурах $T \leq 20$ К с помощью предложенного в [23] соотношения $M_{loc} = \rho_H^A/4\pi R_H^{SP}$, основанного на применении модели двух групп носителей заряда для описания аномального эффекта Холла. Подчеркнем, что аналогичный подход используется в литературе для определения эквивалентного поля $H_A = \rho_H^A/R_H$, при котором величина нормального

Рис.12. а) Температурные зависимости эффективной концентрации $p = (R_H e)^{-1}$, полученной для нормального $R_H^{S,P}(H,T)$ и аномального $R_H^A(T)$ коэффициентов Холла (см. формулу (2) в тексте), а также концентрации носителей заряда $p_S = N_{\rm Fe} \exp(|e|S/k_B)$, рассчитанной из коэффициента термоэдс S в режиме спин-поляронного транспорта [23]. Штрихпунктирной линией показана активационная асимптотика коэффициента Холла $R_H^{S,P}(T) \propto \exp(E_p/k_BT)$ с энергией активации $E_p \approx 6$ мэВ при T > 15 К [23]. 6 Изменение эффективной массы носителей заряда в FeSi в магнитном поле напряженностью 17.2 и 70.3 кЭ

эффекта Холла в линейном приближении совпадает с аномальным [34]. Из температурной зависимости эффективного поля $4\pi M_{loc}$ (рис. 13) видно, что понижение температуры приводит к значительному росту величины локальной намагниченности. При этом увеличение M_{loc} в непосредственной окрестности $T_C \approx 15$ К оказывается существенно более медленным процессом в сравнении со случаем «классических» зонных ферромагнетиков (на рис. 13 для сравнения представлены также кривые намагниченности для ферромагнитных металлов Fe и Ni и теоретическая зависимость спонтанной намагниченности ферромагнетика при $T \leq T_C$ [39]).

Анализ данных, представленных на рис. 13, показывает, что вместо критического поведения в окрестности температуры Кюри в системе ферромагнитных нанокластеров в матрице FeSi

Рис. 13. Температурные зависимости эффективного поля $4\pi M_{loc} = \rho_H^A/R_H^{SP}$, представленные в двойных логарифмических координатах по результатам измерений в магнитных полях 17.2 и 70.3 кЭ. Штрихпунктирной линией показана активационная асимптотика параметра $M_{loc}(T)$ (см. текст). Для сравнения в нормированных координатах приведены экспериментальные зависимости спонтанной намагниченности $M/M_0 = f(T/T_C)$ для железа и никеля, а также рассчитанная в приближении среднего поля теоретическая зависимость $M/M_0 = f(T/T_C)$, где $M_0 = M(T = 0 \text{ K})$ [34]. На вставке показаны активационные асимптотики аномального коэффициента Холла R_H^A

наблюдаются близкие к активационным зависимости $M_{loc}(T)$ (рис. 13) и $R_H^A(T)$ (вставка к рис. 13). Несмотря на приближенный характер численных оценок, значения энергий активации, характеризующие температурные зависимости $M_{loc}~(E_a~\approx~6.5~{\rm мэB})$ и $R_H^A~(E_{a1}~\approx~12~{\rm мэB}$ и $E_{a2} \approx 4$ мэВ), достаточно хорошо согласуются с энергией связи спин-поляронных состояний в матрице FeSi, $E_p \approx 6$ мэB [23]. Отметим также, что существенно немонотонное поведение зависимостей $R_{H}^{SP}(T)$ (рис. 12*a*) и $M_{loc}(T) = \rho_{H}^{A}/4\pi R_{H}^{SP}$ (рис. 13) в окрестности $T_m \approx 7$ K, на наш взгляд, следует связать с заметным усилением рассеяния носителей на неоднородностях, возникающих в матрице FeSi в окрестности перехода в миктомагнитное состояние. Кроме того, значение намагниченности $4\pi M_{loc} \approx 500 \pm 200$ кЭ при T = 2.5 К в предеЖЭТФ, том **126**, вып. 2 (8), 2004

лах экспериментальной погрешности совпадает со значением обменного поля на носителе в верхней хаббардовской полосе, $H_{ex} = 350 \pm 100$ кЭ, найденным в [23] для FeSi.

Полученные в работе температурные зависимости нормального R_{H}^{SP} и аномального R_{H}^{A} коэффициентов Холла (рис. 12а) могут быть проанализированы также в терминах эффективной концентрации носителей, определяемой выражением $p = (R_H e)^{-1}$ (см. ось ординат справа на рис. 12*a*). При этом наиболее интересным, на наш взгляд, представляется сравнение поведения эффективной холловской концентрации $p_H(T) = (R_H^{SP} e)^{-1}$ с концентрацией носителей, оцененной из измерений температурной зависимости коэффициента термоэдс [23]. Напомним, что в режиме сильных кулоновских корреляций коэффициент термоэдс определяется приведенной концентрацией носителей заряда в хаббардовской зоне [40]. Таким образом, в диапазоне температур $T_C < T < 100$ K, отвечающем транспорту по спин-поляронным состояниям на уровне Ферми, данные по термоэдс в моносилициде железа [23] позволяют непосредственно оценить концентрацию носителей по формуле Хикеса $p_S = N_{\rm Fe} \exp(|e|S/k_B)$ [40]. Полученные значения p_S практически не зависят от температуры в интервале 15-50 К: $p_S \sim 10^{17}$ - 10^{18} см⁻³ (рис. 12а). Отметим также, что аналогичная приведенной выше оценка концентрации носителей заряда, $p \sim 3 \cdot 10^{18}$ см⁻³, была получена при исследованиях низкотемпературной теплоемкости [41] моносилицида железа. Сравнение данных рис. 12 а наглядно демонстрирует, что и абсолютная величина, и активационный характер зависимости холловского параметра $p_H(T) = (R_H^{SP} e)^{-1}$ существенно отличаются от поведения концентрации p_S , оцененной по результатам измерений термоэдс [23]. Естественное объяснение отмеченных различий параметров $p_H(T)$ и $p_S(T)$ может быть найдено в модели транспорта носителей по спин-поляронным состояниям малого радиуса (около 10 Å), характеризующегося активационной зависимостью коэффициента Холла *R*^{*SP*}_{*H*}. При этом энергия активации для зависимости $R_{H}^{SP}(T)$ определяется спин-поляронным потенциалом $E_p \approx 6$ мэВ [23] в отличие от коэффициента термоэдс, который слабо меняется с температурой и пересчитывается по формуле Хикеса в реальную концентрацию носителей в хаббардовских зонах $(p_S(T) \sim 10^{17} - 10^{18} \text{ см}^{-3}, \text{ см. рис. } 12a).$

Еще одно интересное, с нашей точки зрения, сопоставление параметров эффективных концентраций может быть выполнено при температурах $T < T_m \approx 7$ К, где близкими по величине оказываются значения $p_A = (R_H^A e)^{-1}$ и $p_H(T) = (R_H^{SP} e)^{-1}$. На наш взгляд, в этой области температур, отвечающей установлению миктомагнитного состояния в FeSi, данные рис. 12*a* свидетельствуют в пользу того, что концентрации тяжелых фермионов и ферромагнитных областей наноразмера в матрице моносилицида железа оказываются сравнимыми. При этом уменьшение значений эффективной концентрации носителей в сравнении с концентрацией $p_S = 5.8 \cdot 10^{17} \text{ см}^{-3}$ спин-поляронных состояний в моносилициде железа в парамагнитном состоянии $(T > T_C)$, по-видимому, следует связать с «включением» взаимодействия между ферромагнитными областями наноразмера, приводящего к их объединению в кластеры с переходом в состояние с замороженными спинами (SG, рис. 1*в*).

Таким образом, разделение вкладов, формирующих основную составляющую холловского сигнала $(R_{H}^{SP}(H,T)$ и $R_{H}^{A}(T)$ на рис. 9 и рис. 12), позволяет сделать следующие заключения. Положительный коэффициент Холла $R_{H}^{SP}(H,T)$ в FeSi, по-видимому, обусловлен вкладом от спин-поляронных состояний, формирующих многочастичный резонанс на уровне Ферми (структура I, рис. 1). Эта «резонансная компонента» аналогична хорошо известному аномальному положительному эффекту Холла, наблюдающемуся в системах с тяжелыми фермионами на основе редкоземельных элементов (см., например, [42, 43]). На наш взгляд, именно формирование многочастичного резонанса в плотности состояний в окрестности энергии Ферми E_F в FeSi приводит к появлению спин-поляронной положительной компоненты коэффициента Холла при температурах T < 100 K, причем активационное возрастание величины $R_H^{SP}(T) \propto \exp(E_p/k_B T)$ с понижением температуры (см. рис. 12а и [23, 25]) позволяет оценить величину энергии связи $E_p \approx 6$ мэВ спин-поляронных состояний в матрице моносилицида железа (структура I, рис. 1). С ростом плотности состояний для многочастичного резонанса при T < 20 К происходит переход к когерентному режиму хаббардовских флуктуаций между e_g- и t_{2g}-состояниями 3d-полосы железа и формированию при $T = T_C \approx 15$ К из спиновых поляронов ферромагнитных областей наноразмера (ферронов). С учетом оценок энергии $U \approx 270$ мэВ хаббардовских корреляций и плотности N > 20 сост./эВ · эл. яч. электронных состояний, полученных в предыдущей работе [23], имеем UN > 1 для критерия ферромагнетизма, аналогичного стонеровскому; в случае FeSi получаем $UN \geq 5$. По-видимому, выполнение условия $UN \geq 5$ позволяет объяснить возникновение спонтанной намагниченности и, как следствие, появление аномальной ферромагнитной составляющей эффекта Холла $R_H^A(T)$ в моносилициде железа при низких температурах. При этом наблюдение локальной намагниченности и, соответственно, аномальной компоненты коэффициента Холла $R_H^A(T)$ в области температур несколько выше температуры Кюри $T_C \approx 15$ К (см. рис. $12a, R_H^A(20 \text{ K}) \neq 0$), вероятно, следует связать с хаотическим распределением многочастичных комплексов низкой концентрации (около 10^{18} см⁻³) в объеме образца FeSi.

4.2. Разделение вкладов в магнитосопротивление

В диапазоне температур 1.6-30 К поведение магнитосопротивления моносилицида железа оказывается достаточно сложным и знакопеременным (см. рис. 2–4). В отличие от основной составляющей ρ_{H1} холловского сопротивления, инверсия знака которой происходит при температурах вблизи $T_C = 15$ K, смена знака отношения $\Delta \rho / \rho$ (переход от положительного магнитосопротивления $\Delta \rho / \rho > 0$ к отрицательному $\Delta \rho / \rho < 0$) наблюдается при понижении температуры в непосредственной окрестности $T_m = 7 \text{ K}$ (рис. 4). Как уже отмечалось ранее, при T > T_m полевые зависимости магнитосопротивления $\Delta \rho / \rho = f(H)$ обнаруживают существенное отклонение от квадратичной зависимости $\Delta \rho / \rho \propto H^2$ (вставка к рис. 2). Заметим также, что максимум положительного вклада в магнитосопротивление в FeSi наблюдается при температуре $T \approx 11$ K заметно меньшей температуры Кюри $T_C \approx 15$ К (рис. 4).

На наш взгляд, наиболее вероятное объяснение эффекта положительного магнитосопротивления при $T > T_m \approx 7$ К может быть сформулировано следующим образом. В условиях быстрых флуктуаций электронной плотности (хаббардовских корреляций на Fe-центрах) формирование спин-поляронных состояний на носителях заряда происходит за счет поляризации магнитных моментов ближайшего окружения, определяющей амплитуду соответствующего поляронного потенциала (глубину спин-поляронной ямы). В такой ситуации дополнительная поляризация непосредственного окружения носителя заряда под влиянием внешнего магнитного поля приводит к увеличению глубины поляронного потенциала и, как следствие, к положительному вкладу в магнитосопротивление в FeSi. В простейшем приближении увеличение энергии связи спин-поляронного комплекса в парамагнитной матрице FeSi можно учесть через изменение магнитостатической энергии поляризованной области в магнитном поле [44]:

$$\Delta E = -MH/2,\tag{3}$$

где $M = \chi_{loc}V_{SP}\rho_d H$ — намагниченность окружения, поляризованного носителем заряда, χ_{loc} и V_{SP} — локальная восприимчивость и объем поляризованной области, $\rho_d = 6.1 \text{ г/см}^3$ — плотность FeSi [15]. Используя значение радиуса локализации $r_{SP} \approx 5$ Å спин-поляронного состояния [23], для объема спинового полярона имеем

$$V_{SP} = 4\pi r_{SP}^3 / 3 \approx 5.2 \cdot 10^{-22} \text{ cm}^3.$$

Изменение энергии связи многочастичных состояний в активационной зависимости удельного сопротивления $\rho(H,T) = \rho_0(T) \exp[E_p(H)/k_BT]$ [23,25] в магнитном поле можно представить в виде

$$E_p(H) = E_p(0) + \Delta E = E_p(0) - \frac{1}{2} \chi_{loc} V_{SP} \rho_d H^2.$$
(4)

Тогда при условии малости параметра $\Delta E/k_BT < 0.03 \ll 1$ (см. рис. 2 и 7) для полевой зависимости положительного магнитосопротивления при фиксированной температуре находим

$$\frac{\Delta\rho}{\rho} = 1 - \exp\left(\frac{\Delta E}{k_B T}\right) \approx \frac{\chi_{loc} V_{SP} \rho_d H^2}{2k_B T}.$$
 (5)

Таким образом, в рамках модели (3)–(5) из квадратичного члена в (5) можно оценить локальную магнитную восприимчивость

$$\chi_{loc} = \frac{2k_B T}{H^2 V_{SP} \rho_d} \frac{\Delta \rho}{\rho}$$

в объеме *V_{SP}*, занимаемом многочастичными состояниями спин-поляронного типа в матрице моносилицида железа.

Результаты расчета локальной восприимчивости $\chi_{loc}(H,T)$ для исследованного в настоящей работе диапазона температур и магнитных полей представлены на рис. 14. Видно, что поведение полевых зависимостей параметра χ_{loc} достаточно хорошо коррелирует с изменением дифференциальной магнитной восприимчивости $\chi_d(H,T)$ в магнитном поле (см. вставку на рис. 7). Так, с ростом напряженности внешнего магнитного поля χ_{loc} значительно уменьшается по абсолютной величине, причем наиболее существенное изменение локальной магнитной восприимчивости в магнитном поле наблюдается при температурах в непосредственной окрестности $T_C = 15$ К (рис. 14). В то же время следует подчеркнуть различие в поведении средней по

Рис.14. Полевые зависимости локальной восприимчивости χ_{loc} , оцененные в рамках модели (3)–(5) для различных значений температуры в интервале 10–40 К. На вставке приведено изменение χ_{loc} с температурой в магнитных полях 0.1, 35 и 70 кЭ

объему образца дифференциальной магнитной восприимчивости $\chi_d(H,T)$ и локальной восприимчивости $\chi_{loc}(H,T)$, которое наиболее отчетливо видно из сопоставления температурных зависимостей указанных параметров при фиксированных значениях магнитного поля. Приведенные на вставке к рис. 14 зависимости $\chi_{loc}(T, H)$ демонстрируют максимум при температуре $T \sim T_C = 15$ К, отвечающей формированию ферромагнитных областей наноразмера в матрице моносилицида железа. Увеличение магнитного поля приводит к существенному подавлению амплитуды максимума χ_{loc} , сопровождаемому размытием особенности вблизи $T_C = 15$ K (вставка на рис. 14). Отметим также, что полевые зависимости χ_{loc} , рассчитанные по результатам измерений положительного магнитосопротивления для области температур 10-20 К, в пределах экспериментальной погрешности достаточно хорошо совпадают между собой в магнитном поле выше 35 кЭ (рис. 14).

Отмеченные различия в поведении параметров $\chi_d(H,T)$ и $\chi_{loc}(H,T)$ представляется естественным связать с особенностями формирования основного магнитного состояния в моносилициде железа. Так, объемные магнитные свойства FeSi при T < 100 К определяются паулиевским парамагнитным вкла-

дом от многочастичного (спин-поляронного) резонанса, возникающего в режиме быстрых спиновых флуктуаций на Fe-центрах, сопровождаемых переходами между хаббардовскими зонами [32]. В свою очередь, параметр $\chi_{loc}(T, H)$ оказывается связанным с обменным усилением намагниченности за счет поляризации Fe-центров в непосредственной окрестности носителя заряда и с формированием ферронов в матрице моносилицида железа при $T < T_C = 15$ К. Сравнение параметров $\chi_d(H,T)$ и $\chi_{loc}(H,T)$ показывает, что оцененное значение $\chi_{loc}(15 \text{ K}) \approx 1.5 \cdot 10^{-5} \text{ см}^3/\Gamma$ (рис. 14) почти на порядок величины превышает измеренное значение средней по объему восприимчивости FeSi $\chi_d(15 \text{ K}) \approx 2 \cdot 10^{-6} \text{ см}^3/\text{г}$ (рис. 7): $\chi_{loc}(15 \text{ K})/\chi_d(15 \text{ K}) \approx 8.$ Вместе с тем, для оценки фактора обменного усиления, отражающего перенормировку плотности электронных состояний $N^{*}(E_{F})/N_{0}(E_{F})$, по-видимому, более правильно использовать отношение $\chi_{loc}(15 \text{ K})$ к значению магнитной восприимчивости $\chi_d(T_{min} \approx 80 \text{ K})$, отвечающему переходу к режиму формирования многочастичного резонанса в окрестности E_F [32]. Оцененный таким образом фактор обменного усиления составляет

$$\frac{N^*(E_F)}{N_0(E_F)} \approx \frac{\chi_{loc}(15 \text{ K})}{\chi_d(T_{min} \approx 80 \text{ K})} \approx 20$$

Близкое значение величины обменного усиления плотности состояний, $N^*(E_F)/N_0(E_F) \geq 20$, было получено в [22], где паулиевский парамагнитный вклад в $\chi_d(T)$ в FeSi анализировался в простейшей модели узкой прямоугольной зоны ($\delta \approx 6$ мэВ) на уровне Ферми. Выполненные оценки локальной восприимчивости, на наш взгляд, свидетельствуют в пользу корректности применения спин-поляронного подхода к описанию основного состояния моносилицида железа.

В заключение анализа эффекта положительного магнитосопротивления в моносилициде железа остановимся на результатах исследований магнитосопротивления FeSi в импульсных магнитных полях до 400 кЭ, демонстрирующих весьма значительное положительное магнитосопротивление $\Delta \rho / \rho \approx 30 \%$ (рис. 4, кривая 4). Указанный эффект положительного магнитосопротивления, наблюдаемый в условиях низкой подвижности носителей заряда $(\mu \leq 10 \text{ см}^2/\text{B} \cdot \text{c})$, на наш взгляд, можно объяснить подавлением многочастичного резонанса на уровне Ферми, приводящим к индуцированному магнитным полем переходу металл-диэлектрик в режиме сильных хаббардовских корреляций [45, 46]. В такой ситуации разрушение спин-поляронного резонанса в Спин-поляронный режим транспорта ...

магнитном поле должно сопровождаться значительным уменьшением паулиевской восприимчивости, что и наблюдалось при исследовании полевых зависимостей параметров $\chi_d(H,T)$ и $\chi_{loc}(H,T)$ (рис. 7 и 14). Таким образом, результаты измерений магнитосопротивления в импульсном магнитном поле также могут служить дополнительным подтверждением применимости спин-поляронного подхода к описанию основного состояния моносилицида железа.

Переходя к анализу магнитосопротивления моносилицида железа при температурах $T < T_m \approx 7$ K, подчеркнем, что смена знака магнитосопротивления $\Delta \rho / \rho$ наблюдается в непосредственной окрестности температуры перехода в миктомагнитное состояние $T_m \approx 7 ~{\rm K}$ (рис. 4) и сопровождается изменением характера полевой зависимости $\Delta \rho / \rho$ в малых магнитных полях (около 10 кЭ) с переходом от квадратичной, $\Delta \rho / \rho \propto H^2$, к линейной, $\Delta \rho / \rho \propto H$, асимптотике (рис. 2, 3). Возникновение линейной полевой зависимости магнитосопротивления представляется достаточно нетривиальным, поскольку в общем случае отрицательный вклад в магнитосопротивление в магнитных материалах определяется взаимной ориентацией спинов носителей заряда и рассеивающих магнитных центров и пропорционален квадрату намагниченности, в результате чего следует ожидать отрицательного магнитосопротивления вида $\Delta \rho / \rho \propto -M^2 \propto -H^2$ [47].

Для объяснения необычного вида полевой зависимости отрицательного магнитосопротивления моносилицида железа при температурах $T < T_m \approx 7$ К (рис. 3) напомним, что в рамках развиваемого в настоящей работе подхода формирование основного магнитного состояния в FeSi связывается с возникновением спонтанной поляризации спин-поляронного окружения, при этом локальная намагниченность М ферромагнитных областей определяется в основном обменным полем на носителе, $H_{ex} \approx 350$ кЭ, и слабо зависит от внешнего магнитного поля в пределе $H \ll H_{ex}$. В такой ситуации полную намагниченность системы можно представить в виде суммы не зависящей от поля H спонтанной намагниченности $M_0 = 4\pi H_{ex}$ ферромагнитных областей наноразмера и дополнительного вклада $\delta M(H) \propto \chi_{loc}$, определяемого поляризацией широкой окрестности ферронов внешним магнитным полем ($\delta M \ll M_0$). При этом для отрицательного магнитосопротивления парамагнитной матрицы, содержащей магнитные примеси, воспользуемся результатом работы [47], согласно которому

$$\rho(M) = \rho_0 - AM^2. \tag{6}$$

Тогда, переписывая соотношение (6) в виде

$$\rho(M) = \rho_0 - AM_0^2 - 2AM_0\delta M(H) - A\left(\delta M(H)\right)^2 \approx \tilde{\rho}_0 - 2AM_0\delta M(H) - A\left(\delta M(H)\right)^2 \quad (7)$$

и пренебрегая малой поправкой порядка $(\delta M\left(H\right))^2,$ получаем

$$\frac{\Delta\rho(H)}{\rho} \propto 2\delta M(H). \tag{8}$$

Таким образом, изменение $\Delta \rho / \rho$ в магнитном поле в основном будет определяться полевой зависимостью $\delta M(H)$. Поскольку для системы ферромагнитных нанообластей малой концентрации в первом приближении полевая зависимость дополнительного вклада $\delta M(H)$ в намагниченность может быть аппроксимирована функцией Бриллюэна [39], для отрицательного магнитосопротивления в FeSi имеем

$$-\frac{\Delta\rho(H)}{\rho} \propto \delta M(H) \propto B_J(\alpha) =$$
$$= \frac{2J+1}{2J} \operatorname{cth}\left(\frac{2J+1}{2J}\alpha\right) - \frac{1}{2J} \operatorname{cth}\left(\frac{1}{2J}\alpha\right), \quad (9)$$

где $\alpha = \mu_{eff} H/k_B T$, J — полный магнитный момент и $\mu_{eff} = g\mu_B J$ — эффективный магнитный момент ферромагнитных нанокластеров. При переходе к классическому пределу $J \rightarrow \infty$ функция Бриллюэна $B_J(\alpha)$ преобразуется в функцию Ланжевена $L(\alpha)$, в результате чего отрицательное магнитосопротивление в FeSi определяется выражением

$$-\frac{\Delta\rho(H)}{\rho} \propto L(\alpha) = \operatorname{cth} \alpha - 1/\alpha.$$
 (10)

Очевидно, что в пределе слабого магнитного поля $\alpha \ll 1$ выражение (9) (так же, как и его классический аналог (10)) приводит к линейной полевой зависимости $-d\rho/\rho \propto \alpha \propto H$ для отрицательного магнитосопротивления.

Результаты количественного анализа отрицательного магнитосопротивления в FeSi представлены на рис. 15. Для исключения дополнительного вклада от положительного магнитосопротивления, наблюдаемого в непосредственной окрестности перехода в миктомагнитное состояние, $T \sim T_m \approx 7$ К (см. кривые $\Delta \rho / \rho$ в диапазоне температур 6–8 К на рис. 3*a*), из экспериментальных зависимостей $\Delta \rho / \rho$ вычиталась квадратичная асимптотика $\Delta \rho / \rho \propto H^2$ в магнитных полях выше 40 кЭ. Из данных рис. 15 видно, что приближение (6)–(10) позволяет с хорошей точностью описать полевую зависимость

Рис.15. Полевая зависимость отрицательного вклада в магнитосопротивление $\Delta \rho / \rho = (\Delta \rho / \rho)_{exp} - AH^2$ в области температур выше гелиевой. Сплошными линиями показаны результаты аппроксимации данных функцией Бриллюэна $B_J(\alpha)$ с J = 1 (формула (8)). Для зависимости $\Delta \rho / \rho$, измеренной при T = 5.1 К, пунктирной линией приведен результат моделирования функцией Ланжевена $L(\alpha)$ (формула (9)). На вставке приведены температурные зависимости эффективного магнитного момента $\mu_{eff}(T)$, оцененные в рамках модели (6)–(9) при $T < T_m \approx 7$ К для $B_J(\alpha)$ (1) и $L(\alpha)$ (2)

отрицательного магнитосопротивления во всем диапазоне магнитных полей, используемом в настоящей работе. Отметим также, что сравнение результатов аппроксимации кривых $\Delta \rho / \rho$ в квантовом (J = 1) (9) и классическом (10) случаях не позволяет сделать однозначный выбор между ними (см. моделирование зависимости $\Delta \rho / \rho$ для T = 5.1 К на рис. 15). Вместе с тем, температурные зависимости эффективного магнитного момента μ_{eff} , оцененные по результатам численной подгонки параметров выражений (9), (10) (см. вставку на рис. 15), демонстрируют уменьшение эффективного магнитного момента с понижением температуры от значений $\mu_{eff} \approx 12 \mu_B \ (20 \mu_B)$ при $T \sim T_m \approx 7 \ {\rm K}$ до $\mu_{eff} \approx 4\mu_B \ (7\mu_B)$ при T = 1.8 К (в скобках приведены значения μ_{eff} для расчетов с использованием выражения (10)). Наблюдаемое качественное согласие в поведении эффективного магнитного момента μ_{eff} , рассчитанного в рамках соотношений (9) и (10), свидетельствует о значительном уменьшении эффективного магнитного момента, которое, по-видимому, обусловлено «включением» взаимодействия между ферромагнитными областями наноразмера и, как следствие, «замораживанием» магнитных моментов нанокластеров при формировании основного миктомагнитного состояния в матрице моносилицида железа при $T < T_m \approx 7$ К (фаза SG, рис. 1*6*).

4.3. Низкотемпературная магнитная фазовая диаграмма и параметры носителей заряда в FeSi

Для построения низкотемпературной магнитной фазовой диаграммы моносилицида железа обобщим результаты выполненного в настоящей работе исследования транспортных, магнитных и магнитооптических характеристик FeSi, а также известные из литературы экспериментальные данные [22, 23, 32].

Область температур 15 K < T < 100 K отвечает парамагнитной фазе (область Р на рис. 16) моносилицида железа, в которой сильные хаббардовские корреляции приводят к существенной перенормировке плотности состояний с формированием многочастичного резонанса в окрестности энергии Ферми (структура I на рис. 1), определяющего физические свойства моносилицида железа при низких температурах. Анализ транспортных характеристик [22, 23] показывает, что многочастичным состояниям внутри резонанса, по-видимому, следует сопоставить систему спиновых поляронов малого радиуса $r_{SP} \approx 5 \text{ Å}$ и концентрации $n \sim 10^{17} - 10^{18} \text{ см}^{-3}$ с характерной энергией связи $E_p \approx 6$ мэВ и заметно увеличенной эффективной массой $m^* \sim 100 m_0$. При этом существенный рост паулиевской восприимчивости, наблюдаемый при понижении температуры в интервале 15 K < T < 100 K [32], позволяет непосредственно оценить возрастание плотности электронных состояний на уровне Ферми за счет возникновения многочастичного резонанса при N > 20 сост./эВ·эл. яч.

В настоящей работе установлено, что понижение температуры в окрестности $T_C = 15$ К в моносилициде железа сопровождается возникновением аномального эффекта Холла $R_H^A(\mathbf{T})$, отвечающего электронному типу проводимости, $R_H^A < 0$ (рис. 9, 12*a*). С учетом наблюдаемого вблизи T_C увеличения локальной восприимчивости χ_{loc} (см.

Рис. 16. Низкотемпературная магнитная фазовая диаграмма моносилицида железа. Символы, используемые на диаграмме, соответствуют: 1 — возникновению гистерезиса ΔR_{hyst} на угловых зависимостях холловского сопротивления [23]; 2 — температурной зависимости поля анизотропии H_{an} ферромагнитных областей наноразмера; 3 — особенностям температурных зависимостей намагниченности M(T), измеренным в полях до 12.5 кЭ [23]; 4 — максимуму температурной зависимости локальной восприимчивости χ_{loc} (см. текст, рис. 14); 5 особенности на температурной зависимости спинполяронной компоненты коэффициента Холла R_{H}^{SP} (рис. 12a); 6 — аномалиям (гистерезису) микроволнового магнитооптического поглощения в окрестности полей $H_{an} \approx 15$ кЭ и $H_m \approx 35$ кЭ (рис. 8); 7 — магнитному полю, определяющему возникновение анизотропного вклада в магнитосопротивление $\Delta \rho / \rho$ [23]; 8 — магнитному полю, отвечающему точке перегиба H_s на полевых зависимостях магнитосопротивления $\Delta \rho / \rho$ (рис. 3*б*); 9 — изменению асимптотики второй гармоники холловского сопротивления ρ_{H2} (рис. 10); 10 — максимуму дифференциальной восприимчивости $\chi_d(T)$ (рис. 7). Обозначения фаз такие же, как на рис. 1

вставку на рис. 14) и локальной намагниченности M_{loc} (рис. 13) возникновение аномалий транспортных характеристик FeSi в области температур 7 К < T < 15 К следует связать с установлением когерентного режима спиновых флуктуаций и трансформацией спиновых поляронов в ферромагнитные области наноразмера (ферроны) (фаза F на рис. 16 и рис. 16). Указанный вывод подтверждается появлением гистерезиса на угловых зависимостях холловского сопротивления в магнитном поле H < 3.6 кЭ при температурах ниже $T_C = 15$ К [23] (символы 1 на рис. 16). Выполненный анализ угловых зависимостей холловского сопротивления показывает, что в указанной области температур формирующиеся ферроны характеризуются одноосной магнитной анизотропией с полем $H_{an} = 3 \pm 1$ кЭ (символы 2, фаза F, рис. 16). Подчеркнем, что возникновение спонтанной намагниченности в моносилициде железа при T < 15 K коррелирует с выполнением критерия ферромагнетизма, аналогичного стонеровскому, UN > 1, который для хаббардовской корреляционной энергии $U \approx 270$ мэВ в FeSi имеет вид UN > 5 [23]. В то же время малая концентрация ферронов $(10^{17} - 10^{18} \text{ см}^{-3})$ обусловливает лишь слабые особенности «интегральных» магнитных характеристик (символы 3 на рис. 16), поскольку намагниченность и восприимчивость FeSi в этом диапазоне температур в основном определяются парамагнитным вкладом матрицы моносилицида железа [23, 32].

Дополнительные оценки параметров носителей заряда в ферромагнитном (F) состоянии FeSi можно получить из температурных зависимостей эффективных концентраций носителей (рис. 12*a*). В условиях сильного электрон-фононного взаимодействия ширина линии оптических фононов в интервале частот 180–400 см⁻¹, γ_i^{ph} (198 см⁻¹, 318 см⁻¹, 338 см⁻¹) \approx 10 см⁻¹ [48], может быть использована для оценки времени релаксации носителей заряда в FeSi:

$$\langle \tau_{e-ph} \rangle = \frac{1}{3\gamma_i^{ph}} \approx 1.7 \cdot 10^{-13} \text{ c.}$$

Аналогичные значения $\langle \tau_{e-ph} \rangle$ получаются из обратной ширины линии магнитного рассеяния поляризованных нейтронов $\Gamma = 3-4$ мэВ [49]. Тогда, воспользовавшись выражением для холловской подвижности $\mu = R_H/\rho = e\tau/m^*$, можно оценить эффективную массу носителей заряда в FeSi. Полученные значения m^*/m_0 , рассчитанные для магнитных полей 17.2 и 70.3 кЭ, показаны на рис. 126. Отметим, что значения $m^*/m_0 = 80 \pm 20$, отвечающие многочастичным состояниям в матрице FeSi при T > 10 K (рис. 126), в пределах экспериментальной точности хорошо коррелируют с оценкой $m^*/m_0 \approx 50$, найденной по результатам измерений оптической проводимости $\sigma(\omega)$ в диапазоне частот 50–25000 см⁻¹ [50]. При этом совпадение значений эффективной массы

носителей заряда — спиновых поляронов в парамагнитной ($T > T_C \approx 15$ K) и ферронов в ферромагнитной ($T < T_C \approx 15$ K) фазах (рис. 12δ) — может рассматриваться в качестве дополнительного аргумента в пользу предложенного многочастичного описания низкотемпературного транспорта и генезиса аномалий в эффекте Холла в моносилициде железа.

Исследуя характеристики ферромагнитной фазы (F на рис. 16) при $T < T_C \approx 15$ K, следует принять во внимание результаты измерений низкотемпературной теплоемкости C(T) монокристаллических образцов FeSi [14], согласно которым на кривых C(T)наблюдается широкий максимум в окрестности температуры $T\approx 8.5$ К. Анализ указанной особенности в рамках простой двухуровневой модели (аномалии Шоттки) позволяет получить оценку характерной энергии расщепления узкой полосы многочастичных состояний в окрестности E_F : $\Delta = 2$ мэВ [14]. Предполагая, что возникновение ферромагнетизма при температурах $T < T_C \approx 15$ К в условиях сильного (UN ≥ 5) взаимодействия сопровождается обменным расщеплением многочастичного резонанса шириной $\delta \approx 6$ мэВ на уровне Ферми (структура II, рис. 1), по результатам тепловых измерений [14] получаем непосредственно оценку величины обменного поля на носителе в моносилициде железа: $H_{ex} = \Delta/\mu_B \approx 350$ кЭ. На наш взгляд, хорошее совпадение полученного результата и значения $H_{ex} \approx 350 \pm 100$ кЭ, найденного из совместного анализа транспортных и магнитных характеристик FeSi [23, 32], является веским аргументом в пользу применяемого нами спин-поляронного подхода к описанию низкотемпературных свойств моносилицида железа.

Переходя к области $T < T_m = 7$ К, H < $<~H_m~\approx~35~$ к
Э на фазовой H-T-диаграмме FeSi, следует отметить, что с понижением температуры в окрестности $T_m = 7$ К в слабом магнитном поле наблюдается аномалия спин-поляронной (R^{SP}_H) компоненты эффекта Холла (рис. 12а, символы 5 на рис. 16). Кроме того, при $T_m \leq 7$ К на зависимостях $\Delta \rho / \rho = f(T, H)$ появляется отрицательный вклад в магнитосопротивление (рис. 4, кривая 3). Перечисленные выше эффекты, по-видимому, отражают перенормировку параметров ферромагнитных областей. В пользу такой интерпретации указывают также значительное возрастание поля анизотропии нанокластеров до значений $H_{an} \approx 12 \pm 2$ кЭ (символы 2, область SG, рис. 16) и резкое изменение фазы второй гармоники холловского сигнала (вставка к рис. 10). Кроме того, выполненный в работе анализ данных гальваномагнитных исследований

показывает, что переход при $T < T_m = 7$ K сопровождается значительным уменьшением холловской концентрации и эффективной массы носителей заряда соответственно до значений $p\,\sim\,10^{16}\text{--}10^{17}~\mathrm{cm}^{-3}$ и $m^* \approx (20 \pm 5) m_0$ (рис. 12). С учетом существенного уменьшения эффективного магнитного момента μ_{eff} ферромагнитных областей от $(10-20)\mu_B$ при $T \sim T_m \approx 7 \text{ K}$ до (4–6) μ_B при T = 1.8 K (см. вставку на рис. 15) наблюдаемые изменения приведенных выше параметров, очевидно, свидетельствуют о формировании ферромагнитных микрообластей из взаимодействующих ферронов при переходе в миктомагнитное состояние при $T \approx T_m = 7 \text{ K}$ (фаза SG, рис. 1 в и рис. 16). При этом аномалии на температурных зависимостях перечисленных выше параметров вблизи $T_m \approx 7$ К (рис. 12), на наш взгляд, следует связать с усилением рассеяния на неоднородностях в непосредственной окрестности перехода в миктомагнитное состояние и, как следствие, с резким уменьшением подвижности носителей заряда.

Сравнивая моносилицид железа с классическими зонными ферромагнетиками, следует особо подчеркнуть, что в случае FeSi поведение физических параметров определяется непосредственным участием магнитных областей наноразмера в процессах переноса заряда при низких температурах. В такой ситуации наряду с появлением в моносилициде железа аномалий физических свойств, характерных для миктомагнитных систем, нельзя исключить возможность формирования новых пространственно-организованных магнитных структур, реализацию магнитных ориентационных переходов и т.д. На наш взгляд, именно с магнитным переходом в структуре ферромагнитных областей наноразмера следует связать особенности физических характеристик моносилицида железа, наблюдающиеся в магнитном поле $H_m \approx 35$ кЭ при $T < T_m \approx 7$ К. Наиболее заметные аномалии (гистерезис) в этих областях температур и магнитных полей наблюдаются на полевых зависимостях магнитооптического поглощения (рис. 8 и символы 6 на рис. 16). Кроме того, в магнитном поле $H \approx 35$ кЭ появляется анизотропный вклад в магнитосопротивление [23] (символы 7 на рис. 16), а на кривых
 $\Delta\rho/\rho-$ точка перегиба H_s (символы 8 на рис. 16). При $H \leq 35$ кЭ происходит также изменение асимптотики полевых зависимостей амплитуды второй гармоники холловского сопротивления (рис. 10 и символы 9 на рис. 16). Указанные особенности, на наш взгляд, свидетельствуют об изменении магнитной структуры моносилицида железа, сопровождающемся разрывом связей между ферромагнитными нанокластерами (фа-

14 ЖЭТФ, вып. 2 (8)

за SG, рис. 1 e) и последующей переориентацией магнитных моментов ферронов параллельно приложенному магнитному полю (область **M** || **H** на рис. 1 e и рис. 16).

Дополнительным аргументом в пользу реализации магнитного ориентационного перехода при $T < T_m \approx 7$ К с разрушением основного миктомагнитного состояния FeSi в магнитных полях выше $H_m \approx 35$ кЭ может служить увеличение эффективной массы носителей заряда до значений $m^* \approx (70 \pm 20) m_0$ в поле H = 70.3 кЭ (рис. 126). Наблюдаемое «утяжеление» носителей заряда в FeSi с ростом *m*^{*} до значений эффективной массы спиновых поляронов в парамагнитной (Р) и ферронов в ферромагнитной (F) фазах естественно связать с разрушением внешним магнитным полем внутрикластерных связей в миктомагнитной (SG) фазе. Индуцированная внешним полем поляризация магнитных моментов ферромагнитных областей наноразмера приводит с ростом Н в окрестности $H_m \approx 35$ кЭ к переходу в состояние с ориентированными по магнитному полю ферронами (состояние М || Н, рис. 1г). Кроме того, обнаруженный при измерении магнитных характеристик максимум на температурных зависимостях дифференциальной восприимчивости T^{χ}_{max} (рис. 7 и символы 10 на рис. 16), а также особенность на температурной зависимости спин-поляронной компоненты R_{H}^{SP} коэффициента Холла в магнитном поле $H > H_m$ (рис. 12а и символы 5 на рис. 16), по-видимому, также следует интерпретировать в терминах фазовой границы и, соответственно, новой фазы М || Н на низкотемпературной фазовой диаграмме моносилицида железа. При этом выяснение структуры низкотемпературной фазовой диаграммы и, в частности, особенностей фазового перехода между коллинеарной магнитной М || Н и парамагнитной Р фазами в моносилициде железа требует проведения дополнительных исследований, включая измерения транспортных и магнитных характеристик FeSi в области магнитных полей, соответствующих значениям обменного поля спин-поляронных состояний.

5. ЗАКЛЮЧЕНИЕ

Выполненное исследование гальваномагнитных характеристик моносилицида железа впервые позволило детально изучить особенности низкотемпературного транспорта и определить характеристики носителей заряда в широких диапазонах температур (1.8–40 K) и магнитных полей (до 120 кЭ), отвечающих формированию магнитного состояния в этом узкозонном полупроводнике с сильными квазичастичными взаимодействиями. В работе показано, что низкотемпературные аномалии холловского сопротивления в FeSi, включая инверсию знака коэффициента Холла при $T \approx 12-15$ K, обусловлены сложной конкуренцией спин-поляронного ($\rho_H^{SP} > 0$) и аномального магнитного ($\rho_H^A < 0$) вкладов в эффект Холла, причем при T < 10 K холловский сигнал определяется аномальной компонентой ρ_H^A холловского сопротивления, увеличивающейся в интервале 1.8–20 K более чем на пять порядков по абсолютной величине и достигающей значений около 1 Ом · см при T = 1.8 K.

Проведенный анализ экспериментальных данных показывает, что аномальный эффект Холла в моносилициде железа, по-видимому, можно связать с установлением когерентного режима спиновых флуктуаций при формировании ферромагнитных областей наноразмера (ферронов) (примерно 10 Å) в окрестности $T_C = 15$ К. Для количественного описания эффекта Холла в FeSi предложена процедура разделения составляющих холловского сопротивления с представлением набора экспериментальных данных через «нормальный» (спин-поляронный) R_H^{SP} и аномальный R_H^A коэффициенты Холла и последующей оценкой эффективных параметров носителей заряда в низкотемпературных магнитных фазах моносилицида железа.

В результате анализа угловых зависимостей холловского сопротивления ρ_H в FeSi обнаружена дополнительная гармоника $\rho_{H2}(\varphi) \propto \cos 2\varphi$, приводящая к существенным отклонениям экспериментальных кривых от стандартного косинусоидального сигнала. В работе установлено, что указанная вторая гармоника, доминирующая в непосредственной окрестности температуры инверсии знака коэффициента Холла при $T \approx 12$ –15 K, связана с возникновением четного по магнитному полю вклада в эффект Холла, не имеющего объяснения в рамках традиционно используемых феноменологических моделей.

Исследования температурных зависимостей магнитосопротивления моносилицида железа позволили оценить некоторые характеристики многочастичных состояний, реализующихся в условиях быстрых спиновых флуктуаций на Fe-центрах. Показано, что положительный квадратичный вклад в магнитосопротивление $\Delta \rho / \rho$, наблюдаемый в окрестности температуры Кюри $T_C = 15$ K, возникает в результате поляризации локального окружения носителя заряда при переходе к когерентному режиму спиновых флуктуаций в FeSi. Интересно, что с понижением температуры в непосредственной окрестности границы миктомагнитной фазы при $T_m = 7$ К обнаружено изменение знака $\Delta \rho / \rho$, сопровождающееся переходом от положительного ($\Delta \rho / \rho > 0$, $T > T_m$) к отрицательному ($\Delta \rho / \rho < 0$, $T < T_m$) магнитосопротивлению. Для описания аномальной линейной асимптотики $\Delta \rho / \rho \propto -H$, наблюдаемой в малых магнитных полях (около 10 кЭ) в режиме отрицательного магнитосопротивления, предложена модель, позволяющая связать наблюдаемый эффект с особенностями формирования магнитного состояния в системе взаимодействующих ферронов в миктомагнитной фазе FeSi.

Выполненный анализ полевых и температурных зависимостей транспортных характеристик позволил количественно оценить эффекты обменного усиления и микроскопические параметры многочастичных комплексов, определяющих режимы переноса заряда в условиях быстрых (порядка 10⁻¹³ с) флуктуаций электронной плотности на Fe-центрах. На основе полученных результатов, свидетельствующих о реализации последовательности трансформаций многочастичных состояний (спиновые поляроны – ферроны – магнитные нанокластеры) при формировании ферромагнитной и миктомагнитной фаз FeSi, впервые построена низкотемпературная магнитная фазовая диаграмма этого соединения. Совокупность аномалий транспортных и магнитных характеристик, обнаруженных в окрестности $H_m \approx 35~{\rm k} \Im$ в миктомагнитном состоянии FeSi при $T \leq T_m = 7$ K, позволяет сделать заключение об индуцированном магнитным полем переходе в новую коллинеарную фазу М || Н на фазовой диаграмме моносилицида железа. Вместе с тем, для окончательного выяснения структуры параметров низкотемпературного состояния И моносилицида железа в области магнитных полей, соответствующих значениям обменного поля $H_{ex} \approx 350$ кЭ спин-поляронных состояний, необходимо проведение дополнительных исследований транспортных и магнитных характеристик этого соединения с сильными электронными корреляциями.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 01-02-16601, 03-02-06531), НТП «Новые материалы» Минобразования РФ (проект № 202.07.01.023), а также INTAS (грант № 03-51-3036), программы ОФН РАН «Сильно коррелированные электроны в полупроводниках, металлах, сверхпроводниках и магнитных материалах», программы развития приборной базы научных организаций Минпромнауки РФ и программы поддержки молодых ученых РАН. Двое из авторов (В. В. Г. и С. В. Д.) выражают признательность за индивидуальную поддержку Фонду содействия отечественной науке.

ЛИТЕРАТУРА

- **1**. Т. Мория, УФН **135**, 117 (1981).
- 2. Т. Мория, Спиновые флуктуации в магнетиках с коллективизированными электронами, Мир, Москва (1988).
- S. N. Evangelou and D. M. Edwards, J. Phys. C 16, 2121 (1983).
- G. Shirane, J. E. Fisher, Y. Endoh et al., Phys. Rev. Lett. 59, 351 (1987).
- V. I. Anisimov, S. Yu. Ezhov, I. S. Efimov et al., Phys. Rev. Lett. 76, 1735 (1996).
- E. Kulatov and H. Ohta, J. Phys. Soc. Jpn. 66, 2386 (1997).
- E. Kulatov, H. Ohta, T. Arioka et al., J. Phys.: Condens. Matter 9, 9043 (1997).
- H. Hamada, K. Terao, H. Ohta et al., J. Phys.: Condens. Matter 11, L309 (1999).
- O. M. Tatsenko and V. D. Selemir, in Thesis of 8th Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Talahassee, USA (1998).
- Ю. Б. Кудасов, А. Г. Волков, А. А. Повзнер и др., ЖЭТФ 116, 1770 (1996).
- J. F. DiTusa, K. Friemelt, E. Bucher et al., Phys. Rev. Lett. 78, 2831 (1997).
- J. F. DiTusa, K. Friemelt, E. Bucher et al., Phys. Rev. B 58, 10288 (1998).
- 13. G. Föex, J. Phys. Radium 9, 37 (1938).
- 14. M. A. Chernikov, L. DeGiorgi, E. Felder et al., Phys. Rev. B 56, 1366 (1997).
- S. Pashen, E. Felder, M. A. Chernikov et al., Phys. Rev. B 56, 12916 (1997).
- 16. M. Fäth, J. Aarts, A. A. Menovsky et al., Phys. Rev. B 58, 15483 (1998).
- 17. Y. Takahashi, J. Phys.: Condens. Matter 10, L671 (1998).
- 18. K. Urasaki and T. Saso, Phys. Rev. B 58, 15528 (1998).

- D. Van der Marel, A. Damascelli, K. Schulte et al., Physica B 244, 138 (1998).
- 20. P. S. Riseborough, Phys. Rev. B 58, 15534 (1998).
- 21. T. Jarlborg, Physica B 293, 224 (2001).
- 22. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Europhys. Lett. 51, 557 (2000).
- 23. Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., ЖЭТФ 119, 359 (2001).
- 24. A. Georges, G. Kotliar, W. Krauth et al., Rev. Mod. Phys. 68, 13 (1996).
- 25. Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., Письма в ЖЭТФ 68, 774 (1998).
- 26. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 125, 906 (2004).
- 27. B. C. Sales, E. C. Jones, B. C. Chakoumakos et al., Phys. Rev. B 50, 8207 (1994).
- 28. Н. Е. Случанко, А. В. Богач, И. Б. Воскобойников и др., ФТТ 45, 1046 (2003).
- 29. Н. Е. Случанко, С. В. Демишев, А. В. Семено и др., Письма в ЖЭТФ 63, 431 (1996).
- 30. Н. Е. Случанко, В. В. Глушков, С. В. Демишев и др., Письма в ЖЭТФ 69, 745 (1999).
- 81. Е. В. Кучис, Гальваномагнитные эффекты и методы их исследования, Радио и связь, Москва (1990), с. 115.
- 32. N. E. Sluchanko, V. V. Glushkov, S. V. Demishev et al., Phys. Rev. B 65, 064404 (2002).
- 33. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., Письма в ЖЭТФ 76, 31 (2002).
- **34**. Э. Л. Нагаев, Э. Б. Соколова, ФТТ **19**, 732 (1977).
- 35. S. H. Chun, M. B. Salamon, Y. Tomioka et al., Phys. Rev. B 61, R9225 (2000).
- 36. Y. Lyanda-Geller, S. H. Chun, M. B. Salamon et al., Phys. Rev. B 63, 184426 (2001).
- 37. Jinwu Ye, Yong Baek Kim, A. J. Millis et al., Phys. Rev. Lett. 83, 3737 (1999).
- 38. R. Resta, J. Phys.: Condens. Matter 12, R107 (2000).
- 39. Г. С. Кринчик, Физика магнитных явлений, МГУ, Москва (1985).
- 40. P. M. Chaikin, Organic Superconductivity, ed. by V. Z. Kresin and W. A. Little, Plenum Press, New York (1990).

- 41. M. B. Hunt, M. A. Chernikov, E. Felder et al., Phys. Rev. B 50, 14933 (1994).
- 42. P. Coleman, P. W. Anderson, and T. V. Ramakrishnan, Phys. Rev. Lett. 55, 414 (1985).
- 43. A. Fert and P. M. Levy, Phys. Rev. B 36, 1907 (1987).
- 44. С. Тикадзуми, Физика ферромагнетизма, ч. 1, Мир, Москва (1983).
- 45. L. Laloux, A. Georges, and W. Krauth, Phys. Rev. B 50, 3092 (1994).

- 46. Ph. Nozieres, Eur. Phys. J. B 6, 447 (1998).
- 47. K. Yosida, Phys. Rev. 107, 396 (1957).
- 48. A. Damascelli, K. Schulte, D. Van der Marel et al., Phys. Rev. B 55, R4863 (1997).
- 49. K. Tajima, Y. Endoh, J. E. Fisher et al., Phys. Rev. B 38, 6954 (1998).
- 50. Z. Schlesinger, Z. Fisk, Hai-Tao Zhang et al., Phys. Rev. Lett. 71, 1748 (1993).