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RAYLEIGH INSTABILITY IN LIQUID-CRYSTAL JETSL. G. Fel *, Y. ZimmelsDepartment of Civil and Environmental Engineering, Tehnion32000, Haifa, IsraelSubmitted 14 November 2003Capillary instability of isothermal inompressible liquid-rystal (LC) jets is onsidered in the framework of linearhydrodynamis of uniaxial nemati LCs. The free boundary onditions with strong tangential anhoring of thediretor n at the surfae are formulated in terms of the mean surfae urvature H and the Gaussian surfaeurvature G. The stati version of the apillary instability is shown to depend on the elastiity modulus K,the surfae tension �0, and the radius r0 of the LC jet, expressed in terms of the harateristi parameter{ = K=�0r0. The problem of the apillary instability in LC jets is solved exatly and a dispersion relation,whih re�ets the e�et of elastiity, is derived. It is shown that the inrease of the elastiity modulus resultsin the derease of both the ut-o� wavenumber k and the disturbane growth rate s. This implies an enhanedstability of LC jets, ompared to ordinary liquids. In the spei� ase where the hydrodynami and orientationalLC modes an be deoupled, the dispersion equation is given in a losed form.PACS: 61.30.Hn, 68.03.Kn, 68.03.Cd1. INTRODUCTIONThe breakup of liquid jets injeted through a iru-lar nozzle into stagnant �uids has been the subjet ofwidespread researh over the years. Previous studiesthat followed the seminal works of Lord Rayleigh haveestablished that the omplex jet �ow is in�uened bya large number of parameters. These inlude nozzleinternal �ow e�ets, the jet veloity pro�le V(r), andthe physial state of both liquid and gas. Althoughthe hydrodynami equations are nonlinear, the linearstability theory an provide qualitative desriptions ofthe breakup phenomena and predit the existene ofdi�erent breakup regimes.Using a linear theory, Rayleigh showed [1℄ that thejet breakup is a onsequene of the hydrodynami in-stability, or more exatly, the apillary instability. Ne-gleting the e�et of the ambient �uid, the visosityof the jet liquid, and gravity, he demonstrated that aylindrial liquid jet is unstable with respet to distur-banes haraterized by wavelengths larger than the jetirumferene. Rayleigh also onsidered the ase of avisous jet in an invisid gas and an invisid gas jet inan invisid liquid [2℄. Weber [3℄ generalized Rayleigh's*E-mail: lfel�tehunix.tehnion.a.il

result to the ase of a Newtonian visous liquid andshowed that the visosity tends to redue the breakagerate and inrease the drop size. Chandrasekhhar [4℄onsidered the e�et of a uniform magneti �eld on theapillary instability of a liquid jet. A mehanism ofbending disturbanes and of bukling, slowly moving,highly visous jets was presented by Taylor [5℄. Fur-ther developments of the theory in Newtonian liquidswas onerned with additional fators suh as the dy-nami ation of the ambient gas (leading to atomizationof the jet), the nonlinear interation of growing modesthat lead to satellite drop formation, and the spatialharater of instability [6; 7℄.The apillary instability in jets omprised of non-Newtonian suspensions and emulsions presents a dif-ferent ategory of ases governed by power-law (pseu-doplasti and dilatant) liquids. The e�etive visosityof the pseudoplasti liquid dereases with the growthof the strain rate, whereas in dilatant liquids, it in-reases [7℄. The behavior of apillary jets of dilute andonentrated polymer solutions suggests a strong in-�uene of the maromoleular oils on their �ow pat-terns [7℄. Free jets of polymeri liquids that exhibitosillations are reported in [8℄.The idea of the Rayleigh instability was applied totubular membranes in dilute lyotropi phases [9℄. Their1100



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jetsrelaxation, following optial exitation, is haraterizedby a long time and an be desribed by means of thehydrodynami approah [10℄. Bending deformationsof suh membranes are governed by the Helfrih en-ergy [11℄, whih depends on the urvature of the tube.Thus, a ompetition between the surfae tension andurvature energy of the membrane immersed into wa-ter renders the initial shape of the tube unstable. Thehydrodynami formalism used in [10℄ and the hydro-dynamis of �uids with an inner order suh as liquidrystals (LCs) [12℄ have similar features. In [10℄, theorder parameter is a unit vetor normal to the mem-brane surfae. In ontrast, the order parameter Q ofan LC �uid is de�ned throughout the spae it oupies.The ontinuum theory of LC phases has emerged asa rigorous part of the ondensed matter theory. The hy-drodynamis of the nemati LC phases was developedduring the 60�70th in the pioneering works of Erik-sen [13; 14℄, Leslie [15; 16℄, Parodi [17℄, and the Harvardgroup [18℄1), and its preditions were suessfully on-�rmed in many experimental observations. The ombi-nation of visous and elasti properties is likely to pro-due new evolution patterns of hydrodynami instabili-ties, in the ontext of the Benard�Rayleigh, Marangoni,and eletrohydrodynami e�ets [19℄, whih annot o-ur in ordinary liquids. In partiular, we refer to non-steady state (osillatory) evolution of the instabilitythat appears via the Hopf bifuration [20℄. The insta-bility of an LC jet poses an additional hallenge withrespet to the e�ets listed above. This already appliesin the framework of the linear stability theory.The linear analysis of the apillary instability in athin nemati LC �ber was reently performed in [21℄under the assumption that the diretor �eld n(r) is�xed and does not hange even if the �ber shape evolvesthrough the linear instability proess. In this anal-ysis, the only in�uene of the LC nematiity is dueto the anisotropy of the elasti surfae energy and theanisotropy of visous LC moduli. The above assump-tion stipulates the predominane of elasti fores overthe surfae tension, ` � r0, and over hydrodynamifores, Er � 1, where ` = K=� and Er = �V r0=Kdenote the anhoring extrapolation length [22℄ and theEriksen number [19℄, respetively, � and K are vis-ous and elasti moduli, V is the LC veloity, and r0stands for the geometri length sale, i.e., the radiusof the LC jet. The �rst ondition (` � r0) is di�ultto implement for most of the known nemati LCs withwell-studied physial parameters. Indeed, the lassial1) The name �Harvard group� was proposed by De Gennes[19℄ and denotes �ve authors (see [18℄).

nemati LCs, also known as MBBA and PAA, havethe anhoring extrapolation length ` � 3 �10�10 m (Ta-bles 1 and 2). This value indiates strong anhoringat the surfae2). Otherwise, the radius of the jet mustbe dereased to the moleular sale. In the ase ofstrong diretor anhoring at the surfae, the seond re-quirement, Er � 1, does not allow a ontinuous tran-sition to ordinary liquids (a lassial Rayleigh�Webertheory) whih is an important benhmark in the theory.We note that as the elastiity tends to zero, K ! 0,then Er ! 1. Moreover, disregarding the bulk elas-tiity e�ets in LCs leaves out the ompetition betweenthe bulk fores and surfae tension that is ruial forthe physial piture of thin LC �lms (see Se. 3). Inthis ontext [21℄, the Leslie�Eriksen equation of angu-lar motion of the diretor n(r; t) was skipped and theelastially indued nondissipative ontributions to theNavier�Stokes equation were not inluded in the LChydrodynamis.A more realisti setup of the problem onsists of arigid boundary ondition of strong diretor anhoringat the free surfae of LC jets. The simplest ase on-stitutes a tangential orientation of the diretor at thesurfae, n � e = 0, where e is a unit normal vetor tothe jet surfae. Suh orientation, with strong anhor-ing and temperature independene, is observed at thefree surfae of the lassial nemati PAA mentionedabove [24�26℄. Assuming that the sale of deformationof the initial surfae is muh larger than the moleularlength of LCs, we onlude that if the orientation of thediretor n is set tangential to the undisturbed surfae,then it must also remain tangential when the surfae issmoothly disturbed.The elasti properties of LCs are expeted to hangethe evolution patterns of jets that are made from them.In this paper, we derive a rigorous mathematial modelof apillary instability for isothermal inompressible ne-mati LC jets in the single elasti approximation. Thismodel shows how the ombined visous and elastiproperties of LC �uids determine the boundary on-2) On the basis of a heuristi argument, De Gennes [19℄ notedthat if the anisotropi interation at a nemati�substrate in-terfae is as large as that ating between nemati moleules,the anhoring energy � an be roughly estimated as � � K=a,where K is the Frank modulus and a is the moleular dimension;hene, taking K � 8 � 10�12 N and a � 5 � 10�10 m, we �nd� � 1:6 � 10�2 N/m, whih orresponds to the strong anhoringin virtually all pratial ases. An extensive review by Cognard[23℄ lists sixteen most studied nemati LCs with orresponding� measured at equilibrium with air (see Table 9 in [23℄). Allvalues are in the range between 2:45 � 10�2 N/m for MPPB and4 � 10�2 N/m for 5CB, whih gives a good support to the quali-tative onsideration of De Gennes.1101



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004Table 1. The basi physial parameters �i, �, K, and �0 and their derivatives �i, �i, i, Bi, �i, �, and �i for nematiliquid rystal 4-metoxybenziliden-4-butilanilin (MBBA) at 25 ÆC taken from [23; 30℄�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s �5, mPa � s �6, mPa � s7 �78 �1 84 46 �33�1, mPa � s �3, mPa � s �5, mPa � s � �1 �242 50 104 1.026 1.013 0:013�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s 1, mPa � s 2, mPa � s42 25 79 59 77 �79B1, mPa � s B2, mPa � s B3, mPa � s B4, mPa � s B #, m2/s58 104 25 78 5:92 1:2 � 10�10�, kg/m3 K, N �0, N/m ` = K=�0, m �i, m2/s #=�i1:2 � 103 9 � 10�12 38 � 10�3 2:4 � 10�10 10�5�10�4 10�6�10�5Table 2. The basi physial parameters �i, �, K, and �0 and their derivatives �i, �i, i, Bi, �i, �, and �i for nematiliquid rystal para-azoxyanisole (PAA) at 122 ÆC taken from [23; 30℄�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s �5, mPa � s �6, mPa � s4 �6:9 �0:2 6:8 5 �2:1�1, mPa � s �3, mPa � s �5, mPa � s � �1 �23:4 4:5 13:7 1.06 1.03 0:03�1, mPa � s �2, mPa � s �3, mPa � s �4, mPa � s 1, mPa � s 2, mPa � s3:4 2:25 11:45 4:55 6:7 �7:1B1, mPa � s B2, mPa � s B3, mPa � s B4, mPa � s B #, m2/s4:34 9:36 2:26 11:24 7:11 1:8 � 10�9�, kg/m3 K, N �0, N/m ` = K=�0, m �i, m2/s #=�i1:4 � 103 11:9 � 10�12 40 � 10�3 3 � 10�10 10�6�10�5 10�4�10�3ditions at the free surfae with strong tangential an-horing of the diretor and the range where instabilityprevails.2. HYDRODYNAMICS OF AN LC JETIn this setion, we �rst formulate the problem ofapillary instability and then derive the basi equationsthat govern the linear hydrodynamis of an LC jet. Theinompressible �ow of a nemati LC is desribed by a
set of di�erential equations: the ontinuity equation,the Navier�Stokes equation for visoelasti LCs, andthe Leslie�Eriksen equation of angular motion of thediretor n(r; t). They are supplemented by boundaryonditions on the LC free surfae with strong tangentialanhoring of the diretor.The basi notation and linear hydrodynami equa-tions for uniaxial nemati LCs follow the theorygiven in [18℄ (the so-alled Harvard group approah),whih has beome standard in many monographs,e.g., [12; 27℄. We note that the Harvard group and1102



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jetsEriksen�Leslie�Parodi approahes are in full agree-ment (a detailed disussion is given in [19℄).2.1. Basi notation and variablesThe following basi variables desribe the nematiLC medium: veloity V(r; t), pressure P (r; t), and di-retor n(r; t), n2 = 1. The initial values of the fun-tions are denoted by �0�, either as a subsript or su-persript. The following notation, whih is ommonlyaepted in the theory of LCs, is used heneforth:1. The free energy density Ed of a deformed nonhi-ral uniaxial nemati LC, given in the quadrati approx-imation in terms of the derivatives �n=�xj and in thesingle elasti approximation, has the formEd = K2 �div2n+ rot2n� ; (1)where K � 0 is known as the Frank elastiity modulus.In the viinity of a phase transition, K / Q2 [19℄, andin the isotropi phase, it vanishes.2. The bulk moleular �eld F and the Eriksenelasti stress tensor �ki, whih set the equilibrium dis-tribution of the n-�eld in an LC, are determined by thevariational derivatives3),F =M� nhn;Mi; or Fi = (Æij � ninj)Mj ; (2)where Mi = ��xk �Ed�(�kni) � �Ed�ni ;�ki = �Ed�(�kni) ; �k = ��xk ; (3)i.e.,M = K�3n; �ki = K (Ækidivn+(n � rotn)nm�mki++ [[n� rotn℄� n℄m �mki) ; (4)where �mki is the ompletely antisymmetri unit tensorof the third rank (the Levi-Civita tensor).3. If the deviations of the diretor n = n0+n1 fromits initial orientation n0 along the z diretion are small,then n0x = n0y = 0; n0z = 1;1� n1x; n1y � n1z � �n1x�2 ; �n1y�2 ; (5)and simple algebra yields the linear approximationFx = K�3n1x; Fy = K�3n1y; Fz = 0; (6)3) Here and throughout the paper, unless noted otherwise, weapply the summation rule over indies that are repeated in atensor produt, e.g., aijbjk =Pj aijbjk .

where �3 is the three-dimensional Laplaian. Similaronsiderations regarding the Eriksen stress tensor �kigive �xx = �yy = �zz = K div n1;�xy = ��yx = K �n1y�x � �n1x�y ! ;�yz = ��zy = K �n1z�y � �n1y�z ! ;�zx = ��xz = K ��n1x�z � �n1z�x � : (7)
The stresses given by Eqs. (7) do not ontribute to thenondissipative stress tensor T (r)ik used in the linear hy-drodynamis of LCs (see Eq. (8) below).4. The reative (nondissipative) T (r)ik and dissipa-tive T (d)ik stress tensors are de�ned asT (r)ik = �PÆik � �kj �nj�xi � �2 (niFk + nkFi) ++ 12(niFk � nkFi); (8)T (d)ik = 2�1�ik + (�3 � 2�1) (ni�kjnj + nk�ijnj) ++ (2�1 + �5 � 2�3)ninknjnm�jm; (9)where the antisymmetri 
ik (vortiity) and symmetri�ik parts of the derivative �kVi are given by
ik = 12 ��Vk�xi � �Vi�xk� ;�ik = 12 ��Vk�xi + �Vi�xk� : (10)Three independent visous moduli �j , the kineti oef-�ient �, and the rotational visosity 1 determine thedissipative stress tensor T (d)ik , the forth-rank visositytensor �ikjm, and the dissipative funtion D in the ab-sene of heat �uxes,D = �ikjm�ik�jm + 11F2; T (d)ik = �ikjm�jm;�ikjm = �1(�ij�km + �kj�im)+ (11)+�32 (ninj�km+nknj�im+ninm�kj++ nknm�ij) + �5ninknjnm:The tensor �ikjm onsists of three independentuniaxial invariants [12℄ and is highly symmetri,1103



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004�ikjm = �kimj = �jmik . The requirement that D ispositive beomes�1 � 0; �3 � 0; �5 � 0; 1 � 0: (12)The parameter � is lose to +1 or �1 for rod-like ordisk-like moleules, respetively. If the liquid is vis-oisotropi, then � = 0.5. The hydrodynami reative (nondissipative)m(r) and dissipative m(d) �elds are de�ned asm(r)i = �(V � r3)ni + nk
ki + � �ij�jknk;m(d) = 11F; (13)where r3 is the three-dimensional gradient operator,(r3)2 = �3.6. The surfae tension � of a nemati LC is givenby [28℄ � = �0 + �1hn; ei2; (14)where �0 and �1 are isotropi and anisotropi surfaetension moduli respetively, and e is a unit normal ve-tor to the LC surfae.7. Another system of visous moduli �i (alledthe Leslie visosities) relate the dissipative and kinetimoduli as4) �1 = �4=2; � = �2=1;�5 = �1 + �4 + �5 + �6;1 = �3 � �2; 2 = �3 + �2;�3 � 2�1 = �5 + �2�;2�1 + �5 � 2�3 = �1 + 22=1; (15)with the support of the Onsager�Parodi relation [17℄�3+�2 = �6��5. In the viinity of a phase transition,the visous moduli �i have di�erent dependenes on theorder parameter Q: �1 / Q2, �2; �3; �5; �6 / Q, and�4 / Q0 [19℄.Tables 1 and 2 (see above) summarize visositiesand other physial parameters that haraterize themost frequently used and well studied nemati LCs,also known as MBBA and PAA.2.2. Basi equationsThe omplete system of hydrodynami equationsfor the isothermal inompressible nemati LC re�etsthe onservation laws of mass and of the linear andangular momenta.4) The orret expression for �5 is given in [18℄.

1. The ontinuity equationdivV = 0: (16)2. The Navier�Stokes equation for visoelasti LC,��Vi�t + �(V � r3)Vi = ��xk �T (r)ik + T (d)ik � : (17)3. The Leslie�Eriksen equation of angular motion ofthe diretor n(r; t),�n�t =m(r) +m(d): (18)The last equation is written for a negligible spei�angular moment of inertia JLC of the LC, namely,JLC � �r20 , where r0 is a harateristi size of thesystem. This is true in our ase, where r0 is the radiusof the jet.We onsider an isothermal inompressible jet �ow-ing along the z axis, out of a nozzle at a veloity V.The initial orientation of the diretor n0 is assumedollinear with V. Deviations from the initial values ofthe diretor and pressure are de�ned as n1 = n � n0and P1 = P � P0, respetively, where P0 = �0=r0 isthe unperturbed pressure within the ylindrial jet. Inthe linear approximation, jn1j � 1, Eqs. (16)�(18) aresimpli�ed asdivV = 0; ��Vi�t = ��P1�xi + �T (d)ik�xk ++ 1� �2 n0i divF� 1 + �2 (n0 � r3)Fi;�n1i�t = n0k
ki + ��0ij�jkn0k + 11Fi;�0ij = Æij � n0in0j ; i; j; k = x; y; z: (19)
Choosing n0z = 1 gives Fz = 0, and hene�Vx�x + �Vy�y + �Vz�z = 0; (20)��Vx�t = ��P1�x +��1�2 + �2 �2�z2�Vx ++ (�2 � �1) �2Vz�x�z � �+ 12 �Fx�z ;��Vy�t = ��P1�y +��1�2 + �2 �2�z2�Vy ++ (�2 � �1) �2Vz�y�z � �+ 12 �Fy�z ;��Vz�t = ��P1�z +��2�2 + �3 �2�z2�Vz �� �� 12 ��Fx�x + �Fy�y � ;

(21)
1104



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jets�n1x�t = �+ 12 �Vx�z + �� 12 �Vz�x + Fx1 ;�n1y�t = �+ 12 �Vy�z + �� 12 �Vz�y + Fy1 ;�n1z�t = 0; (22)
where �2 = �2=�x2 + �2=�y2 is the two-dimensionalLaplaian, �1 = �1, �2 = �3=2, �3 = �5 � �3=2, and Fxand Fy are given in (6). Beause isotropi visosity im-plies that �i = �, the liquid rystals MBBA and PAAmentioned above are learly far from being isotropi(see Tables 1 and 2 above).To make the problem more spei� and easier tosolve, we onsider axisymmetri disturbanes in thesystem of a ylindrial LC jet with radius r0. In thisase, �Vz�z + �Vr�r + Vrr = 0; (23)��Vr�t = ��P1�r + ��1��2 � 1r2�+ �2 �2�z2�Vr ++ (�2 � �1) �2Vz�r�z � �1 �Fr�z ; (24)��Vz�t = ��P1�z + ��2�2 + �3 �2�z2�Vz �� �2��Fr�r + Frr � ; (25)1 �n1r�t = 1�1 �Vr�z + 1�2 �Vz�r + Fr; n1z = 0; (26)where �2 = �2�r2 + 1r ��r ;Fr = K ��2 � 1r2 + �2�z2�n1r;�1 = �+ 12 ; �2 = �� 12 : (27)Equations (23)�(26) desribe ordinary linear hydro-dynami behavior of isotropi inompressible liquids ifthe LC properties vanish: K; 1 ! 0 and �i = �. Theresult is the well-known ontinuity equation and thelinearized Navier�Stokes equation,divV = 0; ��V�t = �rP1 + ��3V: (28)

2.3. Boundary onditions at the free surfaeBoundary onditions at the free surfae of an LCstate that the jump in normal stress onsists of twoparts: one depends on the surfae tension � and theother on the elasti disturbane Welast of the uni-form diretor �eld n0(r). Assuming that no tangentialstresses exist at the free surfae, we an express theboundary onditions at r = r0 as�T (r)ik +T (d)ik � ek+(2�H+Welast) ei+ ���xi = 0; (29)where ei are the omponents of the normal unit ve-tor e in the referene frame of the LC ylinder andH = (1=R1 + 1=R2) =2 denotes the mean surfae ur-vature with the prinipal radii R1 and R2.The nonhydrodynami part of the boundary ondi-tions with strong tangential anhoring of the diretorat the free surfae holds if the sale of deformation ofthe initial surfae is muh larger than the moleularlength of LCs5). This determines tangential behaviorof a smoothly disturbed diretor n at the free surfae,ez � er � 1:e � n = 0 ! ez + n1r = 0 at r = r0: (30)The last onstraint anels the gradient term inEq. (29). We �nally obtain the boundary onditionsin the linear approximation of the variables n1r, Vr, Vz ,and P1,T (r)rr +T (d)rr +2�H+Welast = 0; T (r)zr +T (d)zr = 0: (31)Substitution of the expressions for the reative and dis-sipative stress tensors gives2�1�rr � P1 = 2�0 (H0 �H)�Welast;2�2�zr = �2Fr at r = r0; (32)where H0 = (2r0)�1 is the initial mean urvature ofthe LC ylinder. The equations for the jet surfae dis-turbed by a wave �(z; t) and its radial veloity ��=�tare given byr(z; t) = r0 + �(z; t); Vr = ���t at r = r0; (33)where � � r0 is the radial displaement of a surfaepoint. The prinipal radii of the surfae urvature,5) Stritly speaking, this assumption is orret when the equi-librium distribution of the diretor �eld n(r) is free of singulari-ties. The problem of the minimal surfae of an LC drop presentsanother situation where an essential rearrangement of the �eldn(r) at the surfae an derease the total energy by destroyingthe dislination ore within the drop.10 ÆÝÒÔ, âûï. 5 1105



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004in the linear approximation with respet to �, and itsderivatives an be expressed as1R1 = 1r0 + � � 1r0 � �r20 ; 1R2 � ��2��z2 : (34)This transforms the boundary onditions given byEqs. (30) and (32) inton1r = ���z ; Vr = ���t ; (35)2�2�zr = �2Fr ; (36)P1 � 2�1�rr = ��0� �r20 + �2��z2�+Welast: (37)The term Welast deserves further disussion. It re�etsthe existene of normal stresses at the surfae, whiharise due to the resistane of the uniformly orientatedontinuos LC media to the surfae disturbane. Theterm Welast vanishes in undisturbed LC jets and de-pends linearly on the elasti modulus K, the radius r0,and the derivatives of �. Moreover, the invariane ofthe problem under inversion of the z axis requires de-pendene on derivatives of only even orders. An expliitexpression for Welast is derived in Se. 3.1.3. PLATEAU INSTABILITY IN AN LCCYLINDERBefore onsidering the sophistiated mathematis ofEqs. (23)�(26) supplemented by boundary onditions(35)�(37), we disuss apillary instability of the LCylinder. This is done by applying the Plateau on-siderations [29℄ on shape of a liquid mass withdrawnfrom the ation of gravity.We onsider an LC ylinder with the surfae dis-turbed in aordane with (33), where � = �0 os kz, �0is small ompared to r0, and k = 2�=�, with � beingthe disturbane wavelength. The idea of Plateau, ap-plied here, is to �nd the ut-o� wavelength �s of thedisturbane that determines breakage of the ylinderinto droplets with due derease of the total energy.The average volume v over one wavelength � in thez diretion is given byv = 1� �Z0 dz Zs ds = ��r20 + 12�20� !! r0 =r v� �1� 14 ��20v � ; (38)

where r0 in the right-hand side is given as a seond-or-der expansion in �0. The total energy E of the LCylinder per unit wavelength with a disturbed diretor�eld n(r) is given byE = �0 Zs ds+ K2 �Z0 dz Zs �div2n+ rot2n� ds: (39)The stati diretor �eld n(r) an be found from Eq. (27)and the assoiated boundary ondition (35),n0z = 1; Fr = 0 ! ��2� 1r2+ �2�z2�n1r = 0;n1r = ���z at r = r0: (40)Equation (40) has the solutionn1r(r; z) = � k�0I1(kr0)I1(kr) sin kz; (41)whih is �nite at r = 0, where Im(x) is the modi�edBessel funtion of order m. The ontribution of elastifores is determined bydiv2n+ rot2n = k2 � k�0I1(kr0)�2 �� �A21(kr) sin2 kz +A22(kr) os2 kz� ; (42)whereA1(q) = dI1(q)dq + 1q I1(q); A2(q) = I1(q):Simple integration of Eq. (39) givesE = 2��0r0�1 + 14k2�20�+ �2K � k�0I1(kr0)�2 �� kr0Z0 �A21(q) + A22(q)� q dq: (43)Inserting r0 from Eq. (38) in the �rst term above, weobtainE � 2�0p�v = �0 ��202r0 �$2 � 1�+ �2K � �0$r0I1($)�2�� $Z0 �A21(q) +A22(q)� qdq; $ = kr0: (44)The positive root $s = ksr0 of the expression in theright-hand side of Eq. (44) determines the ut-o� wave-length �s of apillary disturbanes that renders the LCylinder unstable.1106
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ksr0

0 2 4 6 108 {Fig. 1. Universal plots of ksr0 versus { for the Plateauinstabilities in an LC ylinder (solid line), and in ordi-nary liquid, ksr0 = 1 (dashed line)The quadrati approximation with respet to thederivatives �n=�xj in Eq. (1), whih provides the ba-sis for the Frank theory, makes expression (44) orretonly in terms of the $2 approximation. Indeed, thepower of $ in Eq. (44) must not exeed 2, otherwisethe alulation beomes inonsistent. We thus obtainE � 2�0p�v = �0 ��202r0 �$2 � 1�+ �Kk2�20 ;$s = 1p1 + 2{ ; { = K�0r0 ; (45)where the subsript �s� denotes the stati nature of thePlateau instability. The asymptoti behavior of $s({)shows two important limits:$s = 1� { if { � 1;$s = 1p2{ �1� 14{� if { � 1: (46)Figure 1 shows a plot of ksr0 versus { for the Plateauinstabilities in the LC and in ordinary liquid.The orresponding asymptoti ut-o� wavelength�s is obtained as�s = 2�r0 (1 + {) if { � 1;�s = 2�r2K�0 pr0�1 + 14{� if { � 1: (47)This result shows that k � ks inreases the total energyE of the disturbed system, whereas k < ks dereases it.

Aording to (46), there are two marginal regimes ofinstability.1) The apillary regime r0 � K=�0. Here, �s islose to the irumferene of the ylinder and the elas-ti deformation ontribution R Eddv to the total en-ergy E is negligible. This regime must apply to a widerange of nemati LCs, beause the ommon values ofK � 10�11 J/m [19℄ and �0 � 10�2 J/m2 [23℄ lead toK=�0 � 10�9 m. This value is evidently smaller thanthe presently attainable radii of the jet.2) The elasti regime r0 � K=�0. This ase re�etsthe dominane of elasti deformation and predits anunusual behavior for �s / pr0. This regime annotbe reahed by a simple inrease of the elasti modulibeause their magnitude is determined by K � �BT=a,where �BT � 4 � 10�21 J is the Boltzmann thermal en-ergy at room temperature, and a � 5 � 10�10 m is themoleular length of the LC. In ontrast, the e�et ofsurfae tension an be diminished by surfatants or byharging the surfae of the liquid. In the latter ase,the harge an virtually eliminate the e�et of surfaetension and provide the onditions where the elastifores predominate.3.1. Welast and the Gaussian surfae urvatureA straightforward way to derive an expression forWelast is to solve the elasti problem for the stressesexisting on a deformed axisymmetri surfae of an LCylinder. This is related to the Plateau instability,whih obviates the need to repeat the entire proedure.When we turn from Plateau onsiderations regard-ing the stati instability of LC ylinders to the ap-illary instability of LC jets, the question is whetherthe ut-o� wavelengths of the stati (�s) and hydro-dynami (�d) problems oinide. This question wasskipped by Rayleigh in his studies of isotropi visousliquids, beause the ut-o� wavelengths always oinidefor ordinary liquids, �s � �d. This identity re�ets adeep equivalene priniple of the bifuration point fora nontrivial steady state of a dynami system and thethreshold of stati instability related to a minimum ofits free energy E [4℄.Using that �s � �d, we onstrut the term Welastthat enters boundary ondition (37). For this, we ex-amine and represent the total energy (45) asE � 2�0p�v == ��0r02 ���0� �0r20 � �0k2�+ 2K�0r0 k2� : (48)Next, we ompare the expression in the brakets with1107 10*



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004the right-hand side of Eq. (37). This gives Welast thatgenerates the elasti ontribution in (48),Welast = 2KG; G = 1R1R2 = � 1r0 �2��z2 ; (49)where G is the Gaussian surfae urvature in aor-dane with (34). Thus, the �nal expression for bound-ary onditions (29) is based on two fundamental invari-ants of the surfae urvature, the mean surfae urva-ture H and the Gaussian surfae urvature G.4. DISPERSION RELATIONRayleigh was the �rst to observe [1℄ that the insta-bility problem is not so de�nite, ontrary to the Plateautheory. The mode whereby a system deviates from un-stable equilibrium must depend on the nature and har-ateristis of small displaements to whih this systemis subjeted. In the absene of suh displaement, anysystem, however unstable, annot depart from equilib-rium. These harateristis, being hydrodynami, re-�et the e�et of visosity, whih predominates overinertia. For ordinary liquids, the mode of the maxi-mum instability, whih orresponds to the wavelength�R = 4:508 � 2r0, exeeds the irumferene of the liq-uid ylinder. We antiipate that the instability of LCjets has similar features.The fat that the veloity potential does not ex-ist in an anisotropi visoelasti liquid ditates a stan-dard approah to this problem that was �rst elaboratedby Rayleigh [2℄. We de�ne the Stokes stream funtion	(r; t) and the diretor potential �(r; t) asVr = �1r �	�z ; Vz = 1r �	�r ; n1r = ���r ; (50)suh that ontinuity equation (23) holds. From theother three equations, (24)�(26), we have�P1�r = (�2 � �1) �2�r�z �1r �	�r �� 1r �� ��z ��1r ��r�1r �	�r �+�2 �2	�z2 ���	�t +�1rFr� ; (51)�P1�z = 1r �� ��r ��2r ��r �1r �	�r �+�3 �2	�z2 ���	�t ��2rFr� ; (52)�2��r�t = 1r ��2r ��r �1r �	�r �� �1 �2	�z2 �+ 11Fr;Fr = K ��2 + �2�z2 � 1r2� ���r : (53)

Applying the ommutation rules gives��2 � 1r2� ���r = ��r�2� ! Fr == K ��r ��2 + �2�z2��;whih failitates simpli�ation of the above equations.Assuming that an axisymmetri disturbane harater-ized by the wavelength 2�=k inreases exponentially intime with the growth rate s givesf	; �; �; P1; Frg == fi (r); i�(r); &(r); p(r); if(r)g est+ikz : (54)Inserting (54) in (51)�(53) leads to the amplitude equa-tions1k �p�r = �4 ��r �1r � �r �� (�2k2 + s�) r + �1f;�4 = 2�1 � �2; (55)kp = 1r �� ��r �r��2 ��r �1r � �r ��(�3k2+s�) r ��2f�� ; (56)s���r = �2 ��r �1r � �r �+ �1k2 r + 11 f;f = K ��r ��2 � k2� �: (57)The new variables in (54) require reformulatingboundary onditions (35)�(37) ask& = ���r ; s& = k r ;�2�2 f = ��r �1r � �r �+ k2 r ;p = 2�1k ��r � r �+ &�; (58)where � = �0�k2 � 1r20�+ 2K 1r0 k2:The real forms of amplitude equations (55)�(57) andboundary onditions (58) imply that expression (54)divides the �ve variables into two groups: P1; � and	;�; Fr. These groups are shifted with respet to eahother by the phase angle �=2.1108



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jets4.1. Redution of the amplitude equationsIn this setion, we perform the standard proedurefor the simpli�ation of amplitude equations (55)�(57).Substituting f from (57) in the other amplitude equa-tions, we obtain1k �p�r = B1 ��r �1r � �r ��� (B2k2 + s�) r + s1�1 ���r ; (59)kp = 1r ��r �r �B3 ��r �1r � �r ��(B4k2+s�) r ���� s1�2 1r ��r �r���r� ; (60)0 = �2 ��r �1r � �r �+ �1k2 r + K1 ��r �� �1r ��r �r���r�� �k2 + s1K � �� ; (61)where B1 = �4 � 1�1�2; B2 = �2 + 1�21;B3 = �2 + 1�22; B4 = �3 � 1�1�2; (62)and B2 > 0; B3 > 0 by virtue of onditions (12). Leta new stream funtion � be de�ned as  = r ��=�r.The orientational (#) and kinemati (�i) visosities, aswell as the other auxiliary funtions, are de�ned by therelations# = K1 ; �i = Bi� ; u2i = k2 + s�i ;w2 = k2 + s#; #�i � 1 ! u2i � w2; (63)where the �rst inequality in (63) applies to the knownnemati LC �uids (see Tables 1 and 2). Using the newnotation, we �nd the �rst integrals of the amplitudeequations, pk = �B1�2 �B2u22��+ s1�1�; (64)kp = �B3�2 �B4u24��2�� s1�2�2�; (65)0 = ��2�2 + �1k2��+ # ��2 � w2� �: (66)Next, we eliminate the pressure amplitude p fromEqs. (64) and (65). This gives�B3�22 � �B1k2 +B4u24��2 +B2u22k2���� s1 ��2�2 + �1k2� � = 0; (67)

��2�2 + �1k2��+ # ��2 � w2� � = 0: (68)Diagonalizing the matrix of operators in (67) and (68),we obtain homogeneous equations for the funtions�(r) and �(r),�D3�32�D2�22+D1�2�D0� �� ! =  00! ; (69)whereD0 = k2 �#B2u22w2 � s1�21k2� ;D1 = # �B1k2w2 +B2k2u22 +B4w2u24�++ 2s1�1�2k2;D2 = # �B1k2 +B3w2 +B4u24�� s1�22;D3 = #B3: (70)It is easy to verify that all the oe�ients Dj are pos-itive if the onditions Bi > 0 and �2 � 1, #=�i � 1are satis�ed (for all i). The latter onditions are in agood agreement with numerous observations in nematiLCs [19℄.Fatoring the polynomial di�erential operator fur-ther (realling that D3 > 0) givesD3�32 �D2�22 +D1�2 �D0 == D3 ��2 �m21� ��2 �m22� ��2 �m23� : (71)Equation (71) failitates �nding the �nite solutions ofEq. (69), �(r) = 3Xj=1 Cjmj I0(mjr);�(r) = 3Xj=1 Gjmj I0(mjr); (72)where the seond fundamental solutions that diverge atr = 0 were exluded, Cj and Gj are indeterminate o-e�ients, and m2j are three generi6) roots of the ubiequationD3m6 �D2m4 +D1m2 �D0 = 0 !! 3Xj=1m2j = D2D3 ; 3Xj 6=km2jm2k = D1D3 ; 3Yj=1m2j = D0D3 :(73)6) The freedom to hoose the physial parameters of the LCseems to admit a degeneration of ubi equation (73), when someof the roots m2j an oinide in di�erent ways. This oinideneis not important beause it an our only at spei� wave ve-tors k� on whih the oe�ients D2, D1, and D0 depend. Onthe other hand, this kind of degeneration might be interesting ifk� is aidentally lose to the ut-o� wave vetor kd at whih thebreakage of the LC jet develops.1109



L. G. Fel, Y. Zimmels ÆÝÒÔ, òîì 125, âûï. 5, 2004The oe�ients Gj an be expressed through Cj afterinserting solutions (72) in Eq. (68):Gj = 1# gjCj ;gj = �1k2 + �2m2jw2 �m2j ; j = 1; 2; 3: (74)The amplitude of the pressure p(r), the stream fun-tion  (r), and the displaement &(r0) of a point onthe surfae are easily found from Eqs. (57), (64), (68),and (74) asp(r) = k 3Xj=1 ljmj CjI0(mjr);lj = B1m2j �B2u22 + s# 1�1gj ; (r) = r 3Xj=1CjI1(mjr);&(r0) = 1#k 3Xj=1 gjCjI1(mjr0); j = 1; 2; 3: (75)
Before proeeding, we disuss the distribution of theroots m2j of ubi equation (73) in the omplex plane.First,m21 is always positive beauseDj > 0, as men-tioned above and as follows from the Desartes rule ofsign interhange in the sequene of oe�ients for realalgebrai equations. The other two roots m22;3 are ei-ther positive or omplex onjugate with positive realparts. The last ase leads to Bessel funtions of om-plex arguments in (72). This fat an indiate thatthe separation of the two groups of funtions P1; � and	;�; Fr by the phase angle �=2 is more elaborate thanassumed in (54). Another onsequene of the existeneof omplex onjugate roots m2j , whih is more impor-tant from the physial standpoint, is the appearaneof imaginary ontributions to the dispersion equation.This an lead to a omplex value of the growth rates = s + i! as its solution and to the nonsteady (osil-latory) evolution of the jet, e.g.,�(z; t) / &(r0)est � ei(!t+kz);where ! is the frequeny of osillations.4.2. Dispersion equationIn what follows, we derive the dispersion equa-tion s = s(kr0) that determines the evolution of theRayleigh instability in LC jets. The revised version of

boundary onditions (58) at r = r0, whih utilizes thenew stream funtion �(r), is given bys���r = k2 ���r ;s1�2 ���r = B3 ��r�2�+B5k2 ���r ;sk p = 2s�1�2��r2 + ����r ; (76)where B5 = �2 + 1�1�2. Substituting (72) and (75)in (76) and eliminating the oe�ients C1, C2, and C3from the linear equations leads to a (3�3)-determinantequation detSij = 0; (77)whereS1j = k2 � s# gj ;S2j = B3m2j +B5k2 � s# 1�2gj ;S3j = �� s � ljmj I0(mjr0)I1(mjr0) � 2�1mj I 01(mjr0)I1(mjr0)� ; (78)and I 01(y) = dI1(y)=dy. Equation (77) is an impliitform of the exat dispersion relation, whih is highlyomplex and annot be solved analytially in the gen-eral ase. Nevertheless, here we an verify that theut-o� wavelength �d oinides with �s obtained fromthe Plateau theory. Indeed, the ut-o� regime orre-sponds to boundary onditions (76) when s = 0 and issatis�ed for � = 0, i.e., �d = �s. The impliations ofEq. (77) an be extended further, for the study of dif-ferent modes of the LC �ow, inluding osillations, andin order to desribe asymptoti behavior of LC jets.This is outside the sope of this paper. In the next se-tion, we onsider the ase that failitates deouplingof hydrodynami and orientational modes, and onse-quently the solution of the Rayleigh instability problemin a losed form.5. DECOUPLING OF HYDRODYNAMIC ANDORIENTATIONAL MODESIn this setion, we disuss the ase where dispersionequation (77) beomes solvable. Here, we enounter an-other problem: the elastiity of the LC and anisotropyof its visous properties have the same origin and an-not therefore be onsidered separately. Nevertheless,we investigate the ase where dispersion equation (77)an be simpli�ed. The large number of physial param-eters involved (three visous moduli, two kineti oef-�ients, � and 1, orientational (#) and kinemati (�i)1110



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jetsvisosities, and the dimensionless parameter {) all forsuh a treatment.We onsider the LC with rod-like moleules (� � 1)and low orientational visosity #,�1 � 1; �2 � 0; #� �i; k2 � s#; (79)where the �rst three relations apply to the known ne-mati LC �uids (see Tables 1 and 2). The last inequal-ity in (79) applies to the low-visosity limit, whih wasonsidered for the kinemati visosity in ordinary liq-uids by Rayleigh [1℄.In this ase, harateristi equation (73) redues tom6 � s#m4 + s# �Bk2 + s�2�m2 �� s#k2�k2 + s�2� = 0;�i = �i� ; B = �3 + �4�2 : (80)The three roots m2j of Eq. (73) beome2m21;2 = Bk2 + s�2 ��s(B2 � 4) k4 + 2 (B � 2) k2 s�2 +� s�2�2;m23 = s#: (81)A simple analysis of the last expression shows that thedimensionless parameter B has the ritial value 2 thatseparates two di�erent evolution senarios of the LCjet. If B > 2, both roots, m21 and m22, are positive andthe apillary instability always appears via trivial bifur-ation (steady-state instability). This senario appliesto MBBA and PAA liquid rystals with BMBBA = 5:92and BPAA = 7:11 (see Tables 1 and 2). In the oppo-site ase, B < 2, we an �nd the regime where theabove roots are omplex onjugate. This leads to theosillatory evolution of the jet, whih appears via Hopfbifuration (see Se. 4.1).Signi�ant simpli�ation an be obtained if we as-sume degeneration of the three visosities at the ritialvalue B� = 2. Indeed, if the visous moduli �j satisfythe relationB�(�j) = 2 ! 2�1 + �3 = 3�2; (82)the three roots m2j of Eq. (73) arem21� = k2; m22� = k2 + s�2 ; m23 = s#: (83)

We note that relation (82) anels the last term in (9).Expressions (83) indiate that the problem is deom-posed into two parts, or, in other words, the ross-termsin Eqs. (67) and (68) are dropped. Thus, the �rst partof the problem is assoiated with the Rayleigh instabil-ity, desribed by��2 �m21�� ��2 �m22��� = 0; (84)with boundary onditions that aount for elastiity,��r�2�+ k2 ���r = 0;sk p = 2s�1 �2��r2 + ����r at r = r0: (85)The seond part is assoiated with an orientational in-stability of the diretor �eld n(r; t),��2 �m23� � = 0;with the boundary onditions���r = k2 ���r at r = r0: (86)The solutions of Eqs. (84) and (86) are�(r) = 1m1� I0(m1�r) + 2m2� I0(m2�r);�(r) = 3m3 I0(m3r): (87)With these solutions, the hydrodynami pressure p(r),stream funtion  (r), and surfae displaement &(r0)are obtained asp(r) = �1s�I0(m1�r); (r) = r [1I1(m1�r) + 2I1(m2�r)℄ ;&(r0) = 3k I1(m3r0);where the only indeterminates are 1 and 2, while 3an be expressed as their linear ombination,3 sk2 = 1 I1(m1�r0)I1(m3r0) + 2 I1(m2�r0)I1(m3r0) ; (88)provided that s = s(kr0) satis�es the dispersion rela-tion that follows from (85) and (87),s2 + 2�1k2I0(kr0) �� �I 01(kr0)� 2km2�k2 +m22� I1(kr0)I1(m2�r0)I 01(m2�r0)� s == �0k�r20 �1� k2r20(1 + 2{)� I1(kr0)I0(kr0) m22� � k2m22� + k2 : (89)1111
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kr0Fig. 2. A plot of the resaled growth rate S versuskr0 for low visosityp�r30=�0 s�(kr0) (solid lines) andhigh visosity (2�2r0=�0)s+(kr0) (dashed lines) for dif-ferent values of { in desending order from top down{ = 0; 0:25; 1; 5. If #=� = 4{, then the saling forboth visous regimes is the sameIf { = 0 and �1 = �2, Eq. (89) is known as the We-ber equation for a visous isotropi liquid [6℄. For lowvisosity7), �1 � �2 � p��0r0, a Rayleigh-type ex-pression is obtained (see Fig. 2),s2�(kr0) = �0k�r20 �1� k2r20(1 + 2{)� I1(kr0)I0(kr0) ; (90)where the subsript ��� denotes low visosity.The maximum smax� in Eq. (90), whih orrespondsto the wave number kmax� , leads to evolution of thelargest apillary instability. Numerial alulationshows that smax� and kmax� are both proportional to(1 + 2{)�1=2,smax� � 13p1 + 2{r �0�r30 ;kmax� � ar0p1 + 2{ ; a = 0:697: (91)When high visosity prevails, �1 � �2 � p��0r0, thedispersion equation is given by (see Fig. 2)s+(kr0) = �02�2r20k �� �1� k2r20(1 + 2{)� I21 (kr0)I0(kr0)I1(kr0) + kr0 �I 01(kr0)�2 ;smax+ � �06�2r0 ; kmax+ = 0; (92)7) In the theory of visoisotropi liquid jets, this ase isknown [7℄ as pertaining to the range of low Ohnesorge num-bers Oh = �=p��0r0 that determine a ompetition between thehydrodynami and surfae tension fores. Expression (92) orre-sponds to the ase of high Ohnesorge numbers.

where the subsript �+� denotes high visosity. In thislimit, similar to ordinary liquids [4℄, there is no �nitemode of the maximum instability for any {. In thisase, we have&(r0) == kmax+smax+ �1I1(kmax+ r0) + 2I1(m2�r0)� = 0: (93)Nevertheless, there exists a ontinuous range[0; (1 + 2{)�1=2r�10 ℄ of wave numbers k with a �-nite disturbane growth rate s+(kr0), whih a�etsthe ylindrial jet.We note that the dispersion urves shown in Fig. 2and those in Fig. 5 in [21℄ appear to be similar, butare haraterized by di�erent physial parameters. Thereason for this observation is the similarity betweenWe-ber equation (89) and dispersion equation (36) in [21℄,whih are obtained from di�erent models. Our ap-proah was to develop a general axisymmetri solutionin the framework of the three-dimensional model. Thismodel dates bak to the Rayleigh�Weber theory [2; 3℄and aounts for the radial inhomogeneity of the dis-turbed diretor �eld. The impliit solutions of Eq. (77)re�et the radial dependene of both the hydrodynamiV(r; z; t) and orientational n(r; z; t) modes, and theyinlude all types of the LC jet evolution. A spei� asewhere the hydrodynami and orientaional modes aredeoupled exhibits this radial dependene and yieldsdispersion equation (89) in expliit form.In ontrast, the one-dimensional analysis of the LCjet evolution, used in [21℄, is hardly ompatible with thedistortion of the diretor �eld n(r; z; t), and thereforemust be supported by assuming a �xed axial diretionof n0 (see detailed omments in Se. 1). This endowstheir model with an inherent �deoupling� that resultsfrom the a priori elimination of the elasti fores. Ob-viously, similarity between the dispersion urves men-tioned above disappears if we onsider the general so-lution given by (77).5.1. Hydrodynami in�uene on theorientational instability of LCsWe onlude this setion with a brief disussionregarding the hydrodynami in�uene on the orienta-tional instability of the diretor �eld n(r; t). As thee�et of hydrodynamis hanges the wave number ksof the Plateau instability to kmax, the �ow drives the1112



ÆÝÒÔ, òîì 125, âûï. 5, 2004 Rayleigh instability in liquid-rystal jetsorientational instability (41) of the diretor �eld n(r; t).Indeed, in aordane with (87),n1r(r; z) = 3I1 (mmax3 r) ; mmax3 =rsmax# : (94)It is onvenient to onsider the following two marginalvisous regimes.1. The low-visosity limit,�mmax3� r0�2 � 13p1 + 2{ 1p{" ; " = �K21 ; (95)where " � 10�6�10�4 is a small dimensionless parame-ter.2. The high-visosity limit,�wmax3+ r0�2 � 16{ 1�2 : (96)In both limits, the distribution of the diretor �eldn(r; t) in the jet is always nontrivial and de�nitely farfrom stati distribution (41).6. CONCLUSIONS1. The apillary instability of an LC jet with astrong tangential anhoring of the diretor at the sur-fae is onsidered in the framework of linear hydro-dynamis of the uniaxial nemati LC. Its stati ver-sion, whih is alled the Plateau instability and or-responds to the variational problem of minimal freeenergy, predits an essential dependene of the distur-bane ut-o� wavelength on the dimensionless param-eter { = K=�0r0.2. The hydrodynami problem of the apillary in-stability in LC jets is solved exatly and the dispersionrelation is derived. This relation, whih is representedas a determinant equation, impliitly expresses the dis-persion s = s(k) of the growth rate s as a funtion ofthe wave number k of axisymmetri disturbanes of thejet.3. The ase where the dispersion equation beomesexpliitly solvable is onsidered in detail. It orre-sponds to the regime where the hydrodynami and ori-entational modes beome deoupled. Hydrodynamishanges the wave number ks of the Plateau instabilityinto kmax, whih produes evolution of the largest ap-illary instability. Similarly, a hydrodynami �ow in�u-enes the stati orientational instability of the diretor�eld n(r; t).4. The present theory an easily be extended tononuniaxial nemati LCs that possess �nite point sym-metry groups G � O(3) as distinguished from the uni-axial group D1h. The orresponding expressions for
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