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RADIATIVE CORRECTIONS TO POLARIZATION OBSERVABLES
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The model-independent QED radiative corrections to polarization observables in the elastic scattering of the
unpolarized and longitudinally polarized electron beam by the deuteron target are calculated. Two experimental
setups are considered: the deuteron target is arbitrarily polarized or the vector and/or tensor polarization of the
recoil deuteron is measured. The calculations are based on taking all essential Feynman diagrams into account
and on using the covariant parameterization of the deuteron polarization state. The radiative corrections are
calculated for the hadronic variables using invariant integration of the leptonic tensor. Numerical estimates of
the radiative corrections to the polarization observables are made for various values of the kinematical variables.

PACS: 12.20.-m, 13.40.-f, 13.60.-Hb, 13.88.+¢

1. INTRODUCTION

Recent progress in electron-scattering experiments
has allowed measuring various polarization observables
in the region of the momentum transfers where they can
help to discriminate between different theoretical pre-
dictions. Much of this progress has been made possible
by the modern high-energy electron accelerators with
high duty cycle such as MAMI or JLAB and the devel-
opment of polarized sources, targets, and polarimeters.

The electron scattering by few-body systems has
shown that two-body terms of the nuclear electromag-
netic operators give important contributions to the ob-
servables.

The deuteron, the only bound two-nucleon system,
is one of the fundamental systems of nuclear physics.
Accordingly, many studies, both experimental and the-
oretical, have been devoted to it. Of particular interest
today is the degree to which the deuteron can be un-
derstood as a system of two nucleons interacting via
the known nucleon—nucleon interaction.

When addressing the electromagnetic properties of
the deuteron more specifically, the corresponding ques-
tion concerns the ability to predict the three deuteron
form factors starting from the calculated deuteron wave
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function and the nucleon form factors known from the
electron—nucleon scattering. At low momentum trans-
fers, predictions and data agree quite well when only
one-body terms are taken into account; at higher mo-
mentum transfers, two-body contributions are known
to be important. Whether quark degrees of freedom do
need to be allowed for is still a matter of debate. An
up-to-date status of the experimental and theoretical
research of the deuteron can be found in reviews [1].

The deuteron electromagnetic form factors are most
often studied in order to check our understanding of the
two-nucleon system. In parallel, however, the deuteron
form factors are also exploited to obtain a better han-
dle on the neutron form factors. In the past, much
of our knowledge on the neutron charge form factor
Grn(q?) came from precision studies of the deuteron
structure function A(g?) (see Eq. (16) for the defini-
tion). Only very recently, experiments involving both
polarized electrons and polarized target/recoil nuclei
have allowed accessing G, via other observables. At
large ¢%, however, G gy, is still largely unknown, which
represents a serious handicap for the quantitative un-
derstanding of the deuteron charge form factors.

Elastic electron—deuteron scattering has been inves-
tigated in many experiments, and the cross section data
today cover a large range of momentum transfers (see
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review [2]). Some of these data are obviously not very
precise, other data, mainly more recent, have reached
accuracies down to the 1 % level. During the last years,
it has increasingly become possible to measure not only
cross sections, but also spin observables. The knowl-
edge of these spin observables is imperative if one wants
to separate the contributions of the different form fac-
tors to the A(¢?) structure function. On the side of ex-
periment, good progress has been made. In particular,
we now have a reasonably complete set of polarization
data for electron—deuteron scattering that allows us to
separate the deuteron charge and quadrupole form fac-
tors.

Two techniques are basically available to measure
such spin observables.

1) At storage rings, one can use polarized, internal
deuteron gas targets from an atomic beam source [3].
The high intensity of the circulating electron beam al-
lows one to achieve acceptable luminosities despite the
very low thickness of the gas target.

2) At facilities with external beams, one can use
polarimeters to measure the polarization of the recoil
deuterons. High beam intensities are a prerequisite be-
cause the polarization measurement, which requires a
second reaction of the deuteron, involves a loss of a few
orders of magnitude in count rate.

Current experiments at modern accelerators
reached a new level of precision; this requires a new
approach to data analysis and inclusion of all possible
systematic uncertainties. An important source of
such uncertainties is the electromagnetic radiative
effects caused by physical processes that occur in
higher orders of the perturbation theory with respect
to the electromagnetic interaction. Previously, we
calculated the radiative corrections to the polarization
observables in deep inelastic scattering (due to the
tensor-polarized deuteron target) [4] and in semi-
inclusive deep inelastic scattering (due to the vector
polarization of the target or/and outgoing hadron) [5].

In present paper, we calculate the model-indepen-
dent O(a) QED corrections to the polarization observ-
ables in the scattering of the unpolarized or longitudi-
nally polarized electron beam off the vector- or tensor-
polarized deuteron target (or production of the arbi-
trarily polarized final deuteron),

e (k1) + D(p1) — €™ (k2) + D(p2). (1)
The experimental setups also allow measuring the ten-
sor polarization observables at scattering off the po-
larized deuteron target as well as by determination of
the recoil deuteron polarizations. Different aspects of
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respective approaches [6] in JLAB were discussed re-
cently in Ref. [7].

For the polarized target experiments, the scattered
electron is usually detected, although the measurement
of the recoil deuteron is also possible. In the first
case, the leptonic variables, and in the second case,
the hadronic ones are used to calculate the radiative
corrections. In the leptonic variables, the virtuality of
the heavy intermediate photon is not fixed due to the
possibility to radiate a photon by the initial or scat-
tered electron. As a result, the corresponding radiative
correction involves some integrals with deuteron form
factors over the intermediate photon mass, which can-
not be computed in a model-independent way (with-
out knowing the form factors). Contrarily, in hadron
variables, the heavy photon mass is fixed, and the re-
spective radiative correction caused by electromagnetic
effects in the lepton part of the interaction can be cal-
culated, in principle, in a model-independent way in
any order of the perturbation theory.

The measurement of the recoil-deuteron polariza-
tion requires the analysis of the second scattering,
which in turn suggests knowledge of the recoil-deute-
ron 3-momentum. Therefore, calculation of the radia-
tive correction in this experimental setup requires using
the hadronic variables, which we consider in this work.
Our approach is based on the covariant parameteriza-
tion of the polarization state of the deuteron target or
recoil deuteron in terms of the 4-momenta of the par-
ticles in process (1), used first in [8-10] and recently
in [4, 5]. In addition, we use invariant integration of
the leptonic tensor to calculate the contribution to the
radiative correction caused by the hard-photon radia-
tion. Derived this way, the first-order QED correction
is generalized by exponentiation of the most singular
terms in the limiting case where the real photon en-
ergy is small. Our analytical final results are simple
enough and have a physically transparent form.

2. BORN APPROXIMATION

Different polarization observables in the electron—
deuteron elastic scattering have been studied in [11-16]
and other papers, where the results were expressed in
terms of the deuteron electromagnetic form factors.
Here, we reproduce most of these results using the
method of covariant parameterization of the deuteron
polarization state in terms of the particle 4-momenta
and demonstrate the advantage of this approach.

We first consider the scattering off the polarized
deuteron target. In the one-photon exchange approx-
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imation, we define the cross section of process (1)
in terms of the contraction of the leptonic L,, and
hadronic H,, tensors (we neglect the electron mass
wherever possible)

_ a2 B d3k2 d3p2
2Vq4 py Y €9 E2

do O(kr+p1—Fka—p2), (2)
where V' = 2k p;, €2 and Es are the respective energies
of the scattered electron and the recoil deuteron, and
q = ki — ko = po — py is the 4-momentum of the heavy
virtual photon that probes the deuteron. For a longi-
tudinally polarized electron beam, the leptonic tensor
in the Born approximation is given by

LY, = ¢ guv+2(kpukoy+kayu ki, )+2i N (uvgky ),

(3)
(4ab) = Eurparty,

where ) is the degree of the beam polarization (in what
follows, we assume that the electron beam is completely
polarized, and consequently A = 1).

The hadronic tensor can be expressed via the
deuteron electromagnetic current .J, describing the
transition v*d — d as

Hy, = J,J,. (4)

Because the deuteron is a spin-one nucleus, its elec-
tromagnetic current is completely described by three
form factors. Assuming the P- and C-invariance of the
hadron electromagnetic interaction, we can write this
current as [17]

Ju = (p1 +p2)u X

G

2
e <U1qU2*q— %U1U2*>:| +

+ GQ(UlllU;q - UQ*NUlq)a

X —G1U1U2* +
(5)

where Uy, (Us,) is the wave function of the initial
(recoil) deuteron, M is the deuteron mass, and G;
(1 = 1,2,3) are the deuteron electromagnetic form fac-
tors. Due to the current hermiticity, the form factors
Gi(q?) are real functions in the region of space-like mo-
mentum transfer. They can be related to the standard
deuteron form factors, G¢ (the charge monopole), Gy
(the magnetic dipole), and G¢ (the quadrupole), as

Gy = —Go, GQ=G1+G2+2G3,
P p
= — —_ 1 —_—
Go = £(Gr = Go) + (1+ L) G, ©)
B q2 B ]‘[2
p= VvV’ = vV
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The standard form factors have the normalizations

M
Ge(0)=1, Gu(0)= o

Gq(0) = M*Qa,

(7)

where m,, is the nucleon mass, j4(Qq) is deuteron mag-
netic (quadrupole) moment, and their values are

pg =0.857, Qg = 0.2859fm>

In calculating the expression for the hadron tensor
H,,, in terms of the deuteron electromagnetic form fac-
tors, using the explicit form of electromagnetic current
(5), one has to use the spin-density matrix of the initial
and final deuterons

plapm) _
2

(aﬂWpl) + Qaﬁa
P2aP2s3

e

if the deuteron target is polarized and the polarization

of the recoil deuteron is not measured. Here, W, and

Qap are the target-deuteron polarization 4-vector and

the quadrupole tensor, respectively.

Taking Eqs. (4), (5), and (8) into account, we can
write the hadronic tensor in the general case as

. 1
UlozUlﬁ - _g (gaﬁ -

7

2M
UZOZUQ*B = - (goz6 -

(8)

Hy,, = HW(O) + HW(V) + HW(T), (9)

where H,, (0) corresponds to the unpolarized case and
H,, (V) (Hyuw(T)) corresponds to the case of the vec-
tor (tensor) polarization of the deuteron target. The
H,,(0) term has the form

. Wy
Huu(o) - _nguu + Wpluplw

. i L p1q
Juv = Guv — q2 ;o Pip = Pip — q2 Gus
2
W, = - (1+ﬁ)G?M,
3 47 (10)
2
_ 2 P 2 2 P 2
Wy =4M <6_TGM + GO + @G@) .

In the case under consideration, the term H,,,(V),
responsible for the vector polarization of the deuteron
target, can be written as
1G M
S (@ = )W) (uvapn) +

+ 2M? (1 + ﬁ) G(w/qW)] ,

HIH/(V) =

(11)

p
=9 =
G =2Gec + 67-GQ’
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where the 4-vector of the target deuteron polarization
satisfies the conditions

W2=—-1, Wp; =0.

For the tensor-polarized deuteron target, the
H,,(T) term can be written in terms of the electro-
magnetic form factors as

Hy(T) = ~ QG0 + 05
x |G +4(1+1)"'Gg (GO + gGQ + nGM)] X
X Prubre — 201G (Gar + 2GQ) (1, Qo + P1,Q,) —
— (1 + )G Qur,  (12)
where
Qu = Quvav = 50, Quau =0,

Qv ~  qvq quq
;4,/@ - Uq2a Q,ua - %Quaa (]‘3)

Q,uv = Q,uu +

équV =0,

Q = QaﬁqQQB-

The target deuteron quadrupole polarization tensor
Qv satisfies the conditions
Qut/ = Qt/u-, Quu =0, pluQuu =0. (14)
Using the definitions of cross section (2) and lep-
tonic (3) and hadronic (9) tensors, we can easily derive
the expression for the unpolarized differential cross sec-
tion in terms of the invariant variables suitable for the
calculation of the radiative corrections,

doy™
aQ?
Q

In the laboratory system, this expression can be writ-
ten in a more familiar form,

7ra2

o {%Ww%[l—p(lw)]},

2—_

(15)
q2 = 2k1k2.

un
doy

dQ

:aNS{A(Q2)+B(Q2)tg2%E}, (16)

where 6. is the electron scattering angle, ong is the
Mott cross section multiplied by the deuteron recoil
factor

-1
(1 + 2(g1 /M) sin® %e) ,

and e is the electron beam energy. The two structure
functions A(Q?) and B(Q?) are quadratic combinations
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of the three electromagnetic form factors describing the
deuteron structure,

AQ) = G2(QY) + SIPGH(@) + 2163 (@)

QZ
= 0

Before writing similar distributions for the scatter-
ing of polarized particles, we note that in this case,
there may exist, in general, an azimuthal correlation
between the reaction plane and the plane (py, W) if
the recoil deuteron is detected (here, W is 3-vector of
the deuteron polarization). But in the Born approx-
imation, with the P-invariance of the electromagnetic
interaction taken into account, such a correlation is ab-
sent. In what follows, we consider the situation where
the vector W belongs to the reaction plane and the
corresponding azimuthal angle equals to zero. There-
fore, there exist only two independent components of
W, which we call the longitudinal and transverse ones.
It is convenient to use the covariant parameterization
of the deuteron polarization 4-vector in terms of the
4-momenta of the particles in the reaction. This pa-
rameterization is ambiguous and depends on the direc-
tions along which the longitudinal and transverse com-
ponents of the deuteron polarization in its rest frame
are defined.

BQ) = gn(1+ 06 (@),

As mentioned above, we have to define the longitu-
dinal W’ and transverse W7 4-vectors. In our case,
it is natural to choose the longitudinal direction in the
laboratory system along the 3-momentum q and the
transverse direction perpendicular to the longitudinal
one in the reaction plane. The corresponding 4-vectors
can be written as [5]

W) — 2Tqu — PP1y

Y Mol +)) an
W) — (47 + p)kiy — (1 +27)qu — (2 — p)P1p

wooo— .

VVET +p)(1 = p—pr)

This leads to simple expressions for the corresponding
part of the hadronic tensor,

HE,(V) = - Zf;” (nvapr)\/ p(47 + p),
HL) = D ) vak) — gy
-2~ P)(qupl)] %

The polarization-dependent parts of the cross sec-
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tion, due to the vector polarization of the deuteron tar-
get, are given by

dof  7wa® 2-p 9

107 ~ 12 ——/pldt + p)Gyy, (19)
dof  ma? \/(47‘ +p)(1 = p—p7)
107~ VP - GuG, (20)

where we assumed that A in Eq. (3) is equal to one and
the deuteron-target polarization degree (longitudinal or
transverse) is 100 percent.

In the laboratory system, these parts of the cross
section can be written as

dof = . 9 0e
r@:gnajvs\/(l‘*—n) <1+T]Sln E X
O B
X tg 5 sec EG?M’ (21)
doy _
dQ?

&
= 2;—20NS tg EmGM (GC + gGQ) » (22)
2

where €5 is the scattered electron energy.

It is worth noting that the ratio of the longitudinal
polarization asymmetry A" = do[ /do, to the trans-
verse one, AT = dol' /doy,

AL

AT ©

2-p
4

p
T(1—p—p7)

Gu
G

(23)

is expressed in terms of the deuteron form factors Gy,
and G in the same way as the corresponding ratio
in the case of elastic electron—proton scattering is ex-
pressed via the proton electromagnetic form factors
Garp and Gy [17, 18], This is a direct consequence of
the relation between the proton HY, (V') and deuteron
H,, (V) hadronic tensors, which depend on the proton
and deuteron vector polarization, respectively,

Hyu(V)(Gu, G) =
_Ar+p

81 (24)

HE, (V)(Grrp, Grp)-

We now consider the tensor-polarized deuteron tar-
get. For completeness, we introduce the 4-vector

(N) _ 26ux\po'p1)\k1pk20'

LV =p—pr)

(25)
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which is orthogonal to the reaction plane. It can
then be verified that the set of the 4-vectros W,SI),
I =L, T, N, satisfies the conditions

W;(LQ)WISB) — _5O¢B7 W[,(La)plu =0, apf=LT,N.

If one more 4-vector W,SO) = p1,/M is added to the

set of the 4-vectors defined by the Eqs. (17) and (25),
we obtain the complete set of orthogonal 4-vectors with
the properties

m,n=0,L,T,N.

W m) 7 (m)

m v = Guv; = 9mn

(26)

This allows us to express the deuteron quadrupole po-
larization tensor in the general case as

W Ry =

v

Quv = W,Em)
Raﬁ = RBou

wie)
Ruoo = 0,

W(B)Rag,

v

(27)

because the components Rgg, Roa, and R, are iden-
tically equal to zero due to the condition @ ,p1, = 0.
The quantities R,pg are in fact the degrees of the ten-
sor polarization of the deuteron target. In the Born
approximation, the components Ryz and Ryt do not
contribute and expansion (27) can be rewritten in the
standard form

1

W IDwW I R, +

L
V[/()_2 p {

v

Quv = W;EL)
W
(

w L (T)
where we took into account that

W™ (Rrr — Rnn) +
+WIOWE Ry,

[N

+

+

(28)

" v

Rrp + Rt + Ryn = 0.

The part of the cross section that depends on the
tensor polarization of the deuteron target can be writ-
ten as

da? __dafL dagT
107 = a0° Rpp + TQQ(RTT — RynN) +
dafT
— 2
+ 0> Rrr, (29)
where
dabLL T’
dQ2 = WQ(l—p—Tp) X
8 _»  2-2p4271p+p>
X1 {SGOGQ+317GQ+ 2(1—p—7p) wes  (30)
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2

dofT  rma 9
Q2 = a%(l —p=1p)Gy. (31)
dofT ma? p(1—p—7p)

In the laboratory frame, this part of the cross section
can be written as

dcer T
—b — %
dQ? &3
xons[StrRr+Str(Rrr—RNN)+StrRrr],  (33)
where
B 1 8 5
Spr = 3 8GcGo + gn GQ-I-
0
+n {1 +2(1 4 1) tg? ﬂ G?M}, (34)
| I
Str = EUGMa (35)

/ e b
Sy = —4n\/n + n? sin? 5 sec 3G’QGM. (36)

If the longitudinal direction is determined by the
recoil deuteron 3-momentum, relations (18) and (21)
are not affected by hard photon radiation in the lepton
part of the interaction (this corresponds to the use of
the so-called hadronic variables, see below) because

q=Pp2 —P1-

But when this direction is reconstructed using the
3-momentum of the scattered electron (lepton vari-
ables), these relations break down because

q# ki —k

in this case. This means that in the leptonic variables,
parameterization (17) is unstable and radiation of a
hard photon by the electron leads to a mixture of the
longitudinal and transverse polarizations.

This mixture can be eliminated by taking the longi-
tudinal direction along the 3-momentum of the initial
electron. The corresponding parameterization of the
4-vector polarizations is [19]

27k, —

N 1 b1

WIS) - #7 37

W(t) _ k2u B (1 — P~ 2pT)k1u B pplu. ( )
! Vp(l—p—p7)
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The hadronic tensors Hii then have the form

AT+ p
— X
! 4T

X {G {—QT(uuqkl) +

Lo
H, =-

27(2 - p)

yr— (qul)} +

p(1+ 27)
+ GM74T+p (MVQPl)} Gu, (38)

to_ PT
H,, =-i 1—p—p7'><
2—0p )
x G+ 27) | == (uvapr) = —— (uvaki) | =
1—p—pr
_GM#(Nqul)}GM~ (39)

In the case of scattering off a polarized target, the
tensors H,f,;T and HL,E are connected by the trivial re-
lations

H,fy = cos HHL,, + sin Gwa ,/
H], = —sin6H), + cos6H,,,
1+2
cosf = —(wHw)y = LA (40)
VoAt +p)
inf = —(WOWO) = _g, |TLZL=PT)
47+ p

Using these relations, we can write the polarizati-
on-dependent parts of the Born cross section, which
correspond to parameterization (37), as

d;'é = oS 9% — si ﬂ
dQ? dQ? dQ? (41)
d;'f’ = sint9ﬂ + cost9ﬂ
dQ? dQ? dQ?’

where dof /dQ?* and doj /dQ? are defined by Eqs. (19)
and (20). Therefore, we can write

doy
dQ?
T 1+27 2
=7 {TT(Q—P)GM+;(1—P_PT)G} G, (42)
d;;z_ﬂ'cﬂ p(l—P—PT)X
dQ2 - VQ2 T

X {—%(Q—p)GM—}—(l—l—QT)G} Gun. (43)
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In the case of the tensor polarization, the relations
that are an analogue of Eq. (41) become
da,? B dol’

dQ? dQ?’

where the partial cross sections do/”/dQ? are defined
by Eq. (29) as the coefficients in front of the respective
quantities Ry, Rrr — Ryn, and Ry, and the entries
of the matrix X are

XIJ Ia']:L',Ta (44)

Xir = i(l + 3cos20)Ry +
+ i(l —c0s20)(Ry — Rpy) + sin 20Ry,

Xrr = Z(l —cos 20) Ry, + (45)
+ 3(3 + cos20)(Ry — Ry) — sin 20Ry,

1
X = 1 sin 260 [SR”—(Rtt—Rnn)]+cos 20Ry;.

As we can see, the polarization-dependent part of the
cross section is now expressed in terms of the new po-
larization parameters Ry, Ry — Run, and Ry defined
in accordance with the directions given by Eq. (37),
and the coefficients in front of these quantities in the
right-hand side of Eq. (44) determine the corresponding
partial cross sections da}’ /dQ>.

We now consider the scattering off the unpolarized
target in the case where the recoil deuteron polariza-
tion is measured. In this case, we can obtain both the
vector and tensor polarizations of the recoil deuteron
using the results given above. For this, we note that
the longitudinal and transverse 4-vectors S(*) and S(T),
which satisfy the relations S? = —1 and (Sps) = 0, are

27qu + ppay
My/p(47 +p)

The part Hy, (V) of the hadronic tensor can be
derived from Eq. (11) by the substitution W — S,
p1 < —po. This actually means that we have to re-
place (Wps) in the right side of Eq. (11) with (Spy).
The vector polarization of the recoil deuteron (longi-
tudinal P or transverse PT) is defined as the ratio
of the polarization-dependent part of the cross sec-
tion to the unpolarized part. Taking into account that
(SLp)) = —(Wlpy), we conclude that

S —

ST =wD, (46)

Pl =—AF PT=AT, (47)
where AL and AT are the respective asymmetries for
the scattering off the 100 %-polarized deuteron target.

Here, we want to draw the reader’s attention to

the fact that determination of G;/G by measurement
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of the ratio AL/AT in the scattering off a polarized
deuteron target is more attractive than by measuring
the ratio P*/PT in the polarization transfer process
because the second scattering is necessary in the lat-
ter case. This decreases the corresponding event num-
ber by about two orders [20], essentially increasing the
statistical error. The problem with the depolarization
effect that appears in the scattering of a high-intensity
electron beam on the polarized solid target can be
avoided using the polarized gas deuteron target [3].

By analogy, the components of the tensor polariza-
tion of the recoil deuteron are defined by the ratios of
the corresponding partial cross sections to the unpolar-
ized one,

7 doft < dofT
LL dom LT doim
g (48)
~ ~ doy
Ry — RyN = -
doy

The part H,, (T') of the hadronic tensor can be derived
from Eq. (12) by changing the sign in the term propor-
tional to G (Gar +2Gq). Straightforward calculations
using this updated tensor and parameterization (46)
leads to the following results. First, both diagonal par-
tial cross sections in the right-hand side of Eq. (48) are
the same as defined by Eq. (29) for the scattering off
the polarized target, and second, the partial cross sec-
tion dof? /dQ? changes sign compared with the cross
section in Eq. (29).

3. RADIATIVE CORRECTIONS

The total radiative correction can be divided
into model-independent and model-dependent contri-
butions. The model-independent radiative correction
includes all QED corrections to the lepton part of the
interaction and insertion of the vacuum polarization
into the exchange photon propagator. The model-
dependent radiative correction involves additional cou-
plings of the photon with the off-mass-shell hadron and
comes from box-type diagrams, hadronic vertex func-
tions, hadron contribution to vacuum polarization, etc.
It can be analyzed at the level allowed by the current
knowledge of the hadronic structure; as a rule, the cor-
responding contribution is added to the systematic er-
TOr.

The standard practice of the data analysis in ep and
ed scatterings is that the model-independent radiative
correction is taken into account with the accuracy al-
lowed by theoretical calculations. The reason is that
it gives the main contribution due to the smallness
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of the electron mass, and can be calculated without
any additional assumptions. Therefore, the model-in-
dependent radiative correction is calculated theoreti-
cally and simply subtracted from the observed quanti-
ties or Monte Carlo generators constructed on the ba-
sis of these calculations are implemented into codes of
the data analysis. In this paper, we calculate only the
model-independent radiative correction; we bear this
in mind in what follows.

There exist two sources of radiative corrections
when the corrections of the order av are taken into ac-
count. The first is caused by virtual and soft photon
emission that cannot affect the kinematics of process
(1). The second arises due to the radiation of a hard
photon,

e (k1) + D(p1) = e (k2) +v(k) + D(p2), (49)

because cuts on the event selection used in the current
experiments allow photons to be radiated with the ener-
gy about 100 MeV and even more [6, 20]. Such pho-
tons cannot be interpreted as «soft» ones. The form of
the radiative correction caused by the contribution due
to the hard photon emission depends strongly on the
choice of variables used to describe process (49) [21].

The hadronic variables were used formerly to com-
pute the radiative correction in the elastic and deep-in-
elastic polarized electron—proton scattering [21, 22]. As
noted in Ref. [21], the form and value of the radiative
correction in the hadronic variables differ essentially
from the radiative correction calculated in the leptonic
variables. We want to point out that the results in
Ref. [22] can be used for the elastic ep scattering and
relations (10) and (22) can be used to calculate the
radiative correction in the elastic unpolarized and po-
larized ed scattering in the case of the deuteron vector
polarization. Here, we also calculate the radiative cor-
rection in the case of the deuteron tensor polarization,
which is absent in Ref. [22] because the proton has spin
1/2. Our goal is to obtain physically transparent for-
mulas for the radiatively corrected cross sections, which
are absent in Ref. [22], and to generalize them with the
higher orders of the coupling constant a taken into ac-
count by simple exponentiation of the leading contri-
butions.

In contrast to Ref. [22], we assume at the very be-
ginning that in reaction (49), the recoil deuteron is de-
tected and the 4-momentum

g=p2—m =k —ks—k

is fixed. Because neither the scattered electron nor the
hard photon is detected, the complete integration over
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the 3-momenta of these undetected particles must be
performed.

In calculating the radiative correction using the
hadronic variables, it is very convenient to use the
method of invariant integration. In this method, in-
tegration of the leptonic tensor L}, (with the emission
of an additional photon taken into account) over the
variables of the scattered electron and the emitted ad-
ditional photon is performed before the contraction of
the leptonic and hadronic tensors. At the beginning,
we use the overall 4-dimension J-function to eliminate
the ks momentum and then perform analytic integra-
tion with respect to the photon 3-momentum in the
special system where

ki +p1 —p2=0.

It is convenient to introduce the dimensionless hadronic
variables

q2

_ 2k
 2kiq’

V i

x = y=p, (50)

which characterize inelasticity due to the hard-photon
emission in the lepton block: if the photon is not radi-
ated, then z = 1 and y = p. The quantity 1 —x actually
represents the energy fraction of the collinear photon
radiated by the initial-state electron. It is easy to verify
this statement because
q=1zky —ky, ki=Fk}x0

in this case.

The use of these variables in the framework of our
approach allows bypassing the complication that comes
from the Gram determinant and appears in the stan-
dard method developed in Ref. [23] and used later in
Refs. [22, 24]. This gives the possibility to simplify the
calculations and write physically transparent expres-
sions for both polarized and unpolarized cross sections.

Using the above strategy, we start from the follow-
ing expression for the cross section of process (49) in
the hadronic variables:

042

= VQ4

dBpy o dk

do L

2 2
nv MVE—2471'2 w 6(k2_m)

(51)

Here, w is the photon energy and m is the elec-
tron mass. The leptonic tensor corresponding to the
hard-photon radiation is well known [25, 26]. It can be
written as

L, =L+ L2,
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Its unpolarized symmetric part is

(¢*—1)*+(¢*—s) 2 of 1 1
Ly, = 2[ o —2m~q s_2+t_2 X
7 2N
Xgut/ + 8<§ - 82 >k1uk1y +
2 2
q 2m*\~ ~
8| — — —— | kapkan, (52
* (st 2 > bz, (52)

and the antisymmetric part, arising due to the longitu-
dinal beam polarization, is

2
— A q-—s 2 ]. ]_
Ly, = 4i(pvap) {klp [ S —2m <s—2+t—2>} +
2 2
q —t 2m=s

k — 53
’ 2”{ st (qZ—S)tQH’ (53)

_ _ _ 2 ~ aq
t = _Qkkl', s = 2kk2 — _Q +Vy, aH = au—q—Qqu.

After removing the overall §-function, it is necessary to
calculate the quantity

L, = /LZV

We calculate it using the method of invariant integra-
tion. We first consider the case of the unpolarized elec-
tron beam. With the P-invariance of the electromag-
netic interaction and gauge invariance of the quantity
Li“, taken into account, we can represent this quantity
in the general form as

o

2 _ 2
w5(k2 me).

Lt = Aguy + Bk, (54)
The two functions A and B can be obtained by con-
tracting the left- and right-hand sides of this equation
with the respective tensors §,, and l%lufﬂlu. As a re-
sult, we obtain two equations for the two unknowns A
and B,

2 \2
(¢® —s) B,
4q>

I =3A-

(¢° — 5)
4q>

I2 Ba

4q¢?

where we introduce the notation

_ A’k
/LZSQWT

/

Next, we must integrate over the photon phase
space in the integrals I; and I,. Because the quan-
tity 6(k2 — m?)d3k/w that enters the integrands in I

Il 6(k§—m2)7

uns -k
= L[,H/kluk‘lVT(s(kg — m2).

I
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and I is Lorentz invariant, we can take any coordinate
system to do this integration. The most convenient one
is the coordinate system where

ki +p1 —p2=0.

In fact, this is the center-of-mass system for the radi-
ated photon and the scattered electron, and therefore
the polar (¥) and azimuthal (¢) angles of the radiated
photon cover the entire phase space. We therefore have

dk

1—2z
R oy
wé(k2 m’) 1R, d¢ d cos,
0< ¢ <2m, (56)
2
—1<cost <1, szl—x—%—m—

Q*

where the z axis is chosen along the direction of the
initial electron 3-momentum. In writing the quantity
R,, we set x = 1 in the coefficient in front of m?/Q?2.

The energies of all particles and the polar angle of
the initial deuteron in this system can be expressed in
terms of the invariant variables as

_ Vy(l —2) I Vy + 2m?
°o/R = /R
Vy(l — z) + 2m? V(l-p)
€2 = , By = ———,
2vR 2vR (57)
E2:V(1—y+p)7 C0591:2E151_V,
2VR 2|p1[ki |
R=VyR,,

where e1 and E; (e2 and E») are the respective energies
of the initial (final) electron and deuteron.

The necessary angular integrals are given by

1 2R,
—=—— 7
-t Vy(l—2a)
2y 2
X ZIR(L-2)+1-p],
== Rl =2+ 1]
/t__M
= o ,
2 (-2
2= )
(1-p)?
=3+ S sy
X[R( 3)+ o, + p—yT
V(il-2)(1-
/2x=( R)( P
/2m2_ 4R, _k
t2 _Vy(l_x)Qv X_ p17
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where we use the short notation for definite integral
and the quantity L,
27

[=[%]

and neglect the terms of the order (m?/Q?) whenever
possible.

2

m2zR,’

In

dcost, L=

Calculating the integrals I; and I, as described
above and solving the system of two equations (55),
we obtain that the functions A and B are given by

A= =27[FP(z,Q*/m?) + 3(1 — x)],

2

B= Sw@[F”(:c,QQ/mQ) +3+ ],
1+ 22 Q? 4
2
= |
(2, Q% /m”) 1—2 anxRx 1—x+
1 2
+E 2Q2R2+1+4$. (59)

The contraction of the unpolarized parts of the lep-
tonic tensor (integrated over the photon phase space)
and the hadronic tensor for radiative process (49) is

given by
) Wi +

V(2-y)?
167

2
Lt H,,,(0) = — <3A + Vg

4p

+ {(1 + o)A+ B] Wa. (60)

To write the respective contractions in the polar-
ized case, we have to take into account that the pa-
rameterization of the polarization 4-vectors S(-7T) in
the radiative process differs somewhat from the Born
expressions given by Eq. (46) (we here consider the po-
larized recoil deuteron for definiteness). Formally, they
can be derived by the substitution

p—y, ki—=azk, T—=71/, V=2V (61)

in Eq. (46).
The contraction of the unpolarized part of the lep-
tonic tensor (integrated over the photon phase space)
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and the hadronic H,,(T') tensor for radiative process
(49) is given by

+ @n(1—n) —y)Q1 +p(1 + n)QM} } a3, +
2 _
+(2-y)VB [277@1 477(+p )Q} GrGot
Q (2-y)?
* 2 [4A+ 4T + p VB} GoG, (62)

where

Ql = Quuquklva Qll = Q,uvk'l,ukllw
Taking into account the relation

dx

d3p2 2
= mpdQ 2

E,

that holds for the recoil-deuteron phase space, after
some algebra we derive the following representation for
unpolarized cross section of reaction (49):

1-A
d un d un
T =g [ S ko r w0ty
I

Fu(z, Q% /m?) = FP(x,Q*/m>) + 3 — 4z,

f(xapaT)Z?)(x—p)_}_p g_T)'

|
Here, A is the minimum-energy fraction of the hard
photon and =z, depends on the experimental cuts for
the photon energy.

For the partial cross sections in the case of tensor
polarization of the recoil deuteron in radiative process
(49), we obtain the expressions

3

do‘LL o
déIZ (kl) V2 ( + 77) In 2, (GM - QGQG)
1—Ad
@ Ub T
tor dQ? (k) F (2, Q*/m®)dz,  (64)
dcr}_}T a 1_Ado.g“T . Y
dUIL-IT _a [ dcrbLT . o
dQQ (kl) = % dQ2 (l‘kl)F (l‘,Q /m )dl‘
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where
FT(x,QZ/mQ) = Fp(x,QQ/mQ) +3 -z

We now consider the case of the longitudinally po-
larized electron beam and calculate the necessary inte-
gral, where L}, = LV . using the method of invariant
integration. Taking the P-invariance of the electromag-
netic interaction and gauge invariance of the quantity
wa into account, we can represent this quantity in the

general form as

L, =iC(uvgky). (65)
The unknown function C' can be obtained by contract-
ing the left- and right-hand sides of this equation with
the tensor (urqky). As aresult, we obtain the following

expression for C':

i

2@ =90 = [ L Guak) 2503 - m2). (60

Calculating this integral as explained above, we obtain

2nx
O - @Fﬁ
The contraction of the polarized part of the lep-
tonic tensor (integrated over the photon phase space)
and the hadronic H,, (V') tensor for radiative process
(49) is given by

(z,Q*/m?).

. 1
L Hy, = =52 —ynV2CV/p(47 + p)Giys - (67)

. 1
L Hyy = =7 V2C120(1 = y) + % (p + 27)] X
z(471 4 p)

GuG.
(e —p—yr)

(68)

After some algebra, we derive the following repre-
sentation for the parts of the cross section that depend
on the vector polarization of the recoil deuteron:

doé’T
agr M=
1-A
o / d"bL’T(xkl)Fp(x Q*/m?)de.  (69)
2 d@? '

The infrared auxiliary parameter A < 1 is related
to the minimal energy of the hard photon in the cho-
sen coordinate system and the lower integration limit is
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defined by its maximum value that depends on the ex-
perimental cuts on the event selection in the experimen-
tal measurement of the observables in elastic electron—
deuteron scattering:

wmam

€1

Wmin
A = Zmin
€1

) Ty =1-

For example, if the lost invariant mass M, (of the
scattered electron and the undetected additional hard
photon) is allowed,

(kl +p1 _p2)2 S MrQnam',
then 0
Ty = 7@2 n M2
mazx

On the other hand, the quantity z,, cannot be arbi-
trary (but must of course be smaller than unity) even if
no experimental constraints on the event selection are
used. The restriction on x,, follows from the inequality

2

x*—zp—pr >0,

which reflects the obvious relation

B o 5 _ $2V2
€= Tmaz = Ly
for radiative process (49). In any case, we therefore
have
4
o> L <1+,/1+—T>.
2 p

We note one interesting point regarding formula
(69). It looks very similar to the corresponding result
in the quasireal electron approximation [27] for the de-
scription of the collinear photon radiation (6, < 6y,
0o < 1) by the longitudinally polarized electron, which
is suitable for the leptonic variables,

do(ki,k)=— [ d ki)P(x, Lo)d
k) = 5 [ dntok) Pl Loy,
k:(l—l‘)kl,
1+22 2(1— 2 292
P(x, Lo) = A Lo— Q-ote )7 Lo=In0 2,
1-2 1-2 m2

where doy, is the cross section of the radiationless pro-
cess. It is not surprising that the function FP differs
from P in Eq. (70) because it also has to contain traces
from the final electron radiation.

Formulas (63), (64), and (69) describe the distribu-
tion over the momentum transfer squared in reaction
(49) and define the respective radiative correction due
to the hard photon emission. To compute the total ra-
diative correction, we must also add the contribution
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due to emission of the virtual photon and the real soft
photon (with the energy less than Aey). This contri-
bution is the same for the polarized and unpolarized
scattering,

dUS+V

dGb Q

——=— — (" + 7). 71
a7 a0 (71)
The virtual correction is standard [28],
v A 2 m
) (72)
LQ =In W’

where A is the «photon mass», while the soft-photon
correction has some specification in the hadronic vari-
ables

2

T 4o

mA
5524(LQ—1)1nT+2L2Q—2LQ— 3

(73)

It can be seen that the terms proportional to L2Q do
not vanish in the sum §" + §° (as they do for the lep-
tonic variables) and the contribution of the hard photon
emission has to be taken into account to cancel them
(due to the terms with In R, /(1 — ) in the functions
FP, FT, and F").

The observed cross sections, which take the total ra-
diative correction into account, do not depend on the
auxiliary infrared parameter A and can be written in
the form suitable for numerical integration as

do.un

doy™ ! a
W(kl)_ Q2 (kl) <1+Eé)+%x
1
dAoy™  fa doy™ ~un
X/[ dQ2 1—1‘+dQ2(xk1)F +
ra® W.
+ Wﬁz (%P»T)] dx, (74)
de™T dGbL’T «
7(’61) = (k1) (1 + gfs) +
1
a dAap " fa o ~
% / de2 1—=x + déQ (kal)Fp dx. (75)

The partial cross sections in the case of the tensor po-

3 ZKIT®, Bein. 5
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larization of the recoil deuteron are defined by the for-
mula

dot”’ dcrg‘] «
1
a dAU,fJ fa dglfJ ~
-I-%/[dQ2 -2 dQ2($k1)F]d$+

3
+ T3 (14 ) e (Gl — 2GoG)orLdsn,

I,J=L,T, (76)

where
dAoy = doy(xky) — dop (k1)

for both polarized and unpolarized cases and

0= <g+21n(1—xm)> Lg —

71'2

3 b

- gln(l —zp) = I (1 —2,,) —

N | Ot

7

3

fA:2LQ—21n(1—x) D)

+ 22

Inx +

~ 1
Fp:—(l-l-l‘)LQ— 1

—x
+(14+2)In(l —2z) + 1+ 4z,
Fon_ Foa_an,

FT =FP 43—z

The singularity at x 1 in the integrands of
Eqs. (74)—(76) cancels by the corresponding quantity
dAcy,/dQ*. For example, in the simplest unpolarized
case, we have

dAoy™ ra?

dQ2 - Q2V2x2 X

X [2(1 4 2)W; — @(m-l—r(l +2))| (1-=2).

It is well known that the leading logarithmic contri-
butions to the radiative correction of the order (aLg)™,
n = 1,2,..., are controlled by the electron structure
function D(x, Lg)

3

1
dojead doy,
10° = /D(x,LQ)Tm(xkl)dx,
L 78
D(z,Lg)=0(1—=x)+ QQﬂ_Q Py(x) + (78)
1/aLg\’



G. I. Gakh, N. P. Merenkov

MITD, Tom 125, BRIm. 5, 2004

—0.01

—0.03

—0.05

—-0.07

—0.09

—0.11

—0.13

—0.15

0.030

0.025

0.020

0.015

0.010

0.005

03 04 05 1.0

Tm

or
0.035

0.030

0.025

0.020

0.015

0.010

0.005

1.0

Tm

03 04 05 06 07 08 09

0.014 |
0.012
0.010
0.008
0.006
0.004

0.002

Fig. 1. The effect of the radiative correction on the unpolarized cross section and vector polarizations of the recoil deuteron
calculated via Egs. (74), (75) and Eq. (82) at V = 8 GeV?. The solid curves correspond to Q* = 1 GeV? and the dashed
ones to Q% = 3 GeV2. Parameterization | is used for the deuteron electromagnetic form factors [32]

It can be verified that the leading part of the first-order
correction defined by Eqs. (74)-(76) can be derived us-
ing representation (78) at

L
= QPl(x)v

_ 14 22

Py (x) O(l—a—-A)+6(1—2) (21nA+g>.

1—=2
Thus, we can improve our result by insertion of the
higher-order leading contributions using Eq. (78) and
the known expressions for the functions P,(x) [29].
This improvement results in modification of the quanti-
ties 9, fa, and F? in the right-hand sides of Eqs. (74)—
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(76). For example, to account for the corresponding
second-order terms, we must use the substitutions

0 —=0+701, fa— fa+yfan,
N ~ _ aL2Q (79)
FP — FP + yFP, ~y=—=,
2w
9 x? 2
far=3+4In(l —x),
- 1+ 322 5+
Flp:—2(1+x)ln(1—x)—72(1_x)lnx— 3

On the other hand, there exists a simple method of
summation of the all singularities at 2 = 1 in the to-
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Fig.2. The effect of the radiative correction in the case of tensor polarization of the recoil deuteron. The partial cross
sections in Eq. (83) are calculated using Eq. (76). Kinematical conditions and parameterization of the form factors are the
same as in Fig. 1

tal radiative correction, which goes beyond the leading
logarithmic approximation (see, e.g., Ref. [30]). It con-
sists in the use of the exponential form of the electron
structure function and in our case can be introduced as

5(1—2)+8 %0(1—A—x)+5(1—x) In A} 5

R %exp {5 G _cﬂ . (80)

where

C' is the Euler constant, and I'(z) is the Gamma func-

tion. This procedure leads to a redefinition of § and fa
in Egs. (74)-(76),

2

5 — TP = Z(LQ_1n(1_xm))_1n2(1_xm)_ g - %
fa—= [ = _2 —2In(1 — ),
and to the appearance of the additional term
i i)
dTy(xkl)ﬂ(l - )7 T+ ) dx
T

that absorbs the purely Born cross section and a part

995 3*
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Fig.3. The influence of different parameterizations of the deuteron electromagnetic form factors on the radiative correction.

The solid (dashed) curve corresponds to parameterization | (II) [32].

The kinematical conditions are V = 8 GeV? and

Q? =1 GeV?

of the radiative corrections. For example, partial cross

sections (76) becomes
doT7 : dol7
- [
(s G-+ 277) +
1J gexp
%dﬁgé’ | Aot
+ s ) 4 214

X lnxm(G?M - QGQG)(SIL(SJL. (81)

4. NUMERICAL ESTIMATIONS

There are different approaches to the analysis of po-
larization observables. If the experimental information
is extracted directly from the spin-dependent part of
the cross section (see Ref. [31] for the corresponding
experimental method), the radiative correction can be
large due to the contribution of factored virtual and
soft corrections. The nonfactored contribution to the
radiative correction, caused by the hard photon emis-
sion, cannot be large in elastic scattering because the
phase space of such a photon is strongly suppressed
by restrictions on the event selection. The effect of
the radiative correction in this case is demonstrated in

Figs. 1-4 for the ratios

5 daobs ) _ oLb,sT 1
u dO’g’n ) L, T — PbL’T —
o (82)
6R _ PobsP -1
POLbSPT

in the unpolarized case and for vector polarization of
the recoil deuteron, and for the ratios

dol doy™ doL dcr

dpy=—2bs b __ 1 § —obs b 1 (83
Lr= dag,?sdau ' RQ = daoLbZdaTT (83)

in the case of tensor polarization. We note that if the
radiative correction is ignored, all the quantities defined
by Eqs. (82) and (83) are equal to zero. The quantities
dr and drq are very important physical values because
they can be used for an independent determination of
the ratios of form factors such as Gy /G and G /Go
(see Eqs. (19), (20), (31), (32), and (48)).

The observed cross sections in Eqs. (82) and (83)
are defined by Eqgs. (74)—(76) or their exponential mod-
ification (as in Eq. (81)). We consider two different pa-
rameterizations of the deuteron electromagnetic form
factors given in Ref. [32] and label them as I and II.

As can be seen from Fig. 1, the radiative correc-
tions to the unpolarized cross section depends strongly
on the value z,, that is connected with the energy of
the hard photon in process (49). If z,, is close to unity
(zm = 1), the total radiative correction, being nega-
tive, can reach 10 % and even more. As x,, decreases,
the total radiative correction becomes much smaller.
Such behavior of the radiative correction has a simple
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Fig.4. Comparison of the total radiative corrections in the case of tensor polarization calculated by Eq. (76) (solid curve)
and Eq. (81) (dashed curve) at V = 8 GeV? and Q* = 1 GeV?

physical interpretation. If x,, ~ 1, the energy of the
photon in process (49) is sufficiently small, and the pos-
itive contribution into the radiative correction due to
the hard photon emission cannot compensate the fac-
tored negative contribution caused by virtual and soft
photon corrections that accompany process (1). As the
hard photon energy increases, such compensation oc-
curs and the absolute value of the total radiative cor-
rection decreases. The same behavior is also exhibited
by polarization-dependent parts of the cross section in
the case of vector polarization of the recoil deuteron
and by partial cross sections in the case of tensor po-
larization.

But the effect of the radiative corrections is just
opposite for the ratios defined by Eqs. (82) and (83).
At z,, =~ 1, the total radiative correction is defined
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mainly by its factored part, which is the same for the
polarization-dependent and unpolarized cross sections.
Therefore, the radiative correction in fact cancels in
this region for such ratios. On the contrary, at smaller
values of z,,, the nonfactored part of the radiative cor-
rection becomes significant and the total radiative cor-
rection increases. An unexpected fact is that the ratios
07y in (83) are approximately one order smaller than
6L,T in (82)

As our calculations show, the sensitivity of the ra-
diative correction to two different parameterizations of
the deuteron electromagnetic form factors [32] at rele-
vant values of energies and momentum transfers is prac-
tically negligible. In fact, the respective curves coincide
in the entire range of x,, (see Fig. 3).

The influence of the higher-order corrections, cal-
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culated by summing the leading contributions by the
exponentiation procedure, is demonstrated in Fig. 4
for the tensor polarization ratios. The corresponding
curves for the vector ones are very similar. We see
that the effect is small and cannot even exhibit itself
at small z,,, where the nonfactored radiative correc-
tion contributes. As usual, the large correction factor
caused by exponentiation of the higher-order leading
radiative corrections at x,, &~ 1 to the unpolarized and
polarized parts of the cross section cancels in their ra-
tios.
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