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The electron structure function method is applied to calculate model-independent QED radiative corrections to
the asymmetry of electron—proton scattering. Representations for both spin-independent and spin-dependent
parts of the cross section are derived. Master formulas include the leading corrections in all orders and the
main contribution of the second order and provide accuracy of the QED corrections at the level of one per mill.
Numerical calculations illustrate our analytic results for both elastic and deep inelastic events.
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1. INTRODUCTION

Precise polarization measurements in both inclu-
sive [1, 2] and elastic [3, 4] scattering are crucial for
understanding the structure and fundamental proper-
ties of a nucleon.

One important component of the precise data anal-
ysis is radiative effects, which always accompany the
processes of electron scattering. The first calculation of
radiative corrections to polarized deep inelastic scatter-
ing was done by Kukhto and Shumeiko [5], who applied
the covariant method of extraction of the infrared di-
vergence [6, 7] to this process. The polarization states
were described by 4-vectors, which were kept in their
general forms during the calculation. This required a
tedious procedure of tensor integration over photonic
phase space, and, as a result, led to a very complicated
structure of the final formulas for the radiative correc-
tions. The next step was taken in [8], where additional
covariant expansion of polarization 4-vectors over a cer-
tain basis allowed simplifying the calculation and the
final results. It resulted in producing the Fortran code
POLRAD [9] and Monte Carlo generator RADGEN

*E-mail: merenkov@kipt.kharkov.ua

462

[10]. These tools are widely used in all current ex-
periments in polarized deep inelastic scattering. Later,
the calculation was applied to collider experiments on
deep inelastic scattering [11, 12]. We also applied this
method to elastic processes in [13, 14].

But the method of covariant extraction of the in-
frared divergence is essentially restricted by the lowest
order radiative corrections. All attempts to go beyond
the lowest order lead to very unwieldy formulas, which
are difficult to cross check, or to a simple leading log
approach [15]. The recent developments are reviewed
in Ref. [16].

The resolution can be found in applying the formal-
ism of electron structure functions (ESF). Within this
approach, such processes as the electron—positron an-
nihilation into hadrons and the deep inelastic electron—
proton scattering in the one-photon exchange approxi-
mation can be considered as the Drell-Yan process [17]
in the annihilation or scattering channel, respectively.
Therefore, the QED radiative corrections to the corre-
sponding cross sections can be written as a contraction
of two electron structure functions and the hard part
of the cross section, see [18, 19]. Traditionally, these
radiative corrections include effects caused by loop cor-
rections and soft and hard collinear radiation of pho-
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tons and ete” -pairs. But it was shown in Ref. [19] that
this method can be improved by also including effects
due to radiation of one noncollinear photon. The cor-
responding procedure results in a modification of the
hard part of the cross section, which takes the lowest-
order correction into account exactly and allows going
beyond the leading approximation. We applied this ap-
proach to the recoil proton polarization in elastic elec-
tron scattering in Ref. [20]. In the present paper, we
calculate radiative corrections to polarized deep inelas-
tic and elastic scattering following Ref. [20].

Section 2 gives a short introduction to the struc-
ture function method. We there present two known
forms of the electron structure functions, iterative and
analytical, which resums singular infrared terms in all
orders into the exponent. In this section, we also ob-
tain master formulas for observed cross sections. Lead-
ing log results are presented in Sec. 3. These results
are valid for both deep inelastic and elastic cases. We
also use the iterative form of electron structure func-
tions to extract the lowest-order correction, which can
provide a cross-check via comparison with the known
results. In Secs. 4 and 5, we describe the procedure of
generalizing the results to the next-to-leading order in
the deep inelastic and elastic cases. Numerical anal-
ysis is presented in Sec. 6. We consider kinematical
conditions of current polarization experiments at fixed
targets and collider kinematics. Some conclusions are
given in Sec. 7.

2. ELECTRON STRUCTURE FUNCTIONS

A straightforward calculation based on the quasireal
electron method [21] can be used to write the invariant
cross section of the deep inelastic scattering process

e (k1) + P(p1) — e (ko) + X(pa) (1)

as
dolkiks) [ |
O\F1, k2
W: /le/dZQD(ZhL)X
2 i 2
X%D(ZQ,L)M7 L:an—2, (2)
&) dQ? dj m

where m is the electron mass and

2p1 (k1 — k
Q> =—(k1 —k2)?, y= w’ V =2pik;.
The reduced variables that define the hard cross

section in the integrand are
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The electron structure function D(z,L) includes
contributions due to the photon emission and pair pro-
duction,

D=D"+Dy¢ +D§° (4)
where D7 is responsible for the photon radiation and
DS ¢ and D% ¢ describe pair production in non-
singlet (by single photon mechanism) and singlet (by
double photon mechanism) channels, respectively.

The structure functions in the right-hand side
of Eq. (4) satisfy the DGLAP equations [22] (see
also [18]). The respective functions D(z;, L) and
D(z2, L) are responsible for radiation of the initial and
final electrons.

There exist different representations for the pho-
ton contribution to the structure function [18, 23, 24],
but we here use the form given in [18] for D7, D¢ |
and DG ¢,

D72, Q%) = 281 — 277
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where ¢ is the energy of the parent electron and
Li=L+2In(1-2z2).

We note that the above form of the structure function
Df\;re_ includes effects due to the real pair production
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only. The correction caused by the virtual pair is in-
cluded in D7. Terms containing a contribution of the
order a®L? are canceled in the sum DY 4+ D¢ .

Instead of the photon structure function given by
Eqs. (5)—(7), one can use their iterative form [23]

alL

k
) Rt @

D (z,L) =5(1—z)+2% (
k=1 """

k

® Pi(2) = Pi(2)®%,

1

Pi(2) @ Pi(2) = /P1(t)P1 (

z
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1+ 22
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01— 2= A)+6(1—z) <21nA+2>,

Ak,

The iterative form (8) of D7 does not include any effects
caused by pair production. The corresponding nonsin-
glet part of the structure due to the real and virtual
pair production can be included into the iterative form
of D7(z,L) by replacing aL/27 in the right-hand side
of Eq. (8) with the effective electromagnetic coupling

(-5),

which is (within the leading accuracy) the integral of
the running electromagnetic constant.

The lower limits of integration with respect to z;
and 29 in the master equation (2) can be obtained from
the condition for the existence of inelastic hadronic

al
2

oL
3T

Qeff _ —§1n

27 2 )

events,

(p1+4)? > M2, §=Fki—ky, My =M4mg., (10)

where m, is the pion mass. This constraint can be

rewritten in terms of dimensionless variables as

2120ty — 1 —wyz1 > 222,

Q> M2 - M (1)
T= 77 Fth= " ;
2p1 (k1 — ko) V
which leads to
1—y+ayz 14z —y
Z?m = - im = 0 -
21— Zth 1—xzy

The squared matrix element of the considered pro-
cess in the one-photon exchange approximation is
proportional to the contraction of the leptonic and
hadronic tensors. Representation (2) reflects the prop-
erties of the leptonic tensor. Therefore, it has the uni-
versal nature (because of the universality of the leptonic
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tensor) and can be applied to processes with different
final hadronic states. In particular, we can use the
electron structure function method to compute radia-
tive corrections to the elastic and deep inelastic (in-
clusive and semi-inclusive) electron-proton scattering
cross sections.

On the other hand, straightforward calculations in
the first order in a [5,8,21] and the recent calcula-
tions of the leptonic current tensor in the second or-
der [25-28] for the longitudinally polarized initial elec-
tron demonstrate that in the leading approximation,
spin-dependent and spin-independent parts of this ten-
sor are the same for the nonsinglet channel contribu-
tion. The latter corresponds to photon radiation and
et e~ —pair production through the single-photon mech-
anism. The difference appears in the second order due
to the possibility of pair production in the singlet chan-
nel by the double-photon mechanism [28]. Therefore,
representation (2), being slightly modified, can be used
for the calculation of radiative corrections to cross sec-
tions of different processes with a longitudinally polar-
ized electron beam.

In our recent paper [20], we applied the electron
structure function method to compute radiative cor-
rections to the ratio of the recoil proton polarizations
measured at CEBAF by Jefferson Lab Hall A Collab-
oration [3]. The aim of this high-precision experiment
is the measurement of the proton electric formfactor
Gp. In the present work, we use this method for calcu-
lation of the model-independent part of the radiative
corrections to the asymmetry in the scattering of lon-
gitudinally polarized electrons on polarized protons at
the level of per mill accuracy for elastic and deep in-
elastic hadronic events.

The cross section of the scattering of the longitudi-
nally polarized electron by the proton with given lon-
gitudinal (||) or transverse (L) polarizations for both
elastic and deep inelastic events can be written as a
sum of the spin-independent and spin-dependent parts,

doll-t (ki , ke, S)
dQ?dy ’

dU(kl,kQ,S) _ dO’(kl,kQ) (12)
dQ*dy —  dQdy
where S is the 4-vector of the target proton polariza-
tion and 7 is the product of the electron and proton
polarization degrees. Hereafter, we assume 1 = 1.
Master equation (2) describes the radiative correc-
tions to the spin-independent part of the cross section
in the right-hand side of Eq. (12), and the correspond-
ing equation for the spin-dependent part is given by
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dollL( kl,kg, The asymmetry in elastic scattering and deep in-
A2y / dz / dz D) (21, L) x elastic scattering processes is defined as the ratio
Z1m 22;2 L (if;‘ ]'/;. S) AH’L _ do’l‘7l(k17k2,s) (16)
x —D(zy, ) —hard T2 2) (13 T do(ky k)
D) dQ? dj
and therefore calculating the radiative corrections to
where th ¢ res knowi diati G
) — pr 4 pete . pete @) e asymmetry requires knowing radiative corrections
D = N S ’ to both spin-independent and spin-dependent parts of
and [28] the cross section.
Radiative corrections to the spin-independent part
+om 2 5(1 — were calculated (within the electron structure function
Dy ° v - < g2 M—!—(l—l—z)lnz X . (
472 2 approach) in [19]. In the present work, we compute

2
R
€

xt‘)( ) (14)

describes radiation of the initial polarized electron.

This representation is valid if radiation of collinear
particles does not change the polarizations S!' and S+.
Such stabilized 4-vectors of the proton polarization can
be written as [§]

2M2]€1u — Vpl,u

Il —
k My o (15)
gl _ upry + Vkay — 2ur + V(1 — y)]k1y
g V—uV2(1—y) — u2M? ’
where

Uu

=-Q* T1=MV.

It can be verified that in the laboratory system,
the 4-vector S!' has the components (0,n), where the
3-vector n has the orientation of the initial electron
3-momentum k;. It can also be verified that S-S/l =0
and that in the laboratory system,

St =(,n;), n =1 n-n, =0,
where the 3-vector n; belongs to the plane (ki, ko).

If the longitudinal direction L is chosen along the
3-momentum k; — ks in the laboratory system, which
coincides with the direction of the 3-vector q for nonra-
diative process, and the transverse direction T is chosen
in the plane (kq,ks), then we have the relations

do” = cosf o + sin 6 do
dQ2d dQ2d dQ2dy’
do” = —sinf o + cos 6 do
dQ2dy dQ2d dQ2dy’
cosf = H2yT o [ryT(Imy—ayT)
v +dzyT y>+dxyr

and the master formula (13) for do!l and do*.
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the radiative corrections to the spin-dependent parts
for longitudinal and transverse polarizations of the tar-
get proton and longitudinally polarized electron beam.
For completeness, we briefly recall the result for the
unpolarized case.

3. THE LEADING APPROXIMATION

Within the leading accuracy (with the terms of the
order (awL)" taken into account), the electron structure
function can be computed, in principle, in all orders
of the perturbation theory. In this approximation, we
have to take the Born cross section as a hard part in
the right-hand sides of Eqgs. (2) and (13).

We express the Born cross section in terms of lep-
tonic and hadronic tensors as

do 4ra®(Q?)
dQ*dy — VQ*
where a(Q?) is the running electromagnetic constant,

which accounts for the effects of vacuum polarization,
and

LBH

(17)

uys

~ F
H;w - _Flg;w + _2qp1up1u -
1
Meuuapn Sq
— i —2 (g1 + 92)S, — 92 plp , (18)
p1q
QQ
Lfy = D) - 9uv + klukm/ + klquM + ZEHV/\pQ)\klpa
~ m . p1q
uv = Guv — q—2 Pip = Py — q_2q”'

In Eqs. (18), we assume the proton and electron po-
larization degrees equal to 1. The spin-independent
(F1, F») and spin-dependent (g1, g2) proton structure
functions depend on the two variables

2
! —q
r =

2p1q’

q2 = —p1)2~

(P2
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Ir‘l the .Born approximation, ' = z, b‘ut .these variables 2 =y(1— ), 2(Ae) <1
differ in the general case, when radiation of photons vV
and electron—positron pairs is allowed. for D(z, L) and
Because the normalization is chosen, the elastic
limit (p2 = M?) can be obtained by simply substi- 2(Ae)
i AsAy=——"\ /742
tuting 2 VV( = zy) +
Fi(2',¢*) — %5(1 2G5 (4%), for D(z2,L), where (Ae) is the minimal energy
G2(¢?) + AG2, () of a hard collinear photon in the special system
B2, ¢?) = 6(1 —2')—E q M) (k; — ky + p1 = 0). Straightforward calculations yield
1+A the expression
gl(x',qQ)—> 51—50 H{Gum(a®)Gr(d®) +
do (ko) _ a(L—1)
o5 16w (@) - Gel@Gu ()}, (19) aQrdy | 2r
(B) 2
1 do (k‘l./ k2) |: 4(A5) (Z+ + T) :|
12 A ————"2 13+ 2In
92(2",¢") = —50(1 -~ )1 3 X { dQ2dy V(1 —20)(1—ay)
2 Z4—
x [Gu(a®) = Ge(@®)]Gu () . . ' pd [ 1422 doB) (21 k1, k»)
2
PR (I-zy)(1—-21)  dQidy:
4M2 Zth
in the hadronic tensor, where Gy and G g are the mag- n 1+ 23 do'P) (K1, k2/z2)} } (23)
netic and electric proton form factors. (1—24)(1—29) dQ%dys '
A simple calculation gives the spin-independent and
. where
spin-dependent parts of the well-known Born cross sec- M2 — M2 l—y+z
tion in the form Z= z#-, 1= w
doP  _ 4ra?(Q?) 1—2 2(A
- _ + _ &) ——
dQZdy Q4y z2 = 1_ 2 p = \/V T+Z+7
x [(1 =y —2y7)Fo(2, Q%) + 2y*Fi(2,Q%)] . (20) @
Q? = _qt2 = 21Q27 Qg _QS 22
B
doj _ 8ma?(Q*) 1y
dQ>dy V2y Yro =1- Z10
X |:<T — 22;y> g1(z, Q%) + 2—ng(as7 QQ)} . (21) Similar equations can be derived for the first-order
ryY Y

— xyT) X

aQxdy — V% Q?

<Jone@) 4 2p0w00)]. e

do? 87ra2(Q2)\/M2(1_

Thus, within the leading accuracy, the radiatively cor-
rected cross section of process (1) is defined by Eq. (2)
(for its spin-independent part) with (20) as the hard
part of the cross section, and by Eq. (13) (for its
spin-dependent part) with (21) or (22) as the hard part.

It is useful to extract the first-order correction to
the Born approximation, as defined by master equation
(2). For this purpose, we can use the iterative form of
the photon structure function DY with L —+ L — 1 and

2(Ag) m7

A—)Alzm

correction to the spin-dependent part of the cross sec-
tion for both longitudinal and transverse polarizations
of the target proton.

4. DEEP INELASTIC SCATTERING CROSS
SECTION BEYOND THE LEADING
ACCURACY

To go beyond the leading accuracy, we have to im-
prove the expressions for hard parts of the cross sec-
tions in master equations (2) and (13) in order to in-
clude effects caused by radiation of a hard noncollinear
photon. In principle, we can also improve the expres-
sion for the D function in order to take collinear next-
to-leading effects in the second order of perturbation
theory into account. The essential part of these effects
is included in our D functions due to the replacement
L — L — 1. The rest can be written using the results
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of the corresponding calculations for the double photon
emission [27, 30], pair production [28, 31, 32], one-loop
corrected Compton tensor [25, 26, 33], and virtual cor-
rection [34]. But we here restrict ourselves to the D
functions given above in Eqgs. (5), (6), (7), and (14).

To compute the improved hard cross section, we
must find the full first-order radiative corrections to
the cross section of process (1) and subtract from it
(to avoid double counting) its leading part defined by
Eq. (23) (for the unpolarized case). Therefore, the im-
proved hard part can be written as

d do®  doStV) det  doM)
Uhard: o) + o) + g _ g , (24)
dQ*dy  dQ*dy  dQ*dy ~ dQ*dy dQ>dy
where do' is the correction to the cross section of
process (1) due to virtual and soft photon emission and
do™ is the cross section of the radiative process

S+V)

e (k1) + P(p1) — e (k2) + (k) + X (pa)- (25)

The virtual and soft corrections are factored in
a similar way for both polarized and unpolarized
cases [19] and can be written as

doB do(S+V) doB 1 «a
aQ7dy * TdQrdy  dQdy [ Tor
2
p
y 5+L_1<mam———____>ﬂ, 26
< (£=1) [ ay)(1-77) (26)
2 1—y—ayr 5 1 —ay
§=-1-1""_> - .
3 f(l—'ﬁyﬂl'—z+) R

T
(@) =/%ln(1—t).
0
To calculate the cross section of radiative process
(25), we use the corresponding leptonic tensor in the
form
3
L,ij(un) + qu)%’ @)
L[, = 2icuunpqa (b1, Ry + kapRy),

t 11
Ro="F —2m2<—+ )

Q
L = g3

st sz 2
u+s o St —u(u+Vy—-Vz)
s = —am-—, St = )
st ut? u+V

where w is the energy of the radiated photon, L,
is the leptonic tensor for unpolarized particles, see
Ref. [33], and we use the notation

s=2kky, t=—2kki, ¢ =u+s+t

for kinematic invariants. The result for the unpolarized
case was derived in [19], and we here rewrite it using
standard notation as

a

VQ?

dohard doB ( «
X

= 14 —
dQ3dy  dQ*dy + 2

4
1—r - 1—ry -
x/dz NpN-""p Nt
11—y 1—2z4

6) +

Zth

T4
2W
+/m——————+
V2 + dxyt

1—-P, ((14+r2)N
1—2xy

T4 d
.
P
+ /1—7‘
r—
1-P, <(1+r2)N

=]

+r = n)T;) -

} Q@) g

r =7

rz

+Hra-r)T,)

1—Z+

where 1 = —¢*/Q? and the limits of integration with
respect to r are

1
- X
20y + 1)

X 2zy(T + 2) + (24 — 2) (yi Vy? —|—4xy7)] .

Here, we used the notation

! —
2 <1 Y —T) R (z'r),

re(z)

N =2F (z',r) +

rey xy
2 !
W =2F (2',r) — xTF2(ac'.,r)
ra
22'[1 —r(1 —
Tt = _—l‘ [ 2’[‘2 y)]FQ(SU,,T),
21—y 1) (29)
2(1l—-y—r ,
Ts = - E s 1)y
g o(z',r)
_ _ 1 r o xyr
n=z, rn=— T = .
29 xyr + z

The action of the operators Pt and 155 is defined as

psf(ra xl) - f(r27xs)7

xYry
xyry + 2

ptf(rv xl) = f(rl-,l't),

ryry

xyr; + 2’

The hard cross section (29) has neither collinear
nor infrared singularities. The different terms in the
right-hand side of Eq. (29) have singularities at r = rq,
r = rq, and r = 1. Singularities at first two points are
collinear and the one at the third point is nonphysical,
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arising at integration. Collinear singularities vanish be-
cause of the action of the operators P, and P, on the
terms containing N. The nonphysical singularity can-
cels because in the limiting case r — 1, we have

ro — T rn —r

=1

N T,4+T, =0
r— 7

ry — 7|

To derive the hard cross section for the polarized
case, we have to use the analogue of Eq. (24) for do!
and do*. Taking into account that do¥*° and do(")
are the same in the polarized and unpolarized cases
and using expression (27) for the antisymmetric part
of the leptonic tensor to compute do™ in the polarized
case, we arrive at

a9 - i (1 + 36) + 2 plht «
dQ%dy  dQ2dy 2 Q4
z4

PNt”l PN”l

1—-
d
< [z

Zth
T+ .
1-P
+P/ dr s "
1—r ||r—ra(1—24)

r—

2(ry — 1-P
" <(1 + NI MTSLL) =B
T =71
1 2 NH,J-
X <7( )N +2r(r1—r)Tt”’J' +
1—xy

oW I+ 7'a?(Q%r)
y> +4xy7' 3

/dr

where

M2
vl=1, vt= \/@u —y—ayr)~t,

Wi =4yrw, Wt =2y%(1 + 227)W,
W = (1+r)zg +2'gs,
NtH =2[2r — z —xy(r + 27)]g1 — 8x'7gs,
NI =212 — 2 — 2yr(1 4+ 27)]g1 — 82'7¢s,
Nt =201 —y—z+7r—ay(r+27)|(xygs + 22"g2),

1-=z
Ny =2|1—y+—=—ay(1+27)| (zyrg1 + 22'gs),

Tt” =2rg1 —4a'rg, Tl =2(z—1)(g1 — 22'7g0),
TtL = 2zyrg; + Qx'(l —y+r—2xy7)gs,

T} =20z = 1)[ayg +2' (1 —y + 1/r — 22y7)gs].

The polarized hard cross section defined by Eq. (30)
is also free from collinear singularities due to the action
of the operators 1 — P, and 1 — P,. The nonphysical
singularity at r = 1 in the right-hand side of Eq. (30)
cancels because

Tt = 1 T,

s
in this limit. We note that radiation of a photon at
large angles by the initial and final electrons increases
the range of r in (28) and (30), because ry < r < rq for
collinear radiation, and now r_ < ry and ry > ro. This
may be important if the hadron structure functions are
large in these additional regions.

5. HARD CROSS SECTION FOR ELASTIC
HADRONIC EVENTS

To describe the hard cross section for elastic
hadronic events, we use the replacement defined by (19)
in Eqgs. (28) and (30). We refer to Eqs. (21)-(23) for
the Born cross sections that enter these equations. The
function 6(1 — z') is used to integrate with respect to
the inelasticity z,

/d26(1 — ') = zyr. (31)

The final result for the unpolarized case is given by (we
do not introduce special notation for the elastic cross
section)

dohard doB « «
= 1 —6 —
dQ2dy ~ dQ2dy ( T )+ 72~
1—7’1 ~ 1- / 2W
PN — P N+ dri—}—
1—2y t 1—- y2+4xyT
Foar [1-B (1442
+P/ - ! .
1—r||r—r| \1—2y
r—
1-P, [ 1+r2 a?(Q%r)
- N —r)Ts , (32
where

_ 2 2
N GM-|-i<1 y_T>GE+/\GM

xyr xy 1+ A
27 G% + \G?
W:G2 e E M
M pyr 1+ A
2 G% + NG
Ty = ———[1—r(1 —y)]| LM
t 1'2y2’l“[ T( y)] 14\ 3
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2 G2 + \G?
T. = —— = (1—p_q)£ "M
s $2y27‘( r y) 1 +A

The Born cross section in the right-hand side of Eq. (3
is defined as

2)

do?  4ma?(Q?)
aQvdy ~ vz "
G%L+MG3 2
—G%\4+[1—y(1+7)]7y€a+)\l)\4] ) <y—%> . (33)

In writing this last equation, we took into account that

Q2>.

Y= hd
The spin-dependent hard cross section for elastic
hadronic events can be written in the form very similar
o (32),

6(1—x)=y6<

dUH l

dQ2dy
X {
wlhL

d
T«/y +4xyT

X(

B
_ 9oy (1
CdQ2dy

™ oarlld
PN
1—xy (N

«
—0
+ 2T

) + %U”7l X

N” 1

+

T4
dr
1—r

1-B

e =l

1+ r2

TN 2y )T l)
)

1- P,

X
[ =r2f(1 = 24)

x ((1 + )Nl 4 MTJ*)
L)

}x

2002
“Tra
where
Wl =4yrw, Wt =221+ 227)W,
W =r[z(l+r)—1G3 + [r + 4?T(l + r)] GuGE,

N} = r@r+r)(2-2y) G +87 [7" <£—1> —T} GuGE,

1
N| = r(2r+1)(2—2yr)G3,+87 [@—r(lw)] GuGe,

=[1—y+r—aylr+27)]x
x [=r(2 — zy)G3; + 2(r + 27)G MG E,
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1
Nt = [l—y—l—;—xy(l—l—ZT)] X

X [-r(2 — zyr)G3; + 2r(1 + 27)G M GE],
T) =r|(r+2r)G% + 27 <% - 1) GMGE} ;

2
Tl = —r(1 4 27)G3, — 27 <E - r) GuGr,

L= r{=[r(l —ay) + 1 —y — 22y7)|G3, +
+[1-y-— 2xyT+7’—|—4T]GMGE},

1 _
T, =r

1
;—xy(1+27)+1—y} G%, —
—[2r@—ayr) + 14+ r(1 —y)]GuGE.

We note that the argument of the electromagnetic form
factors in Eqs. (32) and (34) is —Q>r.

The Born cross sections in the right-hand side of
Eq. (34) are given by

doB 47a2(02?

| rat(Q?) 1
= 4r (1 - — | GuGE—
aQady ~ Ve @2y [T\ Ty ) Tmer

_(1+27)<1——)G2] ( %) (35)

for the longitudinal polarization of the target proton

and by
doB 8ra2(Q?) [
dQGZtly = V(47T]\C/M[2(+ 222) \/ 0? 1—y(l+7)]x

2
[(1__) G2, (1+2T)GMGE] 5 <y—%> . (36)
for the transverse one. The argument of the form fac-
tors in (35) and (36) is —Q>.

The results in this section can be generalized to elas-
tic electron-deuteron scattering in both polarized and
unpolarized cases in a very simple way because the re-
spective deuteron tensors Hﬁ,, are connected with the
proton ones H}), by the relations

41 + zyr
d _
H,“(/un) _ THZZ,(/un) «
2 2 Sx2y’r?
2 (d) 2 2 Y 2
grdll) — AT AT )
ny &7 nv

x (GM G\ G — 260+ 2 GQ)

where GS\?, Gc, and G are the magnetic, charged,
and quadrupole deuteron form factors respectively.
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6. NUMERICAL ESTIMATIONS

The formulas obtained in the last section include
some operators that emphasize the physical meaning
of the transformations performed. But they are not
convenient in numerical analysis. Here, we present a
unified version of the formulas without any operators.
For example, the symbol P is explicitly treated as

T4

dr
P/ R =
= / 1d_TT (F(r)=F(1)) + F(1)In : —_7'_1
+

r—

Therefore, all cross sections given by Eqs. (28), (30),

(32), and (34) can be written by means of the unified
formula

dcrfl d doB «
ard __ i 1 Py ;
dQ%dy dQQdy< +27r )+aU X

24
X /dZ ({LllNZ(Tl) +L§NZ’(T2)}+
Zth
T+ 1
+/d’l“ {Wl +T; + m |:Nl'(1“1) —Ni(T‘2) +

r—

1—7’1
=] [Nitr) = NiGr)| +
1—7’2

S [Ni(r)—Ni(TQ)HD, (37)
where
. (1—’]“12)2 ].—’I“,
Li, = Fb; 2)_ 1 . by=—1, by=1.
12 =F 1+7’%72 :FHT+—1 v Ot

The index 7 runs over all polarization states (i = u, 1, ).
The functions N;(r) and T; are given by
1+ a'a?

Ni(r) = N
z(r) i — i

Ty z'a?
1 7 r<riy, T >Tr3,
Ti: —,7"2 r
T
Tigr—s, T1<T<T2.

The pole at r = 1 can be reached only in the region
ry < r < rg, and hence there is no singularity in the
terms involving T3;. For T, this pole cancels explicitly,

2(2 —y) P

Tu2 = 1‘2@/2

, Tpp=—4(1+7r)g +8a'1gs,

1
Tyo = —4(14r)ayg —42' (T+;+2—y—2xyr) go.

In the unpolarized case, N, = rN/z' with N from (28).
In other cases, they are

N =2|-1-r+

y(l+2xr)[1—z+r(1—xy)]} et

2—y
+ 82'7¢s,
41—z +r(1 — 2y)]
N, = — zyr(l —y — zy7m)g1 +
+2'(1—y+ 2+ 71—y +ay))ge] +42'y(1+227)gs,
2(1 F:
Tulz_ ( +2—T) 2.
=y
1+ r2)(1+ 22
T :4y( 2)—(y T)g1+8x'(1+r)rg2,
1+ 72
Ty = { 5 {—2962;(1 —y—ayT)g1 +
-y
xl
Ty -2+ yr(l- 2x>>7g2} n
T aly(1+207)(1 + r)gQ} ,
and
2W 2 2wl 2
WuZia—z, Wl,tzi%v
VY2 +dayr T Vy2 +4dayr T
1 U+
U, =

— U= —.
V(2 Lt Q1

The same formulas can be used in the elastic case.
Only Eqgs. (19) and (31) are needed here. In the elastic
case, we must therefore substitute

/dz — zyr,

set ' =1 and z = 0, and replace the proton structure
functions in accordance with (19).

It is believed that the formulas obtained within the
presented formalism are not convenient for numerical
analysis. There are two reasons for such an opinion.
First, the electron structure function in form (5), (6)
has a very sharp peak as z tends to unity. Second, be-
cause absolute values appear in denominators, the inte-
grand cannot be a continuous function of the integra-
tion variables. This produces obstacles for numerical
analysis if it is carried out in the traditional style based
on adaptive methods of numerical integration, which
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1.10 T

1.00

0.90

0.80

0.70 L ol P N .
0102 05 0102 05 010

Fig.1. Radiative correction to unpolarized and po-

larized (both longitudinal and transverse) parts of the

cross section for kinematics close to JLab experiments,
V =10 GeV?, 2 = 0.5

is used in such programs as TERAD/HECTOR, [36]
or POLRAD [9]. But it is possible to perform nu-
merical analysis if Monte Carlo integration is used in-
stead of adaptive integration and the regions with sharp
peaks are extracted into separate integration subre-
gions. Based on these ideas, we developed Fortran code
ESFRADY that allows performing the numerical anal-
ysis without any serious difficulties.

We considered two radiative processes. In the first
case, the continuum of hadrons is produced, while in
the second case, the proton remains in the ground state.
Both of the effects considered contribute to the experi-
mentally observed cross section?) of deep inelastic scat-
tering. They are usually called the radiative tails from
the continuous spectrum and the elastic peak, or sim-
ply the inelastic and elastic radiative tails. Below, we
study the contributions of the tails numerically within
kinematical conditions of the current experiments on
deep inelastic scattering.

We take three typical values of V' equal to 10, 50
and 10° GeV2. They correspond to JLab, HERMES,
and HERA measurements. Figures 1, 2, and 3 give
the radiative correction factor for all polarization states
(unpolarized, longitudinal or transverse)

1) Electron Structure Function method for RADiative correc-

tions.
2) Here and below, we mean double differential cross section

o =do/dydQ?.

long

tran
— T

3.00
: T S
2.50 | "

2.00 |

150 F

1.00 F

Fig.2. Radiative correction to unpolarized and po-

larized (both longitudinal and transverse) parts of the

cross section for kinematics close to HERMES experi-
ment, V =50 GeV?, 2 = 0.1, §; = —d;

O.Obs

dit = vt (38)
The observed double differential cross section is given
by the master formulas (2) and (13), and the Born cross
section is calculated via (20), (21), and (22). Both elas-
tic and inelastic contributions must be taken for opqrq.
In this case, we obtain the total radiative correction
factor (0;). The subscripts ¢ and ¢ correspond to the
cases where the elastic radiative tail is included into
the total correction (§;) or the inelastic radiative tail
contributes only (8;). The elastic radiative tail may
optionally not be included because there sometimes ex-
ist experimental methods to separate this contribution.
We note that for the HERA kinematics, we do not in-
clude it because it is usually separated experimentally.
Also we can extract a one-loop contribution in order
to study the effect of higher-order corrections. The ob-
served cross section in this case is given by the sum of
the cross sections in Eqs. (23) and (37). We note that
this can provide an additional cross check by compari-
son with POLRAD.

We use rather simple models for spin-averaged and
spin-dependent structure functions. It allows us not
to mix the pure radiative effects, which are of inter-
est, with the effects due to hadron structure functions.
Specifically, we use the so-called D8 model for the
spin-average structure function [35] (see also discussion
in [9]), and A;(z) = 27 suggested in [37]; we set
g2 = 0 (the definition of A;(x) is given below).
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Fig.3. One-loop and total radiative corrections (dashed and solid lines) for collider kinematics (HERA); V' = 10° GeV?.
Lines from top to bottom correspond to different values of 2 = 0.001, 0.01, and 0.1

From these plots, we can see that the total radia-
tive correction is basically determined by the one-loop
correction with some important effect around kinemat-
ical boundaries. The sign and value of the higher-order
effects are in agreement with the leading log estima-
tions and calculations of the correction to the elastic
radiative tail in Refs. [38, 39]. Two regions require
special consideration, the region of higher y for the
HERMES and JLab kinematics and the region near
the pion threshold at JLab.

We define the polarization asymmetries in the stan-
dard way,

il

g1
s

AL AT (39)

We can also define the spin asymmetry A; as
Aj, = DA, (for the chosen model where go = 0), where
D is the kinematical depolarization factor depending
on the ratio R of the longitudinal and transverse
photoabsorption cross sections,

y(2—y)(1+1%y/2)
21 ++%) +2(1 -y —v%%/4)(1 + R)’
GL_M(Q2+I/2)F2
or QW F

where v = yV/2M and 4> = Q*/v%. For fixed z, A,
is a constant within our model, and it is therefore very

D=

R= ~1,
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convenient for graphical presentation and analysis of
different radiative effects. Figure 4 gives the asymme-
tries A; and Ag for the kinematics of HERMES and
JLab up to y = 0.95. Influence of higher-order and
elastic radiative effects can be seen. Figure 5 gives the
total corrections to the cross sections and asymmetries
for the threshold region of JLab.

7. CONCLUSION

We have considered model-independent QED radia-
tive correction to the polarized deep inelastic and elas-
tic electron—proton scattering. Together with the ana-
lytic expression for the radiative corrections, we give its
numerical values for different experimental situations.

Our analytic calculations are based on the electron
structure function method, which allows us to write
both the spin-independent and spin-dependent parts of
the cross section with the radiative corrections to the
leptonic part of interaction taken into account in the
form of the well-known Drell-Yan representation. The
corresponding radiative corrections explicitly includes
the first-order correction as well as the leading-log con-
tribution in all orders of the perturbation theory and
the main part of the second-order next-to-leading-log
contribution. Moreover, any model-dependent radia-



MITD, Tom 125, BRIm. 3, 2004

QED correction to asymmetry ...

AL, %

5, V=10GeV?

68 I
=0

T

60

56

=

=
< O

4.0 T T T T T T T

3.6

3.2

2.8

2.4

z =0.01,V=50GeV?

0.8 1.0

0.2 0.4 0.6

2.0

<

—0.05

—0.10

—0.15

Ar. %

}\m =0.5,V=10GeV?

0.2 0.4 0.6 0.8 1.

-1
0 0

Y

Ar, %

0.15 T T 7 T T T 7 T 71

0.10

0.05

z =0.01,V=>50GeV?

0.2 0.4 0.6 0.8

=
ol i

Fig. 4. Radiative correction to asymmetries for the HERMES (lower plots) and JLab (upper plots) kinematics. The dotted
line shows the Born asymmetry. The full and dashed lines correspond to the total and one-loop contributions. Asymmetries
with the elastic contribution taken into account are marked by dots at the end

tive correction to the hadronic part of the interaction
can be included in our analytic result by inserting it as
an additive part of the hard cross section in the inte-
grand sign in master formulas (2) and (13).

To derive the radiative corrections, we take into
account the radiation of photons and ete™ pairs in
collinear kinematics, which produces a large logarithm
L in the radiation probability (in D-functions), and
the radiation of one noncollinear photon, which en-
larges the range of the hadron structure function ar-
guments. It may be important that these functions are
sufficiently sharp. In this case, the loss in the radiation
probability (the loss of L) can be compensated by the
increase in the value of the hard cross section.

We note that we extracted the explicit formulas for
the first-order contribution at both leading and next-
to-leading order levels. We found analytic agreement
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between these results for the one-loop correction with
the previous results in [8], which provides the most im-
portant test of the total correction.

On the basis of the analytic results, we constructed
the Fortran code ESFRAD?). Because of several known
reasons discussed in Sec. 6, results obtained by the elec-
tron structure function method are usually not very
convenient for precise numerical analysis. But we be-
lieve that our numerical procedure based on Monte
Carlo integration allows us to overcome the obstacles.

Using the ESFRAD code, we performed numerical
analysis for kinematical conditions of the current
and future polarization experiments. We found two
kinematical regions where the higher-order radiative

3) Fortran code ESFRAD
http://www.jlab.org/~aku/RC.

is available at
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Fig.5. The cross section (lower plot) and polarization
asymmetries (both longitudinal and transverse) for the
JLab kinematics (Q* = 1 GeV?) near the pion thresh-
old. The dotted line shows the Born cross section and

asymmetry. Full and dashed lines correspond to the
total and one-loop contributions

correction can be important. These are the traditional
region of high y and the region around the pion
threshold. We gave a detailed analysis of the effects
within these regions and presented numerical results
within one of the simplest possibilities for modeling the
deep inelastic scattering structure functions. Model
dependence of the result is certainly an important
issue requiring separate investigation for specific
applications within the experimental data analysis.
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