НЕЛИНЕЙНАЯ ДИНАМИКА КВАЗИКЛАССИЧЕСКОГО СПИНА В НЕСТАЦИОНАРНОМ МАГНИТНОМ ПОЛЕ

А. К. Звездин*

Институт общей физики Российской академии наук 119991, Москва, Россия

Д. И. Плохов **

Московский государственный университет им. М. В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 14 апреля 2002 г.

Рассмотрена динамика магнитных нанокластеров (или молекул) с большим спином в магнитном поле, напряженность которого меняется пропорционально времени. Такое поле нарушает симметрию относительно поворотов на 2π , а также вращений по часовой стрелке и против нее и индуцирует ряд новых когерентных квантовых эффектов в динамике спина: образование зонного энергетического спектра с непрерывными спиновыми состояниями, появление «блоховских» осцилляций в прецессии спина и межзонного зенеровского туннелирования. Блоховские осцилляции экспериментально проявляются как эквидистантные равные по величине скачки на кривой намагничивания. Межзонное зенеровское туннелирование приводит к появлению дополнительных скачков и пиков восприимчивости системы.

PACS: 36.40.-c

1. В последние годы интерес к проблематике, связанной с динамикой спиновых систем, получил значительный импульс [1-11]. Во многом это связано с недавними открытиями макроскопического квантового туннелирования намагниченности, молекулярной бистабильности и квантового гистерезиса, нового типа магнитных осцилляций, связанных с фазой Берри. Эти мезоскопические эффекты обнаружены в так называемых системах с гигантским спином, системах магнитных нанокластеров Mn₁₂ и Fe₈, спин основного состояния которых равен 10. Большое внимание привлекают также вопросы, связанные с макроскопической квантовой когерентностью, квантовыми измерениями в спиновых системах и механизмами разрушения квантовых корреляций за счет взаимодействия с окружением, в особенности при переходе от квантовых объектов к макрообъектам. Эта проблематика представляет и практический интерес для магнитной наноэлектроники (спинтроники) и квантовой информатики. Предлагается использовать нанокластеры с гигантским спином как бистабильные элементы для молекулярной памяти будущих поколений. Эти же нанокластеры интересуют специалистов по квантовым компьютерам как перспективные реализации кубитов [12–14].

Целью настоящей работы является исследование динамики анизотропной квантовой системы с большим спином, находящейся в магнитном поле, которое нарастает (убывает) с течением времени. Такое поле создает вращающий момент, действующий на спин и индуцирующий его прецессию, и, таким образом, выявляет новые черты в динамике спиновой системы. Настоящая работа развивает идеи, изложенные одним из авторов применительно к магнитным кластерам [15, 16], металлическим кольцам и кольцевым молекулам [17].

2. Рассмотрим квантовую систему (ион, молекулу, кластер и т. п.), находящуюся под действием нарастающего (убывающего) с постоянной скоростью магнитного поля. Представим гамильтониан системы в виде

$$H = g\mu_B \mathbf{J} \cdot \mathbf{B}(t) + V_{CF}, \qquad (1)$$

^{*}E-mail: zvezdin@gagarinclub.ru

^{**}E-mail: plokhov@nm.ru

где g — фактор Ланде, μ_B — магнетон Бора, V_{CF} — оператор кристаллического поля. Предполагается, что полный момент импульса $J \gg 1$, поэтому ниже при описании динамики рассматриваемой системы будет использовано квазиклассическое приближение. Считается также, что g = 2. Кристаллическое поле $V_{CF} = V_{CF}^1 + V_{CF}^2$, где V_{CF}^1 — поле, обладающее симметрией типа «легкая плоскость», V_{CF}^2 создает анизотропию в этой плоскости. При этом $|V_{CF}^2| \ll |V_{CF}^1|$. Предположим еще, что ось z декартовой системы координат перпендикулярна «легкой плоскости» и совпадает с направлением вектора напряженности **В** магнитного поля.

3. Для описания динамики спина будем использовать когерентные квантовые состояния $|\theta, \varphi\rangle$ [18], где θ и φ — полярный и азимутальный углы углового момента количества движения. Функцию Лагранжа системы представим в виде

$$L = \frac{M}{\gamma} (1 - \cos \theta) \dot{\varphi} - U_a(\theta, \varphi) + MB(t) \cos \theta, \quad (2)$$

где M — магнитный момент частицы, $\gamma = e/mc$. Формула (2) выводится из гамильтониана (1) при помощи стандартной техники когерентных квантовых состояний. Первое слагаемое в (2), так называемый член Весса–Зумино, отражает неортогональность когерентных состояний в различные моменты времени, второе дает энергию анизотропии, последнее слагаемое есть просто энергия Зеемана. В простейшем, но достаточном для выяснения принципиальной стороны дела случае энергия (орторомбической) анизотропии может быть выбрана в виде

$$U_a(\theta,\varphi) = -K_1 \sin^2 \theta - K_2 \sin^2 \theta \cos 2\varphi,$$

$$0 < K_2 \ll K_1.$$
(3)

Будем также рассматривать и анизотропию других типов: тетрагональную

$$U_a(\theta,\varphi) = -K_1 \sin^2 \theta - K_2 \sin^4 \theta - K_3 \sin^6 \theta - K_4 \sin^4 \theta \cos 4\varphi \quad (4)$$

и гексагональную

$$U_a(\theta,\varphi) = -K_1 \sin^2 \theta - K_2 \sin^4 \theta - K_3 \sin^6 \theta - K_4 \sin^6 \theta \cos 6\varphi.$$
(5)

Константы анизотропии K_i подбираются так, чтобы обеспечить анизотропию типа «легкая плоскость».

7 ЖЭТФ, вып. 1 (7)

4. Статистическая сумма квантовой системы может быть представлена в виде функционального интеграла в евклидовом пространстве ($\tau = it$)

$$Z = \int \exp\left(\frac{1}{\hbar} \int_{0}^{\hbar\beta} L(\theta,\varphi) \, d\tau\right) D\cos\theta D\varphi.$$
 (6)

Здесь $\beta = 1/k_B T$, $\theta = \theta(\tau)$, $\varphi = \varphi(\tau)$. Поскольку $K_2 \ll K_1$, считаем, что $\theta - \pi/2 \ll 1$ в не очень сильных магнитных полях. Тогда выражение (6) для статистической суммы легко проинтегрировать по переменной θ . Процедура вычисления сводится к следующему. Действие

$$S = \int_{0}^{\hbar\beta} L(\theta,\varphi) \, d\tau$$

достигает минимума, если

$$\cos\theta \approx \frac{M}{2K_1} \left(B - \frac{i\dot{\varphi}}{\gamma} \right). \tag{7}$$

Подставляя (7) в (6), раскладывая действие в ряд вблизи минимума с точностью до членов второго порядка малости и вычисляя возникающий гауссовский интеграл, получаем

$$Z = \int \exp\left(\frac{1}{\hbar} \int_{0}^{\hbar\beta} L_{eff}(\varphi) \, d\tau\right) \, D\varphi. \tag{8}$$

Здесь для упрощения записи опускается несущественный предэкспоненциальный множитель.

Эффективная функция Лагранжа, фигурирующая в (8), записывается с точностью до полной производной по времени в виде

$$L_{eff} = \frac{I\dot{\varphi}^2}{2} - U_a(\varphi) + \gamma I \dot{B}\varphi,$$

$$U_a(\varphi) = -K_2 \cos 2\varphi.$$
(9)

Здесь введено обозначение $I = M^2/2K_1\gamma^2$ для эффективного момента инерции частицы. Для случаев тетрагональной (4) и гексагональной (5) анизотропии справедливы аналогичные формулы. Роль величины K_2 играет константа K_4 . Роль постоянных анизотропии K_2 и K_3 сводится к несущественному переопределению величины K_1 в (9). В дальнейшем там, где это не приводит к недоразумениям, мы не будем явно оговаривать указанные различия, записывая все формулы для простейшего случая (3).

Следует специально отметить, что переменная φ определена здесь не на множестве S^1 ($0 \le \varphi < 2\pi$), как это обычно принимается в теории углового момента, а на множестве \mathbb{R}^1 всех действительных чисел. Последнее в данной задаче представляет собой тривиальное расслоение пространства S^1 , играющее роль базы пространства \mathbb{R}^1 . Этот факт обусловлен тем, что наличие поля $B_z(t) = at$ нарушает симметрию системы относительно преобразования $\varphi \rightarrow \varphi + 2\pi n$, где n — целое число. Действительно, нарушение этой симметрии очевидно, так как изменяющееся с течением времени магнитное поле $B_z(t)$ порождает вихревое стационарное электрическое поле $E_{\varphi} = -\dot{B}R/2\pi c$, где R — радиус окружности, вдоль которой производится поворот. Отсюда следует, что повороты $\varphi \to \varphi + 2\pi n$, а также повороты по часовой стрелке и против нее не являются эквивалентными.

Системы с потенциальной энергией типа «стиральная доска»,

$$U(x) = U_0(x) + cx,$$

где $U_0(x)$ — периодическая функция, а c — некоторая константа, а именно такой является потенциальная энергия в (9), ранее уже исследовались. Такой же по виду энергией обладает электрон при движении в кристалле в постоянном внешнем электрическом поле [19–21] или переход Джозефсона при протекании через него постоянного электрического тока [22–24]. Поэтому можно ожидать проявления в динамике спинового момента некоторых свойств аналогичных свойствами являются образование зонного энергетического спектра, блоховские осцилляции и межзонный зенеровский туннельный эффект.

5. Переход к изучению квантовых эффектов можно проделать аналогично тому, как подобная процедура выполняется в работе Андерсона [25]. Макроскопические обобщенные координату и импульс системы рассмотрим в качестве операторов. Обобщенный импульс, соответствующий координате φ , равен

$$P_{\varphi} = \frac{\partial L}{\partial \dot{\varphi}} = I \left(\dot{\varphi} - \gamma B \right)$$

К этому выражению нужно добавить произвольную постоянную α , поскольку функция Лагранжа (9) определена с точностью до полной производной $\alpha\dot{\varphi}$. В квантовой механике постоянную α определяют при помощи фазы Берри [5, 26]. Для наших целей, в частности для рассмотрения вопроса о блоховских осцилляциях в прецессии спина, достаточно изучить случай целого спина, т. е. положить $\alpha = 0$ [26]. Тогда гамильтониан системы H можно представить в виде

$$H = \frac{1}{2I} (P_{\varphi} + \gamma IB)^2 + U_a(\varphi), \qquad (10)$$

где $P_{\varphi}=-i\hbar\partial/\partial\varphi.$ Калибровочное преобразование $\psi\to\psi\exp(i\gamma IB\varphi/\hbar)$ приводит к уравнению Шредингера вида

$$i\hbar\frac{\partial\psi}{\partial t} = H\psi, \quad H = \frac{P_{\varphi}^2}{2I} + U_a(\varphi) - \gamma I\dot{B}\varphi.$$
 (11)

Полезную информацию дает случай прецессии при $U_a(\varphi) = U_0 = \text{const.}$ В этом случае уравнение (11) записывается как

$$\left[\frac{d^2}{d\varphi^2} + \frac{2I}{\hbar^2}\gamma I\dot{B}\varphi + \frac{2I}{\hbar^2}(E - U_0)\right]\psi(\varphi) = 0.$$
(12)

Точка $\varphi_T = (U_0 - E)/\gamma I \dot{B}$ — классическая точка поворота. Прецессия имеет место при $\varphi \geq \varphi_T$, при $\varphi < \varphi_T$ она по классическим представлениям невозможна.

Вводя для удобства новую безразмерную переменную

$$\xi = \frac{\varphi - \varphi_T}{l_0}, \quad l_0 = \left(\frac{\hbar^2}{2I^2\gamma \dot{B}}\right)^{1/3}.$$

запишем уравнение (12) в виде

$$\left(\frac{d^2}{d\xi^2} + \xi\right)\overline{\psi}(\xi) = 0.$$

Здесь $\overline{\psi}(\xi) = \psi(\varphi_T + l_0 \xi)$. Решением этого уравнения является

$$\overline{\psi}(\xi) = N \operatorname{Ai}(-\xi), \quad N = \left(\frac{2I^{1/2}}{(\gamma \dot{B})^{1/2} \hbar^2}\right)^{1/3}, \quad (13)$$

где Ai(x) — функция Айри. В области $\varphi \geq \varphi_T$ волновая функция осциллирует с частотой, возрастающей по мере увеличения φ . При этом энергия спина непрерывно увеличивается под действием вращающего момента. При условии $|\varphi - \varphi_T| \gg l_0$ функция (13) асимптотически приближается к

$$\psi(\varphi) = N\left(\frac{l_0}{\varphi - \varphi_T}\right)^{1/4} \sin\left[\frac{2}{3}\left(\frac{\varphi - \varphi_T}{l_0}\right)^{3/2} + \frac{\pi}{4}\right],$$

откуда легко получить для периода прецессии выражение

$$\Delta \varphi = \frac{2\pi h}{I\sqrt{2\gamma \dot{B}(\varphi - \varphi_T)}}$$

6. Для изучения динамики спина в общем случае рассмотрим сначала свойства гамильтониана (11) при $\dot{B} = 0$. Прежде чем переходить к исследованию уравнения с $U_a(\varphi) \neq \text{const}$, рассмотрим вопрос о граничных условиях для него, точнее, вопрос о поведении функции $\psi(\varphi)$ при изменении φ на 2π . Собственными состояниями гамильтониана (11) являются функции Блоха

$$\psi_n(\varphi + \pi) = e^{i\pi m} \psi_n(\varphi), \qquad (14)$$

где m — произвольное вещественное число ($m \in \mathbb{R}^1$), n — номер энергетической полосы. По аналогии с термином «зарядовые состояния», используемым для характеристики подобных состояний в теории эффекта Джозефсона, можно ввести термин «непрерывные спиновые состояния». Параметр m естественно тогда назвать квазиспином (ср. с квазиимпульсом зонного электрона). Интересны также аналогии этих возбуждений с анионами [27].

Хорошо известно, что в квантовой механике проекция спинового момента на выделенное направление квантуется. Квантованные спиновые состояния заданы в пространстве S^1 ($0 \le \varphi < 2\pi$), при этом квантование спинового момента естественно связано с симметрией квантовой задачи относительно поворота системы координат на угол 2*π* вокруг оси *z*, или, другими словами, с граничными условиями $\psi(\varphi + 2\pi) = \pm \psi(\varphi)$. С другой стороны, как отмечено выше и непосредственно следует из вида гамильтониана (11), симметрия относительно сдвига $\varphi \to \varphi + 2\pi$ нарушается в поле $B_z(t) = at$, а поэтому нарушаются граничные условия $\psi(\varphi + 2\pi) = \pm \psi(\varphi)$ и, соответственно, стандартное квантование спинового момента. Действительно, состояния, описываемые волновыми функциями $\psi(\varphi)$ и $\psi(\varphi + 2\pi)$, являются физически различимыми, поскольку за период прецессии спин приобретает энергию от вращающего момента. Этот факт требует, как отмечено выше, использования расширенного (многолистного, или расслоенного) пространства \mathbb{R}^1 ($-\infty < \varphi < \infty$) для описания динамики спина.

Аналогичная ситуация реализуется в переходе Джозефсона и в квантовой точке в условиях кулоновской блокады, где роль угла φ играет фаза волновой функции, а роль проекции спина S_z — заряд или число частиц. Подробно этот вопрос обсуждается в работе [28].

Пусть $U_a(\varphi) = -K_2 \cos 2\varphi$, где K_2 — константа. Тогда уравнение Шредингера (11) сводится к уравнению Матье, из теории которого следует [29], что энергетический спектр гамильтониана (10) имеет зонную структуру. Это означает, что собственные значения $E_n(m)$ являются функциями, определенными в соответствующих зонах Бриллюэна. При $K_2 \approx 0$ зонная структура соответствует приближению свободных электронов, $E_n(m) = \hbar^2 m^2/2I$, с запрещенными зонами на границах зон Бриллюэна $(m_B = \pm 1, \pm 2, ...)$, которые являются узкими в меру отличия величины K_2 от нуля.

Волновая функция может быть представлена в виде $\psi(\varphi) = u(\varphi) \exp(-iEt/\hbar)$. Тогда уравнение Шредингера (11) для гамильтониана (10) записывается как (уравнение Матье)

$$u'' + \left(\mu^2 - 2b^2 \cos 2\tilde{\varphi}\right)u = 0, \tag{15}$$

где $\mu^2 = 2IE/\hbar^2$, $b^2 = IK_2/\hbar^2$. Здесь использована новая переменная $\tilde{\varphi} = \varphi + \pi/2$. Знак «тильда» в дальнейшем опускается. Форма спектра в низшей зоне при $|m| \ll 1$ может быть представлена формулой $E_0(m) = \hbar^2 m^2/2I$, а при $|m| \approx 1$ —

$$E_0(m) = \frac{\hbar^2}{2I} \left\{ 1 - \sqrt{\left(|m| - 1\right)^2 + \left(\frac{IK_2}{2\hbar^2}\right)^2} \right\}^2.$$
(16)

Ширина разрешенной зоны с номером n (n = 0 соответствует основной зоне) определяется выражением

$$\Delta E_n = \frac{\hbar^2}{I} \left(n + \frac{1}{2} \right). \tag{17}$$

Запрещенные зоны быстро сужаются (при $K_2 \ll K_1$) с увеличением их номера:

$$\delta E_{n,n+1} = K_2 \left(\frac{K_2/K_1}{n+1}\right)^n.$$
 (18)

В частности, ширина первой запрещенной зоны, как нетрудно видеть, равна K_2 . Уравнения (16)–(18) достаточно точно определяют энергетический спектр гамильтониана (10).

7. Перейдем теперь к рассмотрению эффектов, возникающих в магнитном поле $B_z(t)$. Последнее слагаемое $\gamma I \dot{B} \varphi$ в уравнении (11) играет такую же роль, как энергия eEx блоховского электрона во внешнем электрическом поле.

Рассмотрим динамику момента p_{φ} для случая, когда магнитное поле изменяется адиабатически медленно ($|\gamma I\dot{B}| \ll K_2$). Удобно вместо \dot{B} использовать величину $j_m = \dot{B}/4\pi$, которую можно назвать «магнитным током», поскольку величина j_m генерирует стационарное вихревое электрическое поле так же, как электрический ток генерирует магнитное поле. Чтобы описать динамику спина под влиянием магнитного тока $j_m = \dot{B}/4\pi$, рассмотрим волновой пакет, составленный из блоховских функций (14). Пусть $\overline{m} = \langle m \rangle$ и $\overline{\varphi} = \langle \varphi \rangle$ означают средние значения квазиспина и координаты центра пакета, а значения Δm и $\Delta \varphi$ ($\Delta m \Delta \varphi \sim 1$) задают соответствующие неопределенности. Под влиянием магнитного тока j_m сформированный в момент времени t = 0волновой пакет смещается к границе (например, правой) зоны Бриллюэна, отражается от нее, его групповая скорость меняет знак на противоположный. Затем пакет распространяется до левой границы зоны Бриллюэна, отражается от нее и т. д. При этом происходит периодическое изменение дисперсии Δm и ширины пакета $\Delta \varphi$. Этот процесс называют блоховскими осцилляциями. Математически он описывается следующими уравнениями для средних значений \overline{m} и $\overline{\varphi}$:

$$\frac{\dot{\overline{m}}}{\overline{\overline{m}}} = \frac{\gamma I \dot{B}}{\hbar}, \quad \dot{\overline{\varphi}} = \frac{1}{\hbar} \frac{dE_n(\overline{m})}{d\overline{m}}.$$
(19)

В этом (адиабатическом) процессе система остается в состоянии с заданным *n*, и наблюдаемые физические величины, например магнитный момент, являются осциллирующими функциями времени с частотой

$$f_{Bl} = \frac{\gamma I}{2\hbar} \frac{B_1}{\tau} \,. \tag{20}$$

Если внешнее магнитное поле имеет кроме линейного вклада еще гармоническую составляющую, т. е.

$$B(t) = \frac{B_1}{\tau}t + B_2\sin(2\pi ft),$$

то возможны резонансы на частотах $f = r f_{Bl}$, где r — рациональное число (резонансы Штарка).

8. При возрастании магнитного тока $(|\gamma I\dot{B}| \geq K_2)$ возникает туннельный эффект Зенера [30, 31]. Он заключается в том, что система под действием магнитного тока j_m преодолевает потенциальный барьер, разделяющий две соседние зоны разрешенных значений энергии. Определим вероятность этого процесса.

Энергетический спектр гамильтониана (11) при каждом фиксированном значении φ с достаточной степенью точности при не слишком больших скоростях изменения магнитного поля задается соотношением

$$E_n(m,\varphi) = E_n(m) - \gamma I \dot{B} \varphi, \qquad (21)$$

где $E_n(m)$ — энергетический спектр гамильтониана (11) при нулевом значении магнитного тока (см. п. 6). Поскольку для каждого φ мы можем определить «локальное» значение квазиспина $m = m(\varphi)$, для собственных состояний вместо (14) в соответствии с известной теоремой Блоха [32] имеем

$$\psi_n(\varphi) = \exp\left(i\int_{\varphi_0}^{\varphi} m(\xi) \,d\xi\right) \,u_n(\varphi),\qquad(22)$$

 $u_n(\varphi+\pi)=u_n(\varphi).$ В пределах первой запрещенной зоны

$$m(\varphi) = 1 + i\beta(\varphi), \tag{23}$$

где $\beta(\varphi)$ — некоторая вещественная функция, подлежащая определению. Полагая, что при выполнении (23) функция $u_n(\varphi)$ мало меняется по сравнению с экспонентой, мы, очевидно, для вероятности туннелирования можем записать

$$P = \exp\left(-2\int_{\varphi_1}^{\varphi_2} |\beta(\xi)| \, d\xi\right),\tag{24}$$

где $\beta(\varphi_1) = \beta(\varphi_2) = 0$. Из (16), (21) и (23) путем элементарных преобразований получаем

$$\beta(\varphi) = \frac{I}{\hbar^2} \sqrt{\frac{K_2^2}{4} - \left(\gamma I \dot{B} \varphi\right)^2},$$

а тогда, согласно (24),

$$P = \exp\left(-\frac{\pi}{8}\frac{K_2^2}{\mu_B\hbar\dot{B}}\right).$$
 (25)

Вероятность туннелирования в единицу времени составляет

$$P_t = f_{Bl} \exp\left(-\frac{\pi}{8} \frac{K_2^2}{\mu_B \hbar \dot{B}}\right), \quad f_{Bl} = \frac{\gamma I}{2\hbar} \frac{B_1}{\tau}.$$
 (26)

Полученные формулы без труда обобщаются на случай зенеровского перехода между соседними возбужденными зонами с номерами n и n + 1: под величиной K_2 следует понимать ширину $\delta E_{n,n+1}$ соответствующей запрещенной зоны (18). При достаточно малых значениях константы анизотропии K_2 вероятности туннелирования уже при небольших nпрактически равны единице, что означает наличие свободной прецессии.

9. Рассмотрим теперь поведение среднего магнитного момента рассматриваемой спиновой системы. Его проекция на ось z равна (7)

$$M_z = M \cos \theta \approx M \left(\frac{\pi}{2} - \theta\right) = \frac{M^2}{2K_1} \left(B_z - \frac{\dot{\varphi}}{\gamma}\right).$$

Усредняя с соответствующей волновой функцией, получаем

$$\langle M_z \rangle = \chi_\perp \left(B_z - \frac{\langle \dot{\varphi} \rangle}{\gamma} \right),$$
 (27)

где $\chi_{\perp} = M^2 / 2K_1.$

Рассмотрим сначала предельный случай свободной прецессии, $K_2 = 0$. Уравнения (19) в простейшем случае (3) дают $\langle \dot{\varphi} \rangle = \gamma [B_z(t) + c]$, где c — константа, определяемая начальными условиями. Подставляя в (27), получаем $\langle M_z \rangle = -\chi_{\perp}c = \text{const.}$ Таким образом, отличительной особенностью случая свободной прецессии является то, что ускоренная прецессия спина под влиянием растущего (убывающего) магнитного поля экранирует вклад парамагнитной восприимчивости иона ($\chi_{\perp}B_z$), так что средний магнитный момент не зависит от величины поля.

В случае же блоховских осцилляций картина существенно меняется. Зависимость $\langle M_z \rangle (B_z)$ представляет собой сумму «обычной» линейной ($\chi_{\perp}B_z$) и периодической кривой с периодом $\Delta B = \dot{B}/f_{Bl} = 2b, \ b = \hbar/\gamma I$. Намагниченность испытывает скачки на величину $\Delta M_z = 2g\mu_B$ при значениях внешнего поля $B_z = b + k\Delta B, \ k \in N$. Таким образом, график зависимости $\langle M_z \rangle (B_z)$

Рис.1. Кривая намагниченности и пики магнитной восприимчивости в зависимости от величины поля для случая орторомбической анизотропии, $K_2/K_1 = 0.01$ при а) $B_1/\tau = 0.5 \cdot 10^{11}$ Э/с (вероятность зенеровского туннелирования пренебрежимо мала); б) $B_1/\tau = 1.5 \cdot 10^{11}$ Э/с (в системе имеет место зенеровский туннельный эффект, что приводит к гистерезису, однако в возбужденных энергетических зонах спин прецессирует свободно); 6) $B_1/\tau = 2.0 \cdot 10^{11}$ Э/с (пики вдвое уменьшены по высоте; блоховские осцилляции имеют место не только в основной, но и в первой возбужденной энергетической зоне)

напоминает лестницу. При $K_2 = 0$ форма ступенек является строго прямоугольной. Если же $K_2 \neq 0$, то их передние края слегка размыты, но высота и местоположения те же.

В общем случае зависимость $\langle M_z \rangle \langle B_z \rangle$ содержит характерные черты обоих предельных процессов. Действительно, как показано выше (18), при $K_2/K_1 \ll 1$ ширина запрещенной зоны является быстро убывающей функцией ее номера. Поэтому в первом приближении (назовем его однозонным) можно пренебречь блоховскими осцилляциями в первой возбужденной и следующих зонах. Это означает, что прецессию под влиянием поля $B_z(t)$ во всех зонах, кроме основной, можно рассматривать как свободную. В целом, ее можно представить себе следующим образом. Сформированный в начальный момент времени волновой пакет, несколько расплываясь, достигает границы зоны Бриллюэна, частично отражается и частично туннелирует в следующую зону, в которой прецессирует свободно.

Рис.2. Кривая намагниченности для случая тетрагональной анизотропии, $K_4/K_1 = 0.01$, $B_1/\tau = 1.5 \cdot 10^{11}$ Э/с. В основной энергетической зоне имеют место блоховские осцилляции. В системе имеет место зенеровский туннельный эффект, который приводит к гистерезису

Туннелирование волнового пакета в следующие энергетические зоны приводит к тому, что величина скачка намагниченности ΔM_z становится зависящей от номера k скачка и определяется выражением

$$\Delta M_z = 2g\mu_B(1-p)^{k-1},$$

где *p* — вероятность туннельного перехода из основной энергетической зоны в первую возбужденную. Эта вероятность задается формулой (25).

В двухзонном приближении принимаются во внимание блоховские осцилляции, происходящие в первой возбужденной зоне. Их влияние на ход кривой намагниченности выражается в появлении дополнительных скачков в моменты времени, когда внешнее магнитное поле принимает значения $B_z = k\Delta B$, *k* ∈ ℕ. Из-за возможности туннельного перехода из первой возбужденной энергетической зоны обратно в основную величины главных и дополнительных скачков перепутываются, в результате чего общая формула для высоты ступенек намагниченности является исключительно громоздкой. На качественном уровне о скачках можно сказать следующее: высоты главных скачков убывают с ростом их номера (но медленнее, чем в однозонном приближении), а высоты дополнительных в течение первых нескольких блоховских периодов возрастают и только после достижения некоторого максимального значения начинают убывать по величине.

На рис. 1, 2 представлены зависимости намагниченности и восприимчивости от внешнего магнитного поля для различных типов анизотропии и скоростей изменения величины магнитного поля, которое линейно нарастает со временем от нуля до некоторой величины в течение семи с половиной блоховских периодов, а затем с той же скоростью убывает опять до нуля. При расчетах необходимо следить за тем, чтобы условие $heta - \pi/2 \ll 1$ (см. п. 4) не было нарушено. А это возможно лишь при большом (не менее десяти) значении спинового момента нанокластера. Намагниченность приводится в расчете на один нанокластер и измеряется в единицах магнетона Бора. Само же магнитное поле измеряется в единицах приращения ΔB за один блоховский период. Вычисления проведены в рамках однозонной модели с учетом туннелирования Зенера, интенсивность которого возрастает по мере увеличения скорости изменения магнитного поля. Пики восприимчивости для обратного хода магнитного поля изображаются перевернутыми в целях удобства и большей наглядности.

Важной отличительной особенностью свободной прецессии для систем с тетрагональной или гексагональной анизотропией является то, что ускоренная прецессия спина под влиянием растущего (убывающего) магнитного поля экранирует вклад парамагнитной восприимчивости иона ($\chi_{\perp}B_z$) не полностью, что выражается в отсутствии горизонтальных участков на кривой намагниченности (см. ниже п. 10).

Результаты, полученные в рамках двухзонной модели, представлены на рис. 1 в. Здесь принято, что магнитное поле линейно возрастает со временем от нуля до некоторой величины в течение пяти блоховских периодов, а затем с той же скоростью убывает опять до нуля.

Все те характерные особенности поведения рассматриваемой спиновой системы, о которых шла речь выше, на этих рисунках отражены и могут быть обнаружены без труда.

10. Наконец, сделаем несколько важных замечаний, касающихся упоминаемых выше особенностей систем частиц с большим спином, обладающих тетрагональной (4) или гексагональной (5) анизотропией.

Уравнение Шредингера (11) в этих случаях (потенциальная энергия равна соответственно $U_{at}(\varphi) = -K_4 \cos 4\varphi_t$ или $U_{ah}(\varphi) = -K_4 \cos 6\varphi_h$) можно записать в виде, совпадающем с (15), если ввести обозначения

$$\mu_t^2 = \frac{IE_t}{2\hbar^2}, \quad b_t^2 = \frac{IK_4}{4\hbar^2}, \quad \tilde{\varphi} = 2\varphi_t + \frac{\pi}{2} = \varphi + \frac{\pi}{2}$$

И

$$\mu_h^2=\frac{2IE_h}{9\hbar^2},\quad b_h^2=\frac{IK_4}{9\hbar^2},\quad \tilde{\varphi}=3\varphi_h+\frac{\pi}{2}=\varphi+\frac{\pi}{2}.$$

Индексы «t» и «h» используются для того, чтобы отличать величины, относящиеся к случаям тетрагональной и гексагональной анизотропии, от величин, относящихся к простейшему случаю и не имеющих специального индекса. Сравнение введенных параметров с параметрами μ и b (15) при условии равенства констант K_1 позволяет сделать следующие выводы.

1. Энергетический спектр системы с тетрагональной анизотропией имеет вид $E_{nt}(m) = 4E_n(m)$, с гексагональной — $E_{nh}(m) = 9E_n(m)$. Здесь $E_n(m)$ соответствует простейшему случаю (3).

 Ширина первой запрещенной зоны составляет K₄.

3. Частота блоховских осцилляций по-прежнему определяется выражением (20).

4. На кривой намагниченности исчезают горизонтальные участки, характерные для простейшего случая.

Рассмотрим утверждение 4 более обстоятельно. Поскольку процедура вычисления интеграла (6) не претерпевает никаких изменений при переходе к другому виду анизотропии, выполняется соотношение (7), а значит, в случае тетрагональной (гексагональной) анизотропии выражение (27) для проекции среднего магнитного момента на ось z остается в силе. Поскольку $\varphi_t = \varphi/2$ и $\varphi_h = \varphi/3$, имеем

 $M_t(B) = \frac{\chi_\perp}{2} B + M(B)$

И

$$M_h(B) = \frac{2\chi_{\perp}}{3} B + M(B),$$
 (29)

где M(B) — намагниченность системы, энергия анизотропии которой имеет простейший вид. Из формул (28) и (29) сделанное утверждение следует очевидным образом.

11. Приведем некоторые численные оценки. При спине $S = 10\hbar$, $K_1 \approx 10 \text{ см}^{-1}$ и $B_1/\tau \approx 10^{10}$ Э/с частота блоховских осцилляций $f_{Bl} \approx 10^7$ Гц. При увеличении скорости нарастания магнитного поля до значений $B_1/\tau \sim (10^{11}-10^{12})$ Э/с становится заметным туннельный эффект Зенера, если принять $K_2/K_1 \approx 10^{-2}$.

Все приведенное выше рассмотрение относится к случаю нулевой температуры. Очевидно, тепловые

флуктуации (при $T \neq 0$) и взаимодействие с диссипативным окружением разрушают обсуждаемые квантовые когерентные эффекты, что заслуживает отдельного рассмотрения. Здесь же мы ограничимся лишь указанием пределов применимости приближения T = 0: $T \ll K_1$ и $t_s \gg 1/f_{Bl}$, где t_s время спиновой релаксации. При $K_1 \approx 10$ см⁻¹ и $B_1/\tau \approx 10^{10}$ Э/с получим $T \ll 2$ К и $t_s \gg 10^{-7}$ с. Эти ограничения выглядят вполне выполнимыми для современных низкотемпературных экспериментов.

Итак, в работе показано, что магнитное поле, возрастающее (убывающее) пропорционально времени, индуцирует новые когерентные квантовые эффекты в динамике анизотропной спиновой системы. К таковым относятся образование зонного энергетического спектра с непрерывными спиновыми состояниями, квазиблоховские осцилляции и межзонный зенеровский туннельный эффект. Эти квантовые эффекты проявляются в виде скачков намагниченности и пиков восприимчивости в рассматриваемой спиновой системе.

Один из авторов (А. К. З.) выражает искреннюю признательность Б. Барбара (В. Barbara) и Р. Жиро (R. Giraud) за дискуссии по проблематике, связанной с данной работой, и за теплое гостеприимство в Лаборатории Нееля (Гренобль). Авторы благодарят также участников семинара Ю. В. Копаева (ФИАН) за обсуждение настоящей работы и А. М. Игнатова, указавшего на аналогию рассмотренных спиновых возбуждений с анионами.

Работа поддержана РФФИ (грант № 02-02-17389), INTAS (грант № 99-01839) и Федеральной целевой программой «Физика твердотельных наноструктур».

ЛИТЕРАТУРА

- B. Barbara, L. Thomas, F. Lionti et al., J. Magn. Magn. Mat. 200, 167 (1999).
- B. Barbara and L. Günther, Physics World 12, 35 (1999).
- J. R. Friedman, M. P. Sarachick, J. Tejada et al., Phys. Rev. Lett. 76, 3830 (1996).
- L. Thomas, F. Lionti, R. Ballou et al., Nature 383, 145 (1996).
- 5. E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic Moment, Cambridge University Press, Cambridge (1998).

(28)

- V. V. Dobrovitskii and A. K. Zvezdin, Europhys. Lett. 38, 377 (1997).
- 7. L. Günther, Europhys. Lett. 39, 1 (1997).
- 8. A. Garg, Europhys. Lett. 22, 205 (1993).
- I. Tupitsyn and B. Barbara, in: Magneto-science from Molecules to Materials, ed. by M. Drillon and J. Miller, Wiley VCH Verlag, Hamburg (2001), p. 109.
- A. K. Zvezdin, V. V. Dobrovitskii, B. N. Harmon et al., Phys. Rev. B 58, 14733 (1998).
- R. Giraud, W. Wernsdorfer, A. Tkachuk et al., Phys. Rev. Lett. 87, 057203 (2001).
- D. P. Loss and D. P. Di Vincenzo, Phys. Rev. A 57, 120 (1998).
- В. В. Добровицкий, А. К. Звездин, А. Ф. Попков, УФН 166, 439 (1996).
- 14. J. Tejada, E. M. Chudnovsky, E. del Barco et al., Nanotechnology 12, 181 (2001).
- 15. А. К. Звездин, Кратк. сообщ. по физике ФИАН, вып. 12, 13 (1999).
- 16. A. K. Zvezdin, E-print archives, cond-mat/0004074.
- **17**. А. К. Звездин, Кратк. сообщ. по физике ФИАН, вып. 11, 3 (2000).
- **18**. А. М. Переломов, *Обобщенные когерентные состо*яния и их применения, Наука, Москва (1987).

- 19. F. Bloch, Phys. Rev. Lett. 137, A787 (1965).
- 20. F. Bloch, Phys. Rev. Lett. 166, 415 (1968).
- M. A. Omar, *Elementary Solid State Physics*, Reading MA, Addison-Wesley, London (1975).
- 22. К. К. Лихарев, Введение в динамику джозефсоновских переходов, Наука, Москва (1985).
- Д. В. Аверин, А. Б. Зорин, К. К. Лихарев, ЖЭТФ 88, 692 (1985).
- 24. G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).
- 25. P. W. Anderson, Lectures on the Many-Body Problem, Vol. 2, Academic Press, New York (1964), p. 113.
- V. A. Kalatsky, E. Müller-Hartmann, V. L. Pokrovsky et al., Phys. Rev. Lett. 80, 1304 (1998).
- 27. S. Rao, E-print archives, hep-th/9209066 (2001).
- 28. A. I. Larkin, K. K. Likharev, Yu. N. Ovchinnikov, Physica B 126, 414 (1984).
- **29**. М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Мир, Москва (1979).
- 30. C. Zener, Proc. Roy. Soc. London A 145, 523 (1934).
- 31. Y. Gefen, E. Ben-Jacob, and A. O. Caldeira, Phys. Rev. B 36, 2770 (1987).
- 32. Н. Ашкрофт, Н. Мермин, Физика твердого тела, Наука, Москва, (1979).