АНОМАЛЬНОЕ ПОВЕДЕНИЕ ТЕПЛОВЫХ ХАРАКТЕРИСТИК МgB₂ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ

Н. В. Аншукова^а, Б. М. Булычев^b, А. И. Головашкин^a^{*}, Л. И. Иванова^c,

И. Б. Крынецкий^b, А. А. Минаков^d, А. П. Русаков^c

^а Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^b Московский государственный университет им. М. В. Ломоносова 119899, Москва, Россия

> ^с Московский институт стали и сплавов 119991, Москва, Россия

^d Институт общей физики Российской академии наук 119991, Москва, Россия

Поступила в редакцию 17 декабря 2002 г.

Проведены измерения температурных зависимостей коэффициента теплового расширения $\alpha(T)$ в нулевом магнитном поле и поле $H \approx 4$ Тл, теплоемкости C(T) и теплопроводности $\kappa(T)$ соединения MgB₂ в области T_c и низких температур. Обнаружено, что при низких температурах соединение MgB₂, как и оксидные ВТСП, характеризуется отрицательным коэффициентом теплового расширения. При этом наблюдается сильное влияние магнитного поля на аномалию $\alpha(T)$. Обнаружено, что в дополнение к известному переходу в сверхпроводящее состояние при $T_c \approx 40$ К наблюдается аномальное поведение как теплопроводности, так и теплопроводности в области температур $T \approx 10–12$ К. При этом аномальное поведение C(T) и $\kappa(T)$ проявляется в той же области температур, в которой обнаружено отрицательное тепловое расширение MgB₂. Наблюдаемые аномалии при низких температурах связываются с наличием в MgB₂ второй группы носителей заряда и с увеличением плотности бозе-конденсата, соответствующего этим носителям, при $T_{c2} \approx 10–12$ К.

PACS: 74.25.Bt, 74.25.Fy

1. ВВЕДЕНИЕ

Неожиданное обнаружение [1] высокотемпературной сверхпроводимости (ВТСП) в известном соединении MgB₂ вызвало большой интерес к изучению его свойств. К настоящему времени опубликовано уже значительное количество работ, посвященных MgB₂ [2]. Интерес к этому соединению связан, помимо высокой критической температуры $T_c \approx 40$ K, с его относительно простой структурой, высокой проводимостью и значительными критическими полями и токами в том числе в сильных магнитных полях. В MgB₂ уже достигнуты критические плотности тока, превышающие 10⁷ A/см², и критические поля 40 Тл [2]. В отличие от купратных высокотемпературных сверхпроводников свойства нового материала менее анизотропны. Он обладает большой длиной когерентности, что делает его весьма привлекательным для использования в сверхпроводниковой электронике.

На данном этапе исследований важно понять, можно ли поднять критическую температуру сверхпроводников этого класса. Для этого необходимо выяснить, относится ли соединение MgB₂ к традиционным сверхпроводникам, свойства которых описываются теорией Бардина–Купера–Шриффера (БКШ), или его свойства близки к свойствам высокотемпературных оксидных сверхпроводников. Имеющиеся

^{*}E-mail: golov@sci.lebedev.ru

пока результаты исследований MgB₂ не дают однозначного ответа на вопрос о природе сверхпроводимости в этом соединении. Его критическая температура близка к предельному теоретическому значению, предсказываемому теорией БКШ, или даже превышает его. Это можно рассматривать как аргумент в пользу необычного механизма сверхпроводимости MgB₂. С другой стороны, аргументом в пользу обычной сверхпроводимости MgB₂ является высокая концентрация носителей заряда $N \approx 1.5 \cdot 10^{23}$ см⁻³ [3]. В оксидных ВТСП характерная концентрация носителей $N \approx (3-5) \cdot 10^{21}$ см⁻³. Однако расчеты зонной структуры MgB₂ показывают, что эта концентрация обусловлена двумя группами носителей [4], которые возникают от разных участков поверхности Ферми (сформированных из разных состояний бора). Если квазидвумерные *p_{xy}*-состояния бора с концентрацией носителей $N_{xy} \leq 10^{22}$ см⁻³ играют такую же роль, как квазидвумерные состояния кислорода в плоскостях CuO₂ купратных ВТСП, то, возможно, что высокотемпературная сверхпроводимость MgB₂ при температуре $T\,\approx\,40$ К обусловлена лишь одной из этих двух групп носителей. Имеющиеся теоретические расчеты [5,6] и экспериментальные данные по теплоемкости [7–13] и теплопроводности [12–15] указывают на возможность существования двух сверхпроводящих щелей, первая из которых соответствует критической температуре $T_c \approx 40$ K, а вторая (тоже возникающая при $T \approx 40$ K) соответствует критической температуре $T_{c2} \approx 10\text{--}12$ К, так как в этой области температур резко увеличивает свою величину. Однако для окончательного вывода необходимы дополнительные эксперименты.

Известно, что оксидные высокотемпературные сверхпроводники проявляют ряд характерных аномалий свойств. В частности, тепловое расширение качественных образцов оксидных ВТСП при низких температурах обнаруживает аномалию: отрицательный коэффициент теплового расширения α [16]. Кроме того, найдено сильное влияние магнитного поля на температурную зависимость $\alpha(T)$ в области этой аномалии [17]. Эти аномалии не наблюдаются в обычных сверхпроводниках. Однако предварительные данные, полученные недавно в работе [18], показывают, что такие же аномалии при низких температурах наблюдаются в MgB₂. Таким образом, пока нельзя однозначно утверждать, что соединение MgB₂ подобно обычным сверхпроводникам.

В настоящей работе проведены измерения температурных зависимостей коэффициента теплового расширения $\alpha(T)$, теплоемкости C(T) и теплопроводности $\kappa(T)~{\rm MgB_2}$ в области T_c и более низких температур, изучено влияние магнитного поля $H\approx 4~{\rm Tr}$ на поведение $\alpha(T)$. Обнаружено, что при низких температурах ($T\approx 10{-}13~{\rm K}$) наблюдается аномальное поведение всех вышеуказанных характеристик — теплоемкости, теплопроводности и теплового расширения. При этом аномальное поведение C(T) и $\kappa(T)$ наблюдается в той же области температур, где коэффициент теплового расширения $\alpha(T)~{\rm MgB_2}$ отрицателен.

2. МЕТОДИКИ

Измерение теплового расширения проводилось дилатометрическим методом. Изменение длины образца $\Delta L/L$ измерялось с помощью тензометрического датчика с чувствительностью примерно 10^{-7} (L — длина образца) [19]. Магнитное поле создавалось сверхпроводящим соленоидом и было параллельно направлению, в котором измерялась деформация. Калибровка дилатометрической установки проводилась с помощью измерения температурных зависимостей теплового расширения образцов редкоземельных оксидов.

Температурные зависимости теплоемкости и теплопроводности образцов измерялись методом модуляционной калориметрии [20, 21] (частота температурной модуляции 20 Гц) при непрерывной развертке температуры со скоростью около 1 К/мин, а также в квазиизотермических условиях при разных частотах в диапазоне 0.05-160 Гц для контроля процесса измерений. Амплитуда модулирующего теплового потока составляла 0.1, 0.45 и 0.7 мВт соответственно при температурах 5-10, 10-20 и 20-50 К. При этом амплитуда осцилляций температуры образца изменялась в диапазоне 0.002-0.07 К. Переменный тепловой поток $P(T) = P_0 \cos \omega t$ подводился к одной стороне диска. В образце возбуждались затухающие температурные волны $T(t) = \operatorname{Re}[T_0 \exp(i\omega t \pm kz)].$ Величины теплоемкости и теплопроводности образца определялись из измерений амплитуд T_{01} и T_{02} , а также фаз φ_1 и φ_2 температурных осцилляций $T_{01}\sin(\omega t + \varphi_1)$ и $T_{02}\sin(\omega t + \varphi_2)$ на обеих сторонах диска. Зависимости теплоемкости и теплопроводности образца от температуры можно было получать с разрешающей способностью 0.01 К. Относительная погрешность измерений теплоемкости составляет 0.3 %, теплопроводности — 1 %. Подробнее использованный метод двухканальной модуляционной калориметрии описан в работах [20, 21].

Рис. 1. Температурная зависимость теплового расширения $\Delta L/L$ для MgB₂ (*a*) и сравнение ее с результатами для других ВТСП (*б*): 1 — YBa₂Cu₃O_{7-x} (*b* — постоянная решетки вдоль оси *b*) [22]; 2 — Bi₂Sr₂CaCu₂O₈ (*c* — постоянная решетки вдоль оси *c*, *c*₀ — постоянная решетки вдоль оси *c*, *c*₀ — постоянная решетки при T = 0, *c*₃₀₀ — постоянная решетки при T = 300 K) [23]; 3 — La_{2-x}Sr_xCuO₄ (x = 0.1, *ab*-плоскость) [17]; 4 — Ba_{1-x}K_xBiO₃ (x = 0.13, α — коэффициент теплового расширения) [17]

3. ОБРАЗЦЫ

Образцы MgB₂ были получены методом горячего прессования порошка MgB₂. Исходный порошок диборида магния синтезировался с помощью реакции металлического магния с элементарным бором. Использовались стандартные условия: выдержка при температуре 950-1000 °C в течение 4 ч при атмосферном давлении. При этом получался однофазный материал. Таблетки MgB₂ синтезировались при высоком давлении 50 кбар и температурах 950-1000 °C. Давление, при котором спекались образцы, немного варьировалось. При этом плотность образцов изменялась в интервале 3 %. Плотность образцов MgB₂, синтезированных при наиболее высоком давлении, составляла 97-98% от идеальной рентгеновской плотности. Рентгеновские дифрактограммы синтезированных образцов MgB2 были получены на дифрактометре ДРОН-4. Они точно совпадали со стандартными данными [2]. Тестирование качества образцов проводилось с помощью измерения их электрических и магнитных свойств, которые также соответствовали стандартным данным [2]. Эффект Мейснера составлял более 44 %. Для исследований теплового расширения, теплоем-

кости и теплопроводности были приготовлены образцы диаметром 2.8–3.2 мм и высотой 1–5 мм.

4. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

На рис. 1*a* приведена температурная зависимость величины $\Delta L/L$ для соединения MgB₂, полученная в настоящей работе при H = 0. Для сравнения на рис. 16 показаны ранее полученные данные для образцов YBa₂Cu₃O_{7-x} [22], Bi₂Sr₂CaCu₂O₈ [23], La_{2-x}Sr_xCuO₄ (x = 0.1) [24] и

Рис.2. Влияние магнитного поля на температурную зависимость теплового расширения: *a*) MgB₂ (кривая 1 - H = 0; кривая 2 - H = 3.6 Tл); *б*) La_{1.9}Sr_{0.1}CuO₄ (кривая 1 - H = 0; кривая $2 - H \approx 4$ Tл) и Ba_{0.6}K_{0.4}BiO₃ (кривая 3 - H = 0; кривая 4 - H = 4 Tл) [17]

Ва_{1-x}К_xВіО₃ (x = 0.13) [24]. Уменьшение постоянных решетки при росте температуры (в области низких температур) наблюдали также авторы работы [25] для соединения YBa₂Cu₄O₈. Для MgB₂ выполняется соотношение $\Delta L/L < 0$ в области 7 К $\leq T \leq 16.5$ К. Таким образом, коэффициент теплового расширения $\alpha = (1/L)dL/dT$ является отрицательным в области температур примерно 7–11 К. Как видно на рис. 1*б*, в оксидных ВТСП при низких температурах также наблюдается отрицательное тепловое расширение $\alpha(T)$, т.е. MgB₂ характеризуется таким же аномальным свойством ($\alpha < 0$) при низких температурах, как и оксидные ВТСП.

На рис. 2*a* показано влияние магнитного поля H = 36 кЭ на температурную зависимость $\Delta L/L$ для MgB₂. Для сравнения на рис. 2*6* показано влияние магнитного поля на зависимость $\Delta L/L$ для образцов Ba_{0.6}K_{0.4}BiO₃ и La_{1.9}Sr_{0.1}CuO₄ [24]. Видно, что магнитное поле $H \approx 40$ кЭ аномально сильно влияет на величину $\alpha(T)$ при низких температурах

в этом классе веществ.

На рис. 3 показаны зависимости $\Delta L/L$ для MgB₂ от магнитного поля *H* при разных температурах. Видно, что зависимость $\Delta L/L$ от H при T = 12.1 K, т.е. в области отрицательных значений $\Delta L/L$ (T < 16.5 K), качественно отличается от зависимостей при T > 16.5 К (для примера приведены лишь три кривые: при T = 18.8 K, T = 28.2 K и T = 37.5 K). Кривые при T > 16.5 К могут быть объяснены влиянием магнитострикции, в то время как знак изменения $\Delta L/L$ от H при T = 12.1 K противоположен. Поэтому такое изменение нельзя объяснить эффектом магнитострикции. Известно, что, например, для сверхпроводящего соединения Ва_{0.66}К_{0.34}ВіО₃ эффект магнитострикции приводит к уменьшению величины $\Delta L/L$ с ростом H до 5 Тл при низких температурах [26]. Подобные зависимости наблюдались нами для MgB_2 при T > 16.5 К.

Рис.3. Зависимость теплового расширения $\Delta L/L$ для MgB₂ от магнитного поля при фиксированных температурах. На графиках указаны температуры измерения. Ошибки измерения указаны в виде вертикальной черты на кривых. Стрелками показано направление изменения магнитного поля

Таким образом, для MgB₂ при T < 16.5 К дополнительно к эффекту магнитострикции существует более сильный эффект противоположного знака, как в образцах других ВТСП.

При более высоких температурах зависимости $\alpha(T)$ и $\alpha(H)$ в MgB₂ напоминают зависимости для обычных металлов. Такими же свойствами обладают и образцы системы Ba_{1-x}K_xBiO₃ с металлической проводимостью при x > 0.4 [17].

На рис. 4 приведена температурная зависимость теплоемкости в координатах C/T и T в области T = 5-45 К для одного из образцов соединения MgB₂ (образец № 1), полученная в настоящей работе. Четко наблюдаются две особенности: при $T \approx 38-40$ К и $T \approx 10$ К. Эти особенности показаны отдельно на вставках к рис. 4. Особенность при $T \approx 38-40$ К связана с переходом образца в сверхпроводящее состояние. На рис. 5 показана зависимость C/T от T в области T = 5-50 К для второго образца (образец № 2). Две указанные выше особенности (также показанные на вставках к рис. 5)

Рис. 4. Температурная зависимость теплоемкости MgB₂ в координатах C/T и T (образец № 1). На вставках показаны скачки теплоемкости при T_c (вставка 1) и $T \approx 10$ К (вставка 2)

Рис.5. Температурная зависимость теплоемкости MgB₂ (образец № 2). Вставки аналогичны рис. 4

наблюдаются и для этого образца. Кривые C(T)/T для обоих образцов весьма близки, некоторое различие имеется лишь в величинах скачков теплоемкости. Это связано с тем, что плотности образцов слегка различались (на 3 %).

Теплопроводность $\kappa(T)$ исследованных образцов MgB_2 зависела от условий приготовления, т.е. от температуры и давления, при которых они синтезировались. Теплопроводность MgB_2 при низких температурах довольно мала и совпадает, например, с теплопроводностью Nb_3Sn . На рис. 6 приведена зависимость $\kappa(T)$ для образца Ne1 в интерва-

Рис. 6. Температурная зависимость теплопроводности MgB₂ в интервале 5–45 К для образца № 1. Штриховая линия проведена для удобства восприятия особенности в области температур, соответствующих сверхпроводящему переходу при T_c

ле T = 5-45 К. Видно, что на кривой $\kappa(T)$ для MgB₂ проявляются обе аномалии, наблюдающиеся для C(T). Аномалия $\kappa(T)$ в области критической температуры при $T \approx 38-40$ К выражена слабее, в виде горба над штриховой линией, которая приведена лишь для удобства. Отметим, что чем выше теплопроводность образца, тем менее выражена эта аномалия. Аномалия в области низких температур $T \approx 10$ –12 К выражена яснее. На рис. 7 эта аномалия показана в увеличенном масштабе для обоих образцов. Штриховыми линиями показаны интерполяционные зависимости, полученные при низких температурах вблизи соответствующей аномалии. Во всех случаях, как при T_c , так и при $T \approx 10-12$ K, убывание $\kappa(T)$ с понижением температуры замедляется при появлении фазового перехода. Очевидно совпадение трех аномалий, наблюдающихся нами в настоящей работе в MgB₂ при $T \approx 10-12$ K, — аномалий теплоемкости C(T), теплопроводности $\kappa(T)$ и теплового расширения $\alpha(T)$ [18].

5. ОБСУЖДЕНИЕ

1. Оценку скачка теплоемкости ΔC принято делать с применением сильного магнитного поля, разрушающего сверхпроводящее состояние. При этом можно оценивать помимо ΔC величину энтропии, свободной энергии и параметры сверхпроводящего перехода в рамках, например, теории БКШ [7]. Однако для оценки лишь величины ΔC можно воспользоваться разностью между экспериментальной кривой C(T) и интерполяционной зависимостью C(T)при условии, что максимум скачка теплоемкости ΔC при T < T_c находится вблизи T_c и интерполяционная формула при $T > T_c$ подогнана под эксперимент в непосредственной близости от Т_с. В нашем случае наблюдалось хорошее согласие интерполяционной зависимости расширенного варианта модели Дебая $C/T = \gamma + \beta_2 T^2 + \beta_4 T^4$ с экспериментальными данными для MgB₂ при 40 K < T < 50 K. Однако в области скачка теплоемкости отличие такой интерполяционной зависимости от более простого выражения $C/T = \gamma + \beta_2 T^2$ составляло всего 1–1.5 %, а при более высоких температурах было пренебрежимо мало. На рис. 8 показано согласие интерполяционной зависимости $C/T = 4.394 + 1.065 \cdot 10^{-2} T^2$, полученной методом наименьших квадратов, с экспериментальными данными для образца №1 MgB₂ при 40 К $\leq T \leq$ 45 К. Применимость таких простых формул для интерполяции обусловлена тем, что температура области интерполяции ($T \approx 40 \text{ K}$) гораздо меньше температуры Дебая MgB_2 ($\Theta \approx 900-1000$ K [7-11]). Поэтому такую интерполяцию можно надежно применять, учитывая, однако, что она справедлива лишь для узкого интервала температур $\Delta T \approx 15 - 20 \text{ K} [7 - 11].$

Скачки теплоемкости $\Delta C/T$ в области T_c для обоих образцов MgB₂, полученные вычитанием из экспериментальных кривых интерполяционных зависимостей, показаны на вставках к рис. 4 и 5. Видно, что переходы в сверхпроводящее состояние в обоих образцах начинаются при $T \approx 40$ К. Таким образом, величина критической температуры, найденная по началу скачка теплоемкости, $T_c \approx 40$ К. Максимумы скачков теплоемкости находятся достаточно близко к границе области интерполяции $T \approx 40$ K, что обосновывает применимость простой интерполяционной формулы Дебая для оценки скачка теплоемкости ΔC вблизи T_c . Для исследованных образцов MgB₂ величины $\Delta C \approx 145-152$ мДж/К·моль. Эти величины согласуются с литературными данными [7-12], хотя несколько превышают их.

Вторая особенность на зависимости C(T)/T на-

Рис.7. Аномалии теплопроводности MgB₂ при низких температурах *T* ≈ 10–12 К: *a* — образец № 1; *б* — образец № 2. Штриховыми линиями показаны интерполяционные зависимости теплопроводности, полученные вблизи аномалий

Рис. 8. Соответствие интерполяционной зависимости $C/T = 4.394 + 1.065 \cdot 10^{-2} T^2$ для теплоемкости MgB₂ (сплошная линия) экспериментальным данным (**■**) при 40 K < T < 45 K

блюдалась на обоих образцах в области $T \approx 10-15$ К. При этом зависимость C(T)/T при более высоких температурах вблизи этой особенности хорошо аппроксимируется дебаевскими формулами. Разности теплоемкостей исследованных образцов MgB₂ при низких температурах, полученные вычитанием из экспериментальных кривых интерполяционных зависимостей, показаны на вставках к рис. 4 и 5. Видно, что для обоих образцов наблюдается дополнительный скачок теплоемкости ΔC_2 . Максимумы этих особенностей находятся при $T\approx 10\text{--}12$ К. Такое поведение теплоемкости указывает на фазовый переход в MgB₂ при $T = T_{c2} \approx 10$ –12 К. Имеются теоретические основания полагать [4-6], что при этой температуре резко увеличивается вторая (малая) сверхпроводящая щель, соответствующая второй группе носителей заряда. Ниже температур, соответствующих максимумам особенностей, наблюдается резкое уменьшение измеренной теплоемкости, как это и имеет место в обычных сверхпроводниках при их переходе в сверхпроводящее состояние. Оценка дает $\Delta C_2 \approx 3.2$ мДж/К моль для образца $\mathbb{N}1$ и $\Delta C_2 \approx 7.6$ мДж/К·моль для образца № 2. Следует отметить, что для образца №1 в этой области температур было получено довольно мало экспериментальных точек, поэтому значение ΔC_2 для него нужно считать нижней границей.

Хотя в ранних работах [7–12], в которых измерялась теплоемкость MgB₂, вторая (низкотемпературная) особенность на кривой C(T) не была четко выделена, авторы работы [6] показали, что теория, основанная на двухзонной модели (с различными сверхпроводящими щелями на π - и σ -зонных листах поверхности Ферми), значительно лучше согласуется с экспериментом, чем однозонная. Оценки показывают, что вторая (малая) щель должна соответствовать критической температуре T_{c2} . Наши данные, в которых вторая особенность на зависимости C(T) выделена явно и именно при $T \approx 10–12$ К, полностью подтверждают этот вывод.

2. В данной работе для MgB₂ наблюдались аномалии теплоемкости C(T), теплопроводности $\kappa(T)$ и теплового расширения $\alpha(T)$ в области температур $T \approx 10-12$ К. Трудно считать такое совпадение случайным. Но тогда должна быть общая причина, приводящая к аномальному поведению трех различных величин в данной области температур. Мы полагаем, что при температуре $T \approx 10-12$ К в MgB₂ происходит резкое увеличение малой щели, соответствующей второй группе носителей заряда. В этом случае аномалия C(T) очевидна. Увеличение теплопроводности $\kappa(T)$ в области сверхпроводящего перехода также часто наблюдалось в различных сплавах и соединениях [27] и связывается с уменьшением рассеяния фононов на электронах или дырках при их спаривании. Как видно на рис. 6, в MgB_2 небольшое увеличение $\kappa(T)$ на фоне общего убывания теплопроводности существует и в области $T \approx 38-40$ К, т.е. в области основной критической температуры T_c. Поскольку концентрация «вымерзающих» носителей заряда, ответственных за этот переход, $N < 10^{22}$ см⁻³ существенно меньше полной концентрации носителей $N \approx 1.5 \cdot 10^{23}$ см⁻³ [3], следует ожидать значительно более сильного эффекта при втором переходе в области $T \approx 10-12$ K, когда происходит спаривание основной массы носителей.

3. Принятая интерпретация экспериментальных данных (наличие двух щелей, соответствующих двум группам носителей заряда) позволяет сделать оценки величин γ для каждой группы носителей. Величина γ , найденная по температурной зависимости теплоемкости при $T > T_c$, является фактически суммой соответствующих величин для каждой группы носителей заряда. Таким образом, $\gamma = \gamma_1 + \gamma_2$. При этом коэффициент γ_1 относится к первой группе носителей, которая определяет $T_c \approx 40$ К в MgB₂, а коэффициент γ_2 определяется второй группой носителей, с которой связаны аномалии при $T_{c2} \approx 10-12$ К. Найдено, что $\gamma = 4.39$ мДж/К² моль

(для образца №1) и $\gamma = 3.99$ мДж/К²·моль (для образца № 2). Считая, что при температурах ниже 15 К вклад от электронной теплоемкости первой группы носителей становится ничтожно малым (на это указывает почти линейная зависимость C/T от T^2 в этой области температур выше аномалии), можно определить независимо величины γ_1 и γ_2 . Отсюда $\gamma_1 = 1.48$ мДж/К²·моль (для образца №1) и $\gamma_1 = 1.44$ мДж/К²·моль (для образца № 2); $\gamma_2 = 2.91$ мДж/К² моль (для образца №1) и $\gamma_2 = 2.55$ мДж/ ${\rm K}^2 \cdot$ моль (для образца № 2). Таким образом, по нашим данным для MgB_2 $\gamma_1 = 1.4-1.5$ мДж/ K^2 ·моль и $\gamma_2 = 2.55 - 2.9$ мДж/K² моль. Поскольку величина у пропорциональна плотности электронных состояний на уровне Ферми, величина $\gamma_2/\gamma_1 \approx 2$ характеризует отношение этих плотностей для двух групп носителей заряда в MgB₂.

4. Можно оценить отношение скачка теплоемкости при T_c к величине γ . По теории БКШ $\Delta C/\gamma T_c$ = 1.43. Беря в качестве $\Delta C/T_c$ эту величину в максимуме (рис. 4 и 5), найдем, что $\Delta C/\gamma_1 T_c \approx 2.89$ для образца №1 и $\Delta C/\gamma_1 T_c \approx 2.57$ для образца № 2. Такие значения отношений указывают на сильную связь в MgB₂ для первой группы носителей с меньшей концентрацией. Это согласуется с результатами расчетов работы [28], где в модели двух групп носителей было показано, что электрон-фононное взаимодействие в MgB₂ не является слабым. Для второго (низкотемпературного) перехода отношение $\Delta C_2/\gamma_2 T_{c2}$, прямо определенное по кривым рис. 4 и 5, не превышает значения 0.3. Столь малая величина может указывать на то, что только на отдельных участках поверхности Ферми, соответствующих второй группе носителей, образуется сверхпроводящая щель. Определение этих участков требует дополнительных исследований.

6. ЗАКЛЮЧЕНИЕ

Таким образом, в настоящей работе обнаружено, что при низких температурах соединение MgB₂, как и оксидные BTCП, характеризуется отрицательным коэффициентом теплового расширения. При этом наблюдается сильное влияние магнитного поля на аномалию теплового расширения. Обнаружено также аномальное поведение теплоемкости и теплопроводности MgB₂ в области температур $T \approx 10{-}12$ К. Найдено, что температурные области всех этих аномалий совпадают. Объяснение этих аномалий связывается с наличием в MgB_2 второй группы носителей заряда и с увеличением плотности бозе-конденсата, соответствующего этим носителям, при $T \approx 10-12$ К. Исследования других свойств MgB_2 [2] подтверждают этот вывод.

Авторы выражают благодарность Я. Г. Пономареву за содействие в проведении данных исследований и Е. Г. Максимову за ценные замечания. Работа выполнена при финансовой поддержке РФФИ (грант № 01-02-16395) и Научного совета ГНТП «Актуальные направления в физике конденсированных сред» (подпрограмма «Сверхпроводимость»).

ЛИТЕРАТУРА

- J. Nagamatsu, N. Nakagawa, T. Nuranaka et al., Nature 410, 63 (2001).
- C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).
- 3. S. L. Bud'ko, C. Petrovic, G. Lapertot et al., E-print archives, cond-mat/0102413.
- J. Kortus, I. I. Mazin, K. D. Belashchenko et al., Phys. Rev. Lett. 86, 4656 (2001).
- A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
- A. A. Golubov, J. Kortus, O. V. Dolgov et al., J. Phys.: Cond. Matter 14, 1353 (2002).
- 7. Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001).
- F. Bouquet, R. A. Fisher, N. E. Phillips et al., Phys. Rev. Lett. 87, 047001 (2001).
- S. L. Bud'ko, G. Lapertot, C. Petrovic et al., Phys. Rev. Lett. 86, 1877 (2001).
- H. D. Yang, J.-Y. Lin, H. H. Li et al., Phys. Rev. Lett. 87, 167003 (2001).
- Ch. Wälti, E. Felder, C. Degen et al., Phys. Rev. 64, 172515 (2001).

- E. Bauer, Ch. Paul, St. Berger et al., J. Phys.: Cond. Matter 13, L487 (2001).
- 13. Н. В. Аншукова, Б. М. Булычев, А. И. Головашкин и др., Кратк. сообщ. по физике ФИАН, вып. 4, 24 (2002).
- 14. A. V. Sologubenko, J. Jun, S. M. Kazakov et al., E-print archives, cond-mat/0111273; 0112191; 0201517.
- 15. M. Schneider, D. Lipp, A. Gladun et al., Physica C 363, 6 (2001).
- Н. В. Аншукова, А. И. Головашкин, Л. И. Иванова, А. П. Русаков, УФН 167, 887 (1997).
- 17. Н. В. Аншукова, А. И. Головашкин, Л. И. Иванова и др., Письма в ЖЭТФ 71, 550 (2000).
- 18. Н. В. Аншукова, Б. М. Булычев, А. И. Головашкин и др., Кратк. сообщ. по физике ФИАН, вып. 7, 16 (2001).
- 19. Н. В. Аншукова, Ю. В. Богуславский, А. И. Головашкин и др., ФТТ 35, 1415 (1993).
- 20. A. A. Minakov, Yu. V. Boguslavsky, and C. Schick, Thermochim. Acta 317, 117 (1998).
- 21. A. A. Minakov, S. A. Adamovsky, and C. Schick, Thermochim. Acta 377, 173 (2001).
- 22. H. You, U. Welp, and Y. Fang, Phys. Rev. B 43, 3660 (1991).
- 23. Z. J. Yang, M. Yewondwossen, D. W. Lawther et al., J. Supercond. 8, 223 (1995).
- 24. Н. В. Аншукова, А. И. Головашкин, Л. И. Иванова и др., Письма в ЖЭТФ 71, 550 (2000).
- 25. O. V. Alexandrov, M. Frencois, T. Graf, and K. Ivon, Physica C 170, 56 (1990).
- 26. В. В. Еременко, В. А. Сиренко, Г. Шимак и др., ФТТ 40, 1199 (1998).
- R. Berman, *Thermal Conduction in Solids*, Clarendon Press, Oxford (1976).
- 28. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501 (2001).