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MULTIDIMENSIONAL GLOBAL MONOPOLEAND NONSINGULAR COSMOLOGYK. A. Bronnikov *Center for Gravitation and Fundamental Metrology, Russian Researh Institute for Metrologial Servie117313, Mosow, RussiaInstitute of Gravitation and Cosmology, Peoples Friendship University of Russia117198, Mosow, RussiaB. E. Meierovih **Kapitza Institute for Physial Problems, Russian Aademy of Sienes117334, Mosow, RussiaSubmitted 29 January 2003We onsider a spherially symmetri global monopole in general relativity in (D = d + 2)-dimensional spae�time. For  < d � 1, where  is a parameter haraterizing the gravitational �eld strength, the monopole isshown to be asymptotially �at up to a solid angle defet. In the range d � 1 <  < 2d(d+ 1)=(d + 2), themonopole spae�time ontains a osmologial horizon. Outside the horizon, the metri orresponds to a osmo-logial model of the Kantowski�Sahs type, where spatial setions have the topology R � Sd. In the importantase where the horizon is far from the monopole ore, the temporal evolution of the Kantowski�Sahs metriis desribed analytially. The Kantowski�Sahs spae�time ontains a subspae with a (d + 1)-dimensionalFriedmann�Robertson�Walker metri, whose possible osmologial appliation is disussed. Some estimates inthe d = 3 ase show that this lass of nonsingular osmologies an be viable. In partiular, the symmetry-breaking potential at late times an give rise to both dark matter and dark energy. Other results, generalizingthose known in the 4-dimensional spae�time, are derived, in partiular, the existene of a large lass of singularsolutions with multiple zeros of the Higgs �eld magnitude.PACS: 04.90.+e 1. INTRODUCTIONIn our reent paper with Podolyak [1℄, we onsid-ered the general properties of global monopole solu-tions in general relativity and developed some earlierresults (see [2, 3℄ and referenes therein). It was on-�rmed, in partiular, that the properties of these ob-jets are governed by a single parameter , squaredenergy of spontaneous symmetry breaking in Plankunits. For 0 <  < 1, solutions with the entirely posi-tive (or entirely negative) Higgs �eld are globally reg-ular and asymptotially �at up to a solid angle de�it.In the range 1 <  < 3, the spae�time of the so-lutions remains globally regular but ontains a os-*E-mail: kb�rgs.mme.ru**E-mail: meierovih�yahoo.om

mologial horizon at a �nite distane from the en-ter. Outside the horizon, the geometry orrespondsto homogeneous anisotropi osmologial models of theKantowski�Sahs type, whose spatial setions have thetopology R � S2. The nonzero symmetry-breaking po-tential an be interpreted as a time-dependent osmo-logial onstant, a kind of hidden vauum matter. Thepotential tends to zero at late times, and the �hid-den vauum matter� disappears. This solution with anonsingular stati ore and a osmologial metri out-side the horizon drastially di�ers from the standardBig Bang models and onforms to the ideas advoatedby Gliner and Dymnikova [4℄ that the standard BigBang singularity ould be replaed by a regular va-uum boune.The lak of isotropization at late times did not allowus to diretly apply the toy model of a global monopole5



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003to the early phase of our Universe. But this irum-stane does not seem to be a fatal shortoming of themodel beause the anisotropy of the very early Universeould be damped by partile reation later, and the fur-ther stages with low energy densities might onform tothe standard isotropi Friedmann osmology. Anotheridea is to add a omparatively small positive quantity �to the symmetry-breaking potential (to �slightly raisethe Mexian hat�). It an hange nothing but the la-te-time asymptoti regime, whih then beomes de Sit-ter, orresponding to the added osmologial onstant�. These ideas deserve a further study.In this paper, we study the gravitational proper-ties of global monopoles in multidimensional generalrelativity. This analysis an be of interest in view ofnumerous attempts to onstrut a uni�ed theory us-ing the ideas of supersymmetry in higher dimensions.Objets like multidimensional monopoles, strings, andother topologial defets might form due to phase tran-sitions in the early Universe at possible stages when thepresent three spatial dimensions were not yet separatedfrom others, and a greater number of dimensions wereequally important.More spei�ally, we onsider a self-gravitatinghedgehog-type on�guration of a multiplet of salar�elds with the Mexian-hat potentialV = (�=4)(�2 � �2)2in a D-dimensional spae�time with the strutureRt �R� �Sd (d = D� 2), where R� is the range of theradial oordinate � and Rt is the time axis. The prop-erties of suh objets generalize the results obtainedin Ref. [1℄ and earlier papers (e.g., [2, 3℄) in a naturalway. Thus, for small values of the parameter  = �2�2haraterizing the gravitational �eld strength, the solu-tions are asymptotially �at up to a solid angle de�it.Within a ertain range d� 1 <  < (d), the solutionsare nonsingular but ontain a Killing horizon and aosmologial metri of the Kantowski�Sahs type out-side it. In the important ase where the horizon is farfrom the monopole ore, the temporal evolution of theKantowski�Sahs metri is desribed analytially. Theupper bound (d), beyond whih there are no stati so-lutions with a regular enter, is also found analytially.The above desription applies to solutions with anentirely positive (or entirely negative) salar �eld mag-nitude �. As in [1℄, we here also �nd a lass of solu-tions with any number n of zeros of �(r), existing for < n(d), where the upper bounds n are found ana-lytially. All solutions with n > 0 desribe spae�timeswith a regular enter, a horizon, and a singularity be-yond this horizon.

We also disuss a possible osmologial appliationof multidimensional global monopoles, whih an be ofpartiular interest for a 5-dimensional spae�time with3-dimensional spheres Sd. In this ase, the Kantowski�Sahs type model has the spatial topology R � S3 out-side the horizon. It is anisotropi in 4-dimensions,but the 3-dimensional spheres S3 are isotropi. Theanisotropy is thus related only to the fourth oordinatet, whih is spatial outside the horizon and is a ylivariable from the dynamial viewpoint. If we identifyS3 with the observed spae, ignoring the extra oordi-nate, we obtain a losed osmologial model, with theFriedmann�Robertson�Walker line element in the ordi-nary 3 + 1-dimensional spae�time.A natural question arises: why is the fourth spa-tial dimension unobservable today? The answer annotbe found within our marosopi theory without spe-ifying the physial nature of the vauum. The on-ventional Kaluza�Klein ompati�ation of the extradimension on a small irle is not satisfatory in ourase beause it leads to a singularity at the horizon (asdemonstrated in Se. 3). We therefore leave this ques-tion open and note that the global monopole modelhas a hane to desribe only the earliest phase of theosmologial evolution. Its later stages should involvereation of matter and a sequene of phase transitionspossibly resulting in loalization of partiles aross thet diretion. We then obtain a model with a large butunobservable extra dimension, similar in spirit to thewidely disussed brane world models, see reviews [5�7℄and referenes therein.The solutions of interest appear when the symme-try breaking sale � is su�iently large, and one ansuspet that quantum gravity e�ets are already im-portant at this energy sale. We show in Se. 2.3 thatthis is not the ase if the monopole ore radius is muhgreater than the Plank length: the urvature and en-ergy sales in the whole spae are then muh smallerthan their Plankian values.The existene of nonsingular models of the earlyUniverse on the basis of lassial gravity supports theopinion that our Universe had never undergone a stagedesribed by full quantum gravity. In addition to thosedisussed here, suh models are rather numerous now([1; 4; 8�10℄, see also referenes therein). All of themare evidently free of the long-standing problems of thestandard Big Bang osmology related to the existeneof multiple ausally disonneted regions [11, 12℄.This paper is organized as follows. In Se. 2, we an-alyze the properties of a global monopole in D = d+2dimensions (one time oordinate and d + 1 spatial o-ordinates). It is a generalization of our previous re-6



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 Multidimensional global monopole : : :sults [1℄. In Se. 3, the partiular ase where d = 3 isstudied in more detail along with its possible osmo-logial appliation. Unless otherwise indiated, we usethe natural units ~ =  = 1.2. MULTIDIMENSIONAL GLOBALMONOPOLE2.1. General harateristisThe most general form of a stati, spherially sym-metri metri in D = d+ 2 dimensions isds2 = e2F0dt2 � e2F1d�2 � e2F
d
2; (1)where d
2 = d
2d is a linear element on a d-dimensionalunit sphere parameterized by the angles '1; : : : ; 'd,d
2d = d'2d + sin2 'd �d'2d�1 + sin2 'd�1 �� �d'2d�2 + : : :+ sin2'3 �d'22 + sin2'2d'21� : : : �� ;and F0, F1, and F
 are funtions of the radial oordi-nate � that are not yet spei�ed. The nonzero ompo-nents of the Rii tensor are (the prime denotes d=d�)R00 = e�2F1 [F 000 + F 00 (F 00 + dF 0
 � F 01)℄ ;R�� = e�2F1 �dF 00
 + F 000 + dF 02
 + F 020 �� F 01 (F 00 + dF 0
)℄ ;R22 = : : : = Rd+1d+1 = � (d� 1) e�2F
 ++ e�2F1 [F 00
 + F 0
 (F 00 + dF 0
 � F 01)℄ : (2)
A global monopole with a nonzero topologialharge an be onstruted with a multiplet of real salar�elds �a (a = 1; 2; : : : ; d+ 1) omprising a hedgehogon�guration in d+ 1 spatial dimensions1),�a = � (�)na ('1; : : : ; 'd) ;where na('1; : : : ; 'd) is a unit vetor (na na = 1) inthe d+1-dimensional Eulidean target spae, with theomponents1) A 7D universe with a global monopole with a hedgehog on-�guration of salar �elds only in three extra dimensions was re-ently onsidered in [13℄. Our approah is di�erent. We onsidera hedgehog on�guration in all D � 1 spae dimensions of theD-dimensional spae�time.

nd+1 = os'd;nd = sin'd os'd�1;nd�1 = sin'd sin'd�1 os'd�2;� � �nd�k = sin'd sin'd�1 : : : sin'd�k os'd�k�1;� � �n2 = sin'd : : : sin'2 os'1;n1 = sin'd : : : sin'2 sin'1:The Lagrangian of a multidimensional globalmonopole in general relativity is given byL = 12���a���a � V (�) + R2�2 ;where R is the salar urvature, � = �D is the D-di-mensional gravitational onstant, and V (�) is a sym-metry-breaking potential depending on � = �p�a�a;it is natural to hoose V as the Mexian-hat potential,V = �4 (�2 � �2)2 = ��44 (f2 � 1)2: (3)We have introdued the normalized �eld magnitudef = �(�)=� playing the role of the order parameter.The model has a global SO(d + 1) symmetry, whihan be spontaneously broken to SO(d); �2=d is the en-ergy of symmetry breaking.The Einstein equations an be written asR�� = ��2 eT �� = ��2�T �� � 1dTÆ��� ; (4)where T �� is the energy-momentum tensor. The nonzeroomponents of eT �� areeT 00 = �2dV;eT �� = �e�2F1f 02 � 2dV;eT 22 = : : : = eT d+1d+1 = �e�2F
f2 � 2dV:We now use the quasiglobal oordinate � spei�edby the ondition F0 + F1 = 0;whih is a onvenient gauge for spherially symmetrisystems with Killing horizons. Introduing the fun-tions A(�) = e2F0 = e�2F1 ; r(�) = eF
 ;we redue the metri to the formds2 = A(�)dt2 � d�2A(�) � r2(�)d
2; (5)7



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003and obtain the equations�Ard�0�0 � drd�2� = rd �V�� ; (6)r00 = ��2d r�02; (7)�rdA0�0 = �4�2d rdV; (8)A �r2�00 � r2A00 � (d� 2) r3r0 �Ar2�0 == 2(d� 1� �2�2) (9)for the unknown funtions �(�), A(�), and r(�). Onlythree of these four equations are independent: salar�eld equation (6) follows from Einstein equations (7)�(9) beause of the Bianhi identities.Equations (6)�(8) have the same struture as Eqs.(13)�(15) in [1℄. General properties of Eqs. (6)�(8) withan arbitrary value of d are the same as for d = 2, andthe lassi�ation of their solutions is also the same. Inpartiular, if V (�) > 0, the system with a regular en-ter an have either no horizon or one simple horizon;in the latter ase, its global struture is the same asthat of the de Sitter spae�time. Below, we fous ourattention on solutions belonging to lass (a1) aord-ing to [1℄, i.e., those with r(�) monotonially growingfrom zero to in�nity as �!1 and A(�) hanging fromA = 1 at the regular enter to A1 < 0 as �!1, andwith a osmologial horizon (where A = 0) at some� = �h.Equation (9) is a seond-order linear inhomoge-neous di�erential equation for A. The orrespondinghomogeneous equation has the evident speial solutionA(�) = onst � r2(�):This allows expressing A(�) in terms of r(�) and �(�)in an integral form,A = C1r2 � C2r2 1Z� d�1rd+2 (�1) + 2r2 1Z� d�1rd+2 (�1) �� �1Z0 d�2rd�2 (�2) �d� 1� �2�2 (�2)� : (10)We onsider solutions with a large-r asymptoti be-havior suh that r(�) ! 1 and r0(�) ! onst > 0 as� ! 1. Equation (7) gives r0 as R [r�02℄d�, and its

onvergene as � ! 1 implies a su�iently rapid de-ay of �0 at large �, and therefore � ! �1 = onstas � ! 1. The potential V then tends to a onstantequal to V (�1). Furthermore, Eq. (8) shows that atlarge r, A(�) an grow at most as r2, and �nally, sub-stitution of the asymptoti form of �(�), A(�), and r(�)in Eq. (6) leads to dV=d� ! 0 as � ! 1. In applia-tion to �eld equations, the ondition that there exists alarge-r asymptoti regime implies that the salar �eldthen tends either to an extremum of the potential V (�)or to an in�etion point with zero derivative. For theMexian-hat potential, it an be either the maximum at� = 0 (the trivial unstable solution for � and the de Sit-ter metri with the osmologial onstant (1=4)�2��4)or a minimum of V where f = 1 and V = 0. Fora �slightly raised Mexian hat� (potential (3) plus asmall onstant V+), we have a de Sitter asymptoti be-havior with f = 1 and V = V+.A regular enter requires that A = A +O(r2) andAr02 ! 1 as �! � suh that r(�) = 0. Without lossof generality, we set � = 0 and A = 1.For potential (3), regularity at � = 0 and theasymptoti ondition at � ! 1 lead to C1 = C2 = 0,and Eq. (10) then implies thatA(�) = 2r2(�) 1Z� d�1rd+2 (�1) �1Z0 d�2rd�2 (�2)�� �d� 1� �2�2 (�2)� : (11)Equation (8) provides another representation forA(�) satisfying the regular enter onditions,A(�) = 1� 4�2d �Z0 d�1rd (�1) �1Z0 d�2rd (�2)V (�2) : (12)From (11), we �nd the limiting value of A at �!1,A(1) = d� 1� �2(d� 1) ;  = �2�2; (13)where � = dr=d� at �!1,� = 1� �2d 1Z0 r(�)�02(�)d�:Equation (13) shows that  = d�1 is a ritial valueof : the large-r asymptoti behavior an be stati onlyif  � d � 1; for  < d � 1, it is �at up to a solid an-gle de�it, in full similarity to the onventional ased = 2 [1; 2℄. If  > d� 1, then A(1) < 0, and there isa horizon at some � = �h where A = 0. From (12),4�2d �hZ0 d�1rd (�1) �1Z0 d�2rd (�2)V (�2) = 1;8



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 Multidimensional global monopole : : :and we therefore haveA(�) = �4�2d �Z�h d�1rd (�1) �1Z0 d�2rd (�2) V (�2) : (14)The  dependene of �h, with  = �2�2, an be foundfrom the relation4�2d 1Z�h d�1rd(�1) �1Z0 d�2rd (�2)V (�2) = � d�1��2(d�1) : (15)2.2. Large-r asymptoti behaviorFrom (6), we an �nd the asymptoti behavior ofthe �eld f(�) and the potential V (�) as r ! 1. Atlarge �, we have A ! A(1), see (13), and �eld equa-tion (6) redues to1rd ddr �rd dfdr�� d� 1 � d+ 1 ���2 �1� f2�� dr2 � f = 0;r !1:A regular solution of this equation must tend to unityas r !1; and for  = 1� f , we have the linear equa-tion ;rr +dr ;r +2��2(d�1)�d+1 � � d2��2r2� = 0;r !1: (16)The general solution of the orresponding homogeneousequation  0;rr +dr 0;r +2��2(d� 1) � d+ 1  0 = 0an be expressed in terms of Bessel funtions, 0(r) = r�(d�1)=2 �� �C1J�(d�1)=2� rr0�+ C2Y�(d�1)=2� rr0�� ;r20 =  � d+ 12��2(d� 1) :A speial solution of inhomogeneous equation (16) atr !1 is  = d2��2r2 +O� 1r4� :The general solution of Eq. (16) gives the asymptotibehavior for the Higgs �eld magnitude f as r !1,f(r) = 1� d2��2r2 � C(��2r2)d=4 �� sin� rr0 + �d4 + '� ; r !1: (17)
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γFig. 1. The funtion C() found numerially ford = 3Beause of the boundary onditions imposed, theintegration onstants C and ' are funtions of d and that an be found numerially. The funtion C() ford = 3 is presented in Fig. 1. From (17), we �nd theasymptoti behavior of V ,V (r) = ��44 � d��2r2 + 2C(��2r2)d=4 �� sin� rr0 + �d4 + '��2 ; r !1: (18)2.3. Bounds of the lassial regime and themonopole oreOf ertain interest are solutions with the osmolo-gial large-r behavior, i.e., those with  > d � 1. Thelatter ondition means that the salar �eld, approah-ing � at large r, atually takes near- or trans-Plankianvalues. Indeed, in D dimensions, the Plank length lDand mass mD are expressed in terms of the gravita-tional onstant � = �D aslD = �2=d; mD = ��2=d; d = D � 2:9



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003Therefore, �2 = �2 = mdD;and in the ase of interest where  � d, we have� � (mD)d=2pd: (19)We an, however, remain at sub-Plankian urva-ture values, thus avoiding the neessity to invoke quan-tum gravity, if we require sub-Plankian values of thepotential V in the entire spae, i.e.,�2V = 14�2��4 � m2D :For � given by (19), this implies that�� 4d2m2�dD : (20)We an thus preserve the lassial regime even withlarge � by hoosing su�iently small values of �. Interms of lengths, this ondition is equivalent to the re-quirement that the monopole ore radiusrore = 1p��is muh greater than the Plank length,1p�� � lD: (21)One may note that this ondition is external withrespet to the theory beause general relativity does notontain an internal restrition on the gravitational �eldstrength. Moreover, in ordinary units, our dimension-less gravitational �eld strength parameter, expressed as = �2�4�2, does not ontain ~. We obtain restri-tion (20) or (21) only when we ompare the harater-isti length rore existing in our theory with the Planklength lD = (~�2=3)1=d.We now disuss the solutions for  slightly ex-eeding the ritial value d � 1. In the ase where � (d� 1)� 1, the horizon radius rh is muh greaterthan rore; and the onstant C turns out to be negli-gibly small (this is on�rmed numerially, see Fig. 1).At large �2, the integrand in the inner integrals in (12),(14), and (15) is then given byd�2rd(�2)V (�2) � d24�� drr4�d :The main ontribution to the above inner integralsomes from the monopole ore if d < 3 and from the

upper limit if d > 3. For d = 3, it is a logarithmi inte-gral. As a result, we have di�erent behaviors of �h()at  � (d� 1)� 1 for d = 2 and d � 32).For d = 2 (4-dimensional general relativity),�1Z0 d�2rd(�2)V (�2) � 1Z0 d�2r2(�2)V (�2) = onst;and it follows from (15), in agreement with [1℄, that thehorizon radius rh is inversely proportional to  � 1,rh = onst � 1 ;  � 1� 1; d = 2:For d > 3, we �nd that at  � (d� 1)� 1, the horizonradius rh is inversely proportional to the square root of � (d� 1)� 1,rh =s d(d� 1)2(d� 3)( � d+ 1) 1��2 ;r2h � 1��2 ; d > 3: (22)It is thus on�rmed that for  � (d � 1) � 1, thehorizon is loated far from the monopole ore,r2h � 1��2 :The funtion A(r) at r > rh an then be found analyt-ially. In this ase, r(�) is a linear funtion at r > rhand dr = �d�. From (14) at r > rh, we �ndA(r) = �  + 1� d�2(d� 1)  1� rd�1hrd�1!++ d2�2(d� 3)��2r2 �1� �rhr �d�3� : (23)The ondition of the appliability of (23) is lD � rh:In view of rore � rh, it is less restritive than ondi-tion (21).2.4. Solutions with f(�) hanging its signAs in Ref. [1℄, numerial integration of the �eldequations shows that in addition to solutions with to-tally positive (or totally negative) f(u), there also existsolutions with a regular enter suh that f(u) hangesits sign n � 1 times. All these solutions exist for < n(d), where n(d) are some ritial values of theparameter . For n > 0, all of them have a horizon,2) This is the only important qualitative di�erene between thegeneral ase d � 3 and the partiular ase d = 2 onsidered in [1℄.10



ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003 Multidimensional global monopole : : :and the absolute value of f at the horizon jfh;n(�h)j isa dereasing funtion of , vanishing as  ! n � 0.Moreover, as  ! n(d), the funtion f(u) vanishes inthe whole range � � �h and is small inside the horizonfor  lose to n(d). This allows us to �nd the ritialvalues n(d) analytially: Eq. (6) redues to a linearequation for f in a given (de Sitter) bakground, andombined with the boundary onditions f(0) = 0 andf(�h) < 1, leads to a linear eigenvalue problem. Itssolution (see [1℄ for the details) in the d-dimensionalase gives the upper limits n(d) and the orrespond-ing minimal horizon radii rh = rhn for solutions withthe Higgs �eld magnitude f hanging its sign n times,rhn =p(2n+ 1)(2n+ d+ 2)=��2; (24)n = 2d(d+ 1)(2n+ 1)(2n+ d+ 2) : (25)For d = 2, Eqs. (24) and (25) redue to Eq. (52) inRef. [1℄. Under ondition (21), these solutions remainin the lassial gravity regime.3. 5-DIMENSIONAL MODELS ANDNONSINGULAR COSMOLOGY3.1. The extra dimensionAt present, there is no evidene for the existene ofmore than three spatial dimensions up to the ahievableenergies about several hundred GeV. But this energy isquite small on the Plank sale (of the order 1019 GeV).Our solutions of a possible osmologial interest orre-spond to  > d� 1, i.e., the Plank energy sale. Evenunder ondition (21), there remains an enormous rangeof sales in the early Universe in whih the numberof equally important spatial dimensions an be greaterthan 3.If we try to onsider our d = 3 solutions in theosmologial ontext, the extra oordinate is t in (1)and (5). The oordinate t is time inside the horizon andbeomes a fourth spatial oordinate outside it, whereA(�) < 0: Metri (5) takes the formds2 = d�2jA(�)j � jA(�)jdt2 � r2(�)d
23:Introduing the proper time � of a omoving observeroutside the horizon,� = �Z�h d�pjA(�)j ; (26)
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r = ∞ r = rhFig. 2. The Carter�Penrose diagram of a globalmonopole with a osmologial horizon. The diagonalsof the square represent the horizons. After identi�a-tion of t1 and t2, only the dashed regions survivewe obtain a 5-dimensional Kantowski�Sahs osmologywith a losed Friedmann�Robertson�Walker metri inthe 3+1-dimensional spae�time setion of a onstant t,ds24 = d�2 � a2(�)d
23 � jA(�(�))jdt2 : (27)The 4-dimensional spherial radius r(�) now plays therole of the sale fator, a(�) = r(�(�)).It is tempting to explain the unobservability ofthe extra dimension parameterized by the oordinatet by ompatifying t with a ertain �period� T in thespirit of Kaluza�Klein models. Suh a ompati�a-tion would lead to a singularity at r = rh, however, asis lear from Fig. 2. If t 2 R, the stati region (the leftquadrant in the diagram) is onneted with the futureosmologial region (the upper quadrant) by the hori-zon, rossed by photons and massive partiles withoutproblems. But if the t axis is made ompat by iden-tifying, e.g., the points t1 and t2 on the t axis, thestati and osmologial regions in the diagram take theform of the dashed setors, atually tubes of a vari-able thikness, onneted at one point only, the ends(tips) of the tubes. The urvature invariants do nothange due to this identi�ation and remain �nite, andthe emerging singularity in the �t plane resembles theonial singularity.Compati�ation is not the only possibility of ex-plaining why the t oordinate is invisible. It an alsobe assumed that at some instant of the proper os-11



K. A. Bronnikov, B. E. Meierovih ÆÝÒÔ, òîì 124, âûï. 1 (7), 2003mologial time � of 5-dimensional model (27), a phasetransition ours at a ertain energy sale 1=T , leadingto loalization of matter on the 3-spheres in the spirit ofbrane world models. Anyway, within our marosopitheory without speifying the struture of the physi-al vauum, it is impossible to explain why the extradimension is not seen now. It is nevertheless interest-ing to desribe some osmologial harateristis of thed = 3 global monopole.3.2. Some osmologial estimatesFor d = 3, the inner integrals in (14) and (15) havea logarithmi harater, and instead of (22) and (23),we obtain  � 2 = 3��2r2h �B + ln ���2r2h�� ;r2h � 1��2 ; d = 3 (28)andA(a) = � � 22�2 �1� r2ha2�+ 32�2��2 ln(a=rh)a2 ;a > rh; d = 3: (29)The dependene a(�) an be found from Eq. (26).In (28), B is a onstant lose to unity; our numerialestimate gives B � 0:75. The dimensionless radius ofthe horizon p��rh is presented in Fig. 3 as a funtionof  for d = 3 (solid line). The dashed line is asymp-toti dependene (28) valid for  � 2 � 1: The fun-tion A(�) � A(a(�)) is shown in Fig. 4 for d = 3 and = 3; 3:5, and 4. The numerial and analyti resultsare shown by solid and dashed lines, respetively. It isremarkable that only for  = 4, the approximate ana-lyti dependene (29), whih is stritly speaking validfor �2� 1, is slightly di�erent from the more preisedependene found numerially.Far outside the horizon, A(a) tends to a onstantvalue, A(a)! � � 22�2 ; a� rh;and metri (27) desribes a uniformly expanding worldwith a linear dependene a(�) at late times,a(�) = �pjA (1)j� =r � 22 �; � !1: (30)The Hubble parameter H = _a=a, where the dot de-notes d=d� , is found analytially from expression (29)for A(a) (d = 3, a > rh � 1=p��):H(a) = 1as � 22 �1� r2ha2�� 32 ln(a=rh)��2a2 : (31)
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30Fig. 5. The Hubble parameter H(�) for  = 3, 3:5,and 4 (from bottom up). At late times, H(�) = 1=�(dashed urve)The temporal evolution of the Hubble parameterH(�) is shown in Fig. 5 for  = 3, 3.5, and 4. Theexpansion starts from the horizon at � = 0 and ratherquikly approahes the late-time behavior H(�) = ��1.We atually have the asymptoti regime almost imme-diately after the beginning.If we try to extrapolate this late-time regime to thepresent epoh, we an use the estimate given in Ref. [11℄(Box 27.4), _a � 0:66; Eqs. (30) and (28) then lead to = 2 + 2_a2 = 2:87; p��rh � 3:65: (32)These estimates onform to the monopole parametervalues leading to a nonsingular osmology.The symmetry-breaking potential (18), averagedover the osillations, V (�) � V (a(�)), is a dereasingfuntion of � ,V (�) = 9( � 2)2��4 ++ ��4C22[(=2� 1)��2�2℄3=2 ; � !1: (33)In osmology, salar �eld potentials are often in-terpreted as a time-dependent e�etive osmologialonstant. The reason is that V enters the energy-momentum tensor as a �-term. In our ase, as an beseen from (33), this term behaves as a mixture of twoomponents, one deaying with the osmologial expan-sion as radiation (/ ��4 / a�4) and the other as mat-ter without pressure (/ ��3 / a�3) in 4 dimensions.The four-dimensional energy density orresponding toV is proportional to VpjAj. But at late times, the
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