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(QUASI)ELASTIC LARGE-ANGLE ELECTRON�MUONSCATTERING IN THE TWO-LOOP APPROXIMATION:CONTRIBUTIONS OF THE EIKONAL TYPEV. V. Bytev a, E. A. Kuraev a*, B. G. Shaikhatdenov a;ba Joint Institute for Nu
lear Resear
h141980, Dubna, Moskow Region, Russiab Departamento de Físi
a, Cinvestav del IPN07000, Méxi
o D.F., Mexi
oSubmitted 16 Oktober 2002A part of the eikonal-type 
ontributions to the e� large-angle high-energy s
attering 
ross-se
tion is 
onsideredin a quasi-elasti
 experimental set-up. In addition to virtual 
orre
tions, we examine inelasti
 pro
esses withemission of one and two soft real photons and soft lepton and pion pairs. Virtual photon 
ontributions are givenwithin a logarithmi
 a

ura
y. Box-type Feynman amplitudes with leptoni
 and a hadroni
 va
uum polarizationinsertion and double-box ones are 
onsidered expli
itly. Wherever appropriate, the analyti
 expressions obtainedare 
ompared with those predi
ted by the stru
ture fun
tion approa
h.PACS: 11.80.-m, 13.10.+q, 13.65.+i1. INTRODUCTIONThe need for evalution of the radiative 
orre
tionsat the two-loop order is di
tated by the experimentaldata on observables for a 
ollider 
alibration pro
essof ele
tron�positron s
attering that has rea
hed an im-pressive level of a

ura
y. Inspired by this, we 
on-sider the determination of the se
ond-order radiative
orre
tions to the 
ross-se
tion of Bhabha s
attering tobe our ultimate goal. At the same time, be
ause thetask of two-loop 
al
ulus is rather involved, it appearsto be easier to 
onsider the ele
tron�muon s
attering�rst, despite di�erent masses of intera
ting parti
les.The latter pro
ess is also important in itself be
ause itforms a ba
kground to the rare pro
esses, in parti
ularthose violating lepton number (for more details, see [1℄and referen
es therein). Improving theoreti
al predi
-tions on its observables 
ould therefore impose morestringent bounds on the physi
s beyond the StandardModel.The aim of this investigation is to 
al
ulate thenext-to-leading order 
ontributions to the large-angle*E-mail: kuraev�thsun1.jinr.ru

ele
tron�muon high-energy 
ross-se
tione�(p1) + ��(p2)! e�(p01) + ��(p02); (1)in a quasielasti
 experimental set-up,2"� "01 � "022" = �"" � �� 1; �"� m�(m�) ; (2)where ", "01, and "02 are the energies of the initial ands
attered leptons in the 
enter-of-mass referen
e frameand the Mandelstam variables are mu
h larger than themass squared of any parti
le involved in the pro
ess.The quantity �" indi
ates the energy resolution of de-te
tors that are supposed to tra
k �nal parti
les. In theleading logarithmi
 approximation, the 
ross-se
tion isthat of the Drell�Yan pro
ess [2℄,d�(s; t) = Z 4Yi=1 dxiD(xi; �t) d�0(sx1x2; tx1x3)�� �1 + ��K� ; (3)where �t = ln �tmem� ; t = (p1 � p01)2;s = (p1 + p2)2; u = (p1 � p02)2 : (4)224
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 large-angle ele
tron�muon s
attering : : :
Fig. 1. Box-type graphs with a va
uum polarization insertionIn the above expression, the quantities D(xi; �t) are thenonsinglet stru
ture fun
tions that satisfy the renor-malization group (RG) evolution equations. Their ex-pansion in the leading logarithmi
 approximation(�=�)� 1; (�=�)�t � 1
an be written asD(x; �t) = Æ(1� x) + 1Xn=1 1n! ���t2� �n P(n)(x) : (5)In a quasielasti
 set-up, it is appropriate to use onlythe Æ-part of the splitting fun
tion P(n)(x) denoted byP(n)� (x),P(n)(x) = 1Zx dyy P(1)(y)P(n�1)�xy� ; n � 2;P(1)(x) = �1+x21�x �+ = lim�!0�P(1)� (x)+P(1)� (x)�;P(1)� (x) = P(1)� Æ(1� x); P(1)� = 2 ln�+ 32 ;P (1)� (x) = 1 + x21� x �(1� x��): (6)

The stru
ture fun
tion then be
omesD(x; �t) = Æ(1� x)�1 + 1Xn=1 1n! ���t2� �n P(n)� �: (7)Be
ause the stru
ture fun
tion approa
h outlined is 
a-pable of providing only the leading logarithmi
 
or-re
tions, we need to expli
itly 
al
ulate the so-
alledK-fa
tor entering Eq. (3) in the one- and two-loop ap-proximations.Broadly speaking, the radiative 
orre
tions to thedi�erential 
ross-se
tion in the adopted mass regulari-zation s
heme are of two types. The �rst ones are thosearising from the virtual photon emission up to the se
-ond order of perturbation theory, whi
h requires 
al
u-lating, among others, the real two-loop Feynman ampli-tudes. They su�er from infrared divergen
es, whi
h areregularized by assigning the photon a negligibly small

mass � that is set to zero at the end of the 
al
ula-tions. Contributions of the se
ond type 
ome from theemission of soft real photons and 
harged parti
le pairs.The general stru
ture of the 
orre
tion to the
ross-se
tion 
an be represented as a sum of three types:vertex, eikonal, and de
orated box type. Ea
h of them
ontains virtual and real soft photon 
ontributions, isfree of infrared divergen
es, and preserves the stru
tureof the leading log 
orre
tion predi
ted on the basis ofRG ideas through the 
ontributions of individual dia-grams 
ontaining up to the fourth power of the largelogarithm �t at the two-loop order. In this regard, were
all that in our previous paper [1℄, it was shown thatthe vertex 
ontributions already provide a result 
on-sistent with the RC approa
h. Be
ause the �rst-orderradiative 
orre
tions 
oming from box-type diagramsare given in our previous work devoted to the evalua-tion of vertex-type 
ontributions [1℄, we here 
on
en-trate on the investigation of some eikonal box-type di-agrams at the se
ond order of perturbation theory. Inthe 
ase of elasti
 pro
esses, they 
orrespond to graphswith one, two (box diagram), and three (double boxdiagram) virtual photons mediated between intera
t-ing leptons. Box-type graphs with a va
uum polariza-tion insertion of either of the virtual ex
hange photonsinto the Green's fun
tion must also be taken into a
-
ount (see Fig. 1). A single soft photon approximationmust be applied to the one-loop 
orre
ted Feynmanamplitudes in order to obtain another set of 
ontribu-tions. Finally, the emission of two soft photons (pairsof 
harged parti
les) must also be taken into a

ountat this order.We brie�y des
ribe the 
ontents of the paper. InSe
. 2, we 
onsider the va
uum polarization e�e
ts inbox-type Feynman amplitudes with lepton (���; e�e) andpion (���+) pairs running a loop. Also in this se
-tion we 
onsider the 
orresponding 
ontribution 
om-ing from a soft lepton pair and a soft 
harged pion pairprodu
tion with one soft photon emission (see Fig. 2)asso
iated with the one-loop self-energy amplitudes ofthe virtual ex
hange photon. In Se
. 3, the results ofevaluation of the 
orre
tions 
orresponding to a singleand double soft photon emission (see Fig. 3) and to a3 ÆÝÒÔ, âûï. 2 225
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��
��
��
��Fig. 2. Soft lepton and pion pair produ
tion

Fig. 3. Sample diagrams pertaining to the double softphoton emissionsquare of box-type diagrams are presented; they are fol-lowed by brief 
on
luding remarks. In Appendix A, wepresent a set of s
alar integrals for box-type diagramswith a va
uum polarization insertion. In Appendix B,we give some details of the derivation of radiative 
or-re
tions 
oming from the squared box-type diagramsand all the integrals en
ountered during the 
al
ula-tion.2. BOX-TYPE DIAGRAMS WITH A VACUUMPOLARIZATION INSERTIONVa
uum polarization e�e
ts in the box-type Feyn-man amplitudes 
an be taken into a

ount by repla
ingone of the photon propagators by the va
uum polariza-tion insertion (see [3℄). In the 
ase where leptons withthe mass � run a loop, it is given by1k2 ! �3� 1Z0 �(v)dv(1� v2)(k2 �M2(v)) ;M2 = 4�21� v2 ; �(v) = 2� (1� v2)(2� v2) ; (8)and for a pion�antipion pair in the loop, it is1k2 ! �3� 1Z4m2� dM2M2 R(M2)k2 �M2 ;R(M2) = �e�e!hadr(M2)�e�e!��� : (9)Here, the quantity M is the invariant mass of thehadroni
 jet produ
ed in a single-photon annihilation

of a lepton pair and R(M2) is the known experimen-tal input ratio [4℄. For the matrix element squared, wethen obtainÆjMj2vp(lept) = 28�43t �� 1Z0 dv �(v)1� v2 �S(s; t;M2)� S(u; t;M2)� (10)for the va
uum polarization indu
ed by leptons, andÆjMj2vp(hadr) = 28�43t �� 1Z4m2� dM2M2 R(M2)�S(s; t;M2)� S(u; t;M2)� (11)for the hadroni
 va
uum polarization 
ontribution.The quantity S(s; t;M2) is universal irrespe
tive ofthe virtual pair running a self-energy loop and is givenby S(s; t;M2) = Z d4ki�2 Tr(e) Tr(�)(1)(2)(3)(4) ; (12)where (1) = k2 � 2kp1; (2) = k2 + 2kp2;(3) = k2 � 2kq + ~t; (4) = k2 � �2;Tr(e) = 14 Spfp1
�p01
�(p1 � k)
�g;Tr(�) = 14 Spfp2
�p02
�(p2 + k)
�g;p21 = m2e ; p22 = m2�;~t = t�M2; q = p1 � p01: (13)
Using a set of s
alar, ve
tor, and tensor box-type inte-grals given in Appendix A, we 
an express the quantityS(s; t;M2) through several basi
 integrals,S(s; t;M2) = u�ln s�~t + M2t ln �~tM2����s(s� u) + t~t2 ��I134 + I234�++ s(s2 + u2)I + s�u+ ~t2���I123 � I124 + ~tI� ; (14)where Iijl = Z d4ki�2 1(i)(j)(l) ;I = Z d4ki�2 1(1)(2)(3)(4) : (15)226
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 large-angle ele
tron�muon s
attering : : :Performing loop-momentum integration and negle
tingterms of the order ofm2�=(�t)� 1, we �nd, in the limitof large invariant variables,�S(s; t;M2)� S(u; t;M2)�����jtj�M2 == s2 + u2t Lus(�m � 2�t � ��) ++ (u� s)�12�2 + �2m � 12L2st � 12L2ut + ln2 m�me �++ uLst � sLut ; (16)�m = ln M2mem� ; �� = ln mem��2 ;Lst = ln s�t ; Lut = ln ut ; Lus = ln �us :In the opposite limit, the result is found to be�S(s; t;M2)� S(u; t;M2)�����M2�jtj == 1M2 �s2 + u22 Lus(�s + �u + 2��) ++ 32(u2�s � s2�u) + t2Lus + t(u� s)���32�m + 74�+ s2 + u22 �2�: (17)For the leptoni
 va
uum polarization with the massM2 = 4�21� v2(where both 
ases � = me;m� are taken into a

ount),further integration leads to the following expressionwithin the logarithmi
 a

ura
y:d�boxvpd�0 = 2�23�2 �t�2Lsu�32�t + �� � 103 ��� s2 � u2s2 + u2 (L2st + L2ut � 2�2) ++ 2ts2 + u2 [(t� s)Lst � (t� u)Lut℄�: (18)To �nalize this result, we must remove infrared di-vergen
es. For this, the interferen
e between the softphoton emission tree-level amplitudes and those bear-ing a leptoni
 va
uum polarization insertion must betaken into a

ount, with the resultd�
vpd�0 = �4�23�2 ��t�53��(2 ln�+��)Lsu+�tLsu�� 12(L2ut � L2st)� Li2�1� 
2 ��; (19)

where � is given in Eq. (2), 
 = 
os dp1; p01 is the 
o-sine of the s
attering angle in 
enter-of-mass referen
eframe, and the dilogarithm fun
tion is de�ned by thestandard formulaLi2(x) = � xZ0 ln(1� t)t dt: (20)Next, we must 
onsider the 
ontribution 
omingfrom the soft lepton pair produ
tion with the total pairenergy not ex
eeding �" (2�� �"� "). This 
an beread o�, e.g., from Ref. [5℄,d�spd�0 = �2�23�2 �t�Lsu ��t + Lst + Lut++2�2 ln�� 53��� 2Li2�1� 
2 ��: (21)The �nal logarithmi
ally a

urate result for the total
orre
tion given by the leptoni
 va
uum polarizationand the soft e�e; ��� pair produ
tion is then brought tothe form (see Eqs. (18), (19), (21))d�vp+spd�0 = 2�23�2 �t�2(L2ut � L2st) + 8Lus ln��� s2 � u2s2 + u2 (L2ut + L2st � 2�2) ++ 2ts2+u2 (tLsu�sLst+uLut)+4Li2�1�
2 ��: (22)This expression is seen to 
ontain only a next-to-leadingterm (of the order of �2�t) and to be free of infrareddivergen
es.We now 
onsider the soft pion pair produ
tion withthe total pair energy below �" and the invariant masssquared M2 bounded as4m2� �M2 < (�")2 � "2 = s=4: (23)The 
orresponding 
ontribution to the di�erential
ross-se
tion arises from the interferen
e of the �up�down� pair produ
tion, whi
h refers to pairs 
reatedby virtual photons emitted from the ele
tron line andthe muon line,d�dM2d�0 ������ = 2�4��M2 �2 d4qM2 �� Z d3q+d3q�2"+2"� Æ4(q+ + q� � q)���Qp01qp01 � Qp1qp1 ��Qp02qp02 � Qp2qp2 �;q2 =M2; Q = q+ � q�: (24)
227 3*



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003We �rst perform the invariant pion pair phase spa
eintegration,Z d3q+d3q�2"+2"� Æ4(q+ + q� � q)Q�Q� == 13 ��2 �g�� � q�q�q2 �Q2; � =s1� 4m2�q2 : (25)Upon rearranging the phase volume,Z d4qdq2 = 12 �"Zpq2 dq0qq20 � q2 Z d
q ; (26)the right-hand side of Eq. (24) 
an be re
ast to the form�23�2 �"ZM dq0qq20 �M2 �� Z d
q4� � p1p2p1q � p2q � p1p02p1q � p02q� == �23�2�Lsu ln 2�"M +O(1)�: (27)The �nal result is then given byd�dM2d�0 ������ = �26�2M2 �Lsu(�t � �m) +O(1)� : (28)Obviously, the 
ontribution 
oming from the box-typediagrams with the hadroni
 va
uum polarization 
an-not be obtained in analyti
 form be
ause of the pres-en
e of the quantity R(M2).3. SQUARED BOX AND THECORRESPONDING SOFT PHOTONCORRECTIONSThe �up�down� interferen
e of the soft photonemission from the ele
tron line and the muon line 
anbe evaluated using the expressionIpApB = 14� Z d3k! pApBpAk � pBk ����!<�" == �ln� + 12���LAB + 14 �L2AB � ln2 m�me ��� �26 + 12Li2�1 + 
2 �; (29)whereLAB = ln�2pApBmem� � ; pApB = "2(1� 
);

p2A = m2e ; p2B = m2�; "A = "B � " ;and the quantity ! is the soft photon energy. Usingthe known results for the interferen
e of the Born andbox-type elasti
 amplitudes (see Appendix B), we ob-tain that in the soft photon approximation, the singlesoft photon emission 
ontribution is given byd�
boxd�0 = ����2�2Lsu(�t + ��) + t2s2 + u2 ���ut Lst � st Lut + s� u2t (�2 + L2ut + L2st)���� ��Lsu�t + 12(L2ut � L2st)� 2Lsu�ln� + 12���++ Li2�1� 
2 ��: (30)In the 
ase of the emission of two soft photons with thetotal energy not ex
eeding �", we haved�

d�0 = �2�� �2(�12�tLsu + 14(L2st � L2ut) ++Lsu�ln�+12����12Li2�1�
2 ��2��26 L2su): (31)Finally, from the evaluation of the squared box-typegraphs in Appendix B, we infer the logarithmi
 
ontri-bution d�BBd�0 = �2�2 t2s2 + u2 �t�A�t +B�; (32)where the 
oe�
ients are given byA = 2s2 + u2t2 (L2us + �2);B = 4s2+u2t2 (L2us+�2)��+2Lus �st Lut�ut Lst�++ s� ut ��2(2Lst � Lus)� Lus(L2ut + L2st)�+ 8ut �2:4. SUMMARYThis paper is devoted to the determination of apart of the se
ond-order radiative 
orre
tions to the
ross-se
tion of the pro
ess of large-angle quasi-elasti
e� s
attering, namely those 
orresponding to eikonalbox-type diagrams. For box-type diagrams with a va
-uum polarization insertion, we obtain the formulas inEqs. (16), (17), and (28), whi
h imply that the 
ontri-butions 
oming from the interferen
e between the tree-level diagram and those (bearing a va
uum polarization228
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 large-angle ele
tron�muon s
attering : : :insertion) with the straight and 
rossed �legs� be
omein fa
t equal when we ex
hange s $ u (with the a
-
ura
y up to terms of the order of �2) and alternatethe overall sign of the 
ontribution. This is indeed amanifestation of the well-known symmetry relation be-tween amplitudes 
orresponding to di�erent 
hannelsof a given rea
tion.The main results of this work are analyti
 formulasgiven in the logarithmi
 approximation, but interme-diate formulas presented to a power a

ura
y allow atleast a numeri
 evaluation of the impa
t of subleadingterms on the overall value of the 
orre
tions. For ex-ample, in Se
. 2, we obtain two limiting 
ases of theleptoni
 va
uum polarization 
ontribution, for a small(Eq. (16)) and large (Eq. (17)) lepton pair invariantmass M with 
onstant a

ura
y.As a 
onsisten
y 
he
k of the 
al
ulation, the aux-iliary infrared parameter � is expe
ted to 
ompletely
an
el in the �nal results. Within the gauge invariantset of amplitudes 
onsidered in Se
. 2, we show that in-tegrating over v and then adding the 
ontribution givenby the soft lepton pair produ
tion, we indeed obtain aresult free of infrared divergen
es (Eq. (22)). The stru
-ture of this 
orre
tion is in agreement with the RG pre-di
tions and does not 
ontain large logarithms raised tothe power higher than the se
ond. But the same 
annotbe done for the 
ontributions 
al
ulated in Se
. 3 be-
ause the analysis there is in fa
t in
omplete. We alsogive the expression for the 
ross-se
tion of a soft pionpair produ
tion (Eq. (28)). Here, we 
annot expli
itlyshow the 
an
ellation of leading or next-to-leading log-arithms to o

ur when the expression is 
ombined withthe 
orresponding virtual 
orre
tion. This is be
ause ofa partially nonanalyti
 form of the expression for theradiative 
orre
tions 
aused by the hadroni
 va
uumpolarization insertion.In Se
. 3, we examined the 
ontribution 
omingfrom squared box-type diagrams (see Eq. (32)) suppliedby the 
orresponding one and two soft photon emis-sion 
ontributions with the expli
it expressions givenin Eqs. (30) and (31). To 
omplete the pi
ture, wemust take the radiative 
orre
tions 
aused by genuinetwo-loop eikonal-type amplitudes into a

ount. Keep-ing in mind the validity of the RG approa
h in the lead-ing logarithmi
 approximation and the e�e
t of 
an-
ellation of large logarithms in the expression for thelowest-order radiative 
orre
tions to eikonal-type dia-grams (see Ref. [1℄), we expe
t the interferen
e betweenthem and the Born-level amplitude to 
ompletely 
an-
el when added to the 
ontributions in Eqs. (30)�(32).Their expli
it evaluation will be the subje
t of a forth-
oming paper.
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yt (Méxi
o). APPENDIX AIn this appendix, we give a set of s
alar integralsen
ountered in dealing with box-type diagrams with ava
uum polarization insertion in one of the ex
hangevirtual photon propagators. Clearly, in this 
ase, weneed the integrals with a virtual ex
hange photon en-dowed with a mass M . In evaluating ve
tor and tensorintegrals, we therefore use the te
hnique presented inAppendix B with the only 
hange that all the s
alarintegrals with three (Iijk) and four (I) denominatorsare repla
ed by the following ones:1) in the 
ase of a large mass M (M2 � s � �t),I123 = 1M2�� ln M2s � 1 ++ sM2 �12 ln M2s + 14��;I134 = � 1M2�ln M2m2e + 1 ++ tM2 �12 ln M2m2e + 14��;I234 = � 1M2�ln M2m2� + 1 ++ tM2 �12 ln M2m2� + 14��;I = � 12sM2�2�s�� + �2s � 4�23 �;I3 = ~tI � I124 = 1M2��2ts �s + 1� ln sM2 ++ sM2 �12 ln sM2 � 14 +� ts�2 �s�� ;
(A.1)

2) in the opposite limit �t�M2, we must use theintegralsI134 = 1t �ln M2m2e ln �tM2 + �26 + 12 ln2 �tM2 �;I234 = 1t �ln M2m2� ln �tM2 + �26 + 12 ln2 �tM2 �;229



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003I123 = � 12s�2�s�m + 4�23 � �2s + ln2 m�me �;I = 1st�s [�� + 2�t � �m℄ ;I3 = 1s�2�s ln �tM2 + �s�m � 12�2s ++ 12 ln2 m�me + 2�23 �: (A.2)
APPENDIX BHere, we give the details of the box�box 
ontribu-tion 
al
ulation. First of all, we must distinguish three
ases: two box squares with straight and 
rossed legsand one 
ase with the interferen
e of amplitudes with
rossed and straight legs.To 
al
ulate the 
ontributions, we must evaluatetensor, ve
tor, and s
alar integrals with four and threedenominators. We �rst 
onsider the integral for the boxwith straight legs. The ve
tor integral 
an be writtenas Z d4kk�i�2(1)(2)(3)(4) = Ap1� +Bp2� + Cq�; (B.1)where quantities (1), (2), and (4) were de�ned in (13),and we use the notation m = me, M = m�, and (3) isk2 � 2kq + t withq = p1 � p01 = p02 � p2; q2 = t: (B.2)The 
oe�
ients A, B, and C are determined asA = 12stu [�t2a� t(2s+ t)b� st
℄;B = 12stu [�t(2s+ t)a� t2b+ st
℄;C = 12stu [�sta+ stb� s2
℄;a = I123 � I234; b = I134 � I123; 
 = tI: (B.3)

The s
alar integrals I and Iijk are given byI = Z d4ki�2(1)(2)(3)(4) == 2st�ln smM � i�� ln �t�2 ;

I123 = Z d4ki�2(1)(2)(3) == � 12s�2�ln smM � i�� ln �2mM ++ �23 � �ln smM � i��2 + ln2 Mm �;I134 = Z d4ki�(1)(3)(4) = 1t �12 ln2 �tm2 + 2�23 �;I234 = Z d4ki�(2)(3)(4) = 1t �12 ln2 �tM2 + 2�23 �: (B.4)
To 
onsider the tensor integral, we use the algebrai
almethod,Z d4kk�k�i�2(1)(2)(3)(4) = agg�� + a11p1�p1� ++ a22p2�p2� + a12(p1�p2� + p1�p2�) ++a1q(p1�q�+p1�q�)+a2q(p2�q�+p2�q�)++ aqqq�q� : (B.5)Multiplying the above equation with four-ve
tors p1,p2, and q, we obtain a system of algebrai
 equations,when
e the quantities aij are expressed through thes
alar integrals,a22 = 1s (A2 � ta2q);a11 = 1s (A4 + ta1q);a12 = 1s (A1 � 2ag � ta1q);ag = 12(A9 � 2taqq � ta1q + ta2q);a1q = 1t (A1 �A5 � ta2q);a2q = 1s+ t (A3 +A10 �A5 �A9);aqq = 1t(s+ t) (tA3 + s(A5 +A9 �A10)):

(B.6)
The quantities Aj are given byA1 = 1s (I13 � I12);A2 = I234 + 1s (I12 � I23) ++ 1t (2I34 � I23 � I24);A3 = I123 + 1s (2I12 � I13 � I23) += 1t (�I23 + I34);230



ÆÝÒÔ, òîì 123, âûï. 2, 2003 (Quasi)elasti
 large-angle ele
tron�muon s
attering : : :A4 = I134 + 1s (I12 � I13) ++ 1t (2I34 � I13 � I14);A5 = 1s (I23 � I12);A9 = tC + I123 + 1s (2I12 � I13 � I23);A10 = I123; (B.7)
where Iij denote s
alar integrals with two denomina-tors,I12 = Z d4ki�2(1)(2) = ln �2M2 � ln sM2 + i� + 1;I13 = Z d4ki�2(1)(3) = I14 = Z d4ki�2(1)(4) == ln �2M2 + ln M2m2 + 1;I23 = Z d4ki�2(2)(3) = I24 = Z d4ki�2(2)(4) == ln �2M2 + 1;I34 = Z d4ki�2(3)(4) = ln �2M2 � ln �tM2 + 1;

(B.8)
and Iijk and I are determined above. For 
rossed legsin a box-type diagram, we must evaluate the integralsZ d4kk�i�2(1)(~2)(3)(4) = ~Ap1� � ~Bp02� + ~Cq�; (B.9)where (~2) = k2 + p02k and~A = 12stu [�t2~a� t(2u+ t)~b� u t ~
℄;~B = 12stu [�t(2u+ t)~a� t2b+ u t ~
℄;~C = 12stu [�u t ~a+ u t~b� u2 ~
℄;~a = I1~23 � I~234; ~b = I134 � I1~23; ~
 = t~I: (B.10)The integrals are given by~I = Z d4ki�2(1)(~2)(3)(4) = 2ut ln �umM ln �t�2 ;I1~23 = Z d4ki�2(1)(~2)(3) = � 12u �� �2 ln �umM ln �2mM + �23 �� ln2 �umM + ln2 Mm �;I~234 = Z d4ki�(~2)(3)(4) = 1t �12 ln2 �tM2 + 2�23 �; (B.11)

and I134 is given in (B.4).For the tensor integral, we haveZ d4kk�k�i�2(1)(~2)(3)(4) = ~agg�� + ~a11p1�p1� ++ ~a22p02�p02� � ~a12(p1�p02� + p1�p02�) ++ ~a1q(p1�q� + p1�q�)� ~a2q(p02�q� + p02�q�) ++ ~aqqq�q� ; (B.12)where we use~a22 = 1u ( ~A2 � t~a2q);~a11 = 1u ( ~A4 + t~a1q);~a12 = 1u ( ~A1 � 2~ag � t~a1q);~ag = 12( ~A9 � 2t~aqq � t~a1q + t~a2q);~a1q = 1t ( ~A1 � ~A5 � t~a2q);~a2q = 1u+ t ( ~A3 + ~A10 � ~A5 � ~A9);~aqq = 1t(u+ t) (t ~A3 + u( ~A5 + ~A9 � ~A10)):
(B.13)

The quantities ~Aj are given by~A1 = 1u(I13 � I1~2);~A2 = I~234 + 1u (I1~2 � I~23) ++ 1t (2I34 � I~23 � I~24);~A3 = I1~23 + 1u (2I1~2 � I13 � I~23) ++ 1t (�I~23 + I34);~A4 = I134 + 1u (I1~2 � I13) ++ 1t (2I34 � I13 � I14);~A5 = 1u(I~23 � I1~2);~A9 = t ~C + I1~23 + 1u(2I1~2 � I13 � I~23);~A10 = I1~23;
(B.14)

where Iij denote s
alar integrals with two denomina-tors,231



V. V. Bytev, E. A. Kuraev, B. G. Shaikhatdenov ÆÝÒÔ, òîì 123, âûï. 2, 2003I1~2 = Z d4ki�2(1)(~2) = ln �2M2 � ln �uM2 + 1;I~23 = Z d4ki�2(~2)(3) = I~24 = Z d4ki�2(~2)(4) == ln �2M2 + 1; (B.15)and Iijk and I are determined above. The other inte-grals I13, I14, and I34 are given in (B.8).With all these integrals, it is straightforward to ob-tain the �nal result for the squared box-type diagrams.With the intent to realize subsequent numeri
 
al
ula-tions, we give it in the form where all terms not en-han
ed by large logarithms are retained,X jMboxj2 = 16�4B(s; t; u);B(s; t; u) = 8(s2 + u2)t2 (L2us + �2)�� ln2��t�2 �� 4 ln��t�2 ��� Lus �s� ut (L2ut + L2st � Lut � Lst) + Lus�++ (s� u)22 � 1s2L4ut + 1u2L4st�++ 2(s� u) ��1sL3ut + 1uL3st�+ 2 �L2ut + L2st�++ �2(4 ln��t�2 ��s� ut (2Lst � Lus) + 2ut �++ hLut �1� us �� 1i2 ++ 2 hLst �1� su�� 1i2 � 1)++ �42 �1� us�2 : (B.16)

For 
ompleteness, we here present a formula for theinterferen
e of a tree-level and a box-type diagram am-plitudes,2XM?BornMbox ==X jMBornj2��(2Lsu(�t + ��) ++ t2s2 + u2 �ut Lst � st Lut ++ s� u2t (�2 + L2ut + L2st)�): (B.17)Adding to this expression the 
ontribution arising fromthe �up�down� interferen
e of a soft photon emissionby ele
tron and muon lines, we arrive at the expressionfor the radiative 
orre
tions given in Eq. (16) in [1℄.REFERENCES1. V. Bytev, E. Kuraev, and B. Shaikhatdenov, E-printar
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