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A part of the eikonal-type contributions to the ey large-angle high-energy scattering cross-section is considered
in a quasi-elastic experimental set-up. In addition to virtual corrections, we examine inelastic processes with
emission of one and two soft real photons and soft lepton and pion pairs. Virtual photon contributions are given
within a logarithmic accuracy. Box-type Feynman amplitudes with leptonic and a hadronic vacuum polarization
insertion and double-box ones are considered explicitly. Wherever appropriate, the analytic expressions obtained
are compared with those predicted by the structure function approach.

PACS: 11.80.-m, 13.10.+q, 13.65.+i

1. INTRODUCTION

The need for evalution of the radiative corrections
at the two-loop order is dictated by the experimental
data on observables for a collider calibration process
of electron—positron scattering that has reached an im-
pressive level of accuracy. Inspired by this, we con-
sider the determination of the second-order radiative
corrections to the cross-section of Bhabha scattering to
be our ultimate goal. At the same time, because the
task of two-loop calculus is rather involved, it appears
to be easier to consider the electron-muon scattering
first, despite different masses of interacting particles.
The latter process is also important in itself because it
forms a background to the rare processes, in particular
those violating lepton number (for more details, see [1]
and references therein). Improving theoretical predic-
tions on its observables could therefore impose more
stringent bounds on the physics beyond the Standard
Model.

The aim of this investigation is to calculate the
next-to-leading order contributions to the large-angle
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electron-muon high-energy cross-section

e~ (p1) + 1~ (p2) = e~ (P) + 1~ (py), (1)

in a quasielastic experimental set-up,

Ae

2 — & — &l
#—?EA<<1,

5 (2)
where ¢, €], and &), are the energies of the initial and
scattered leptons in the center-of-mass reference frame
and the Mandelstam variables are much larger than the
mass squared of any particle involved in the process.
The quantity Ae indicates the energy resolution of de-
tectors that are supposed to track final particles. In the
leading logarithmic approximation, the cross-section is
that of the Drell-Yan process [2],

Ae > my(myg),

4
do(s,t) = /deﬂ)(xi.,pt)dag(sxlxg.,taclxg) X
i=1

X (1+ %K) . (3)

where
—t
pr=1In , t=(p - ph)%
ey (4)
5= (p1 +p2)27 u=(pm —plz)Q .
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Fig.1. Box-type graphs with a vacuum polarization insertion

In the above expression, the quantities D(x;, p;) are the
nonsinglet structure functions that satisfy the renor-
malization group (RG) evolution equations. Their ex-
pansion in the leading logarithmic approximation
(a/m) <1, (a/mp ~1

can be written as
L (ory" p
D(x,pr) =0(1 —x) + gn—( ) (). (5)

In a quasielastic set-up, it is appropriate to use only
the d-part of the splitting function P (x) denoted by

PR (@),
P (z) = Zyp( J(yypn=1) (g) , n>2,

T

PO (z) = <11+_Z ) = Jim [PY@)+P @), (g
+

PO @) = PUs(1—a), P =2mA+ S,
2
PV (z) = 11+_Z 01—z — A).

The structure function then becomes
api\" 5(n)
5(1—2)[1 (—)
. { +Z )" g

Because the structure function approach outlined is ca-
pable of providing only the leading logarithmic cor-
rections, we need to explicitly calculate the so-called
K-factor entering Eq. (3) in the one- and two-loop ap-
proximations.

Broadly speaking, the radiative corrections to the
differential cross-section in the adopted mass regulari-
zation scheme are of two types. The first ones are those
arising from the virtual photon emission up to the sec-
ond order of perturbation theory, which requires calcu-
lating, among others, the real two-loop Feynman ampli-
tudes. They suffer from infrared divergences, which are
regularized by assigning the photon a negligibly small

D(x, pt) = (7)

3 ZKOT®, B, 2

mass A that is set to zero at the end of the calcula-
tions. Contributions of the second type come from the
emission of soft real photons and charged particle pairs.

The general structure of the correction to the
cross-section can be represented as a sum of three types:
vertex, eikonal, and decorated box type. Each of them
contains virtual and real soft photon contributions, is
free of infrared divergences, and preserves the structure
of the leading log correction predicted on the basis of
RG ideas through the contributions of individual dia-
grams containing up to the fourth power of the large
logarithm p; at the two-loop order. In this regard, we
recall that in our previous paper [1], it was shown that
the vertex contributions already provide a result con-
sistent with the RC approach. Because the first-order
radiative corrections coming from box-type diagrams
are given in our previous work devoted to the evalua-
tion of vertex-type contributions [1], we here concen-
trate on the investigation of some eikonal box-type di-
agrams at the second order of perturbation theory. In
the case of elastic processes, they correspond to graphs
with one, two (box diagram), and three (double box
diagram) virtual photons mediated between interact-
ing leptons. Box-type graphs with a vacuum polariza-
tion insertion of either of the virtual exchange photons
into the Green’s function must also be taken into ac-
count (see Fig. 1). A single soft photon approximation
must be applied to the one-loop corrected Feynman
amplitudes in order to obtain another set of contribu-
tions. Finally, the emission of two soft photons (pairs
of charged particles) must also be taken into account
at this order.

We briefly describe the contents of the paper. In
Sec. 2, we consider the vacuum polarization effects in
box-type Feynman amplitudes with lepton (uji, e€) and
pion (7~ 7T) pairs running a loop. Also in this sec-
tion we consider the corresponding contribution com-
ing from a soft lepton pair and a soft charged pion pair
production with one soft photon emission (see Fig. 2)
associated with the one-loop self-energy amplitudes of
the virtual exchange photon. In Sec. 3, the results of
evaluation of the corrections corresponding to a single
and double soft photon emission (see Fig. 3) and to a
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Fig.2. Soft lepton and pion pair production

X

Fig.3. Sample diagrams pertaining to the double soft
photon emission

square of box-type diagrams are presented; they are fol-
lowed by brief concluding remarks. In Appendix A, we
present a set of scalar integrals for box-type diagrams
with a vacuum polarization insertion. In Appendix B,
we give some details of the derivation of radiative cor-
rections coming from the squared box-type diagrams
and all the integrals encountered during the calcula-
tion.

2. BOX-TYPE DIAGRAMS WITH A VACUUM
POLARIZATION INSERTION

Vacuum polarization effects in the box-type Feyn-
man amplitudes can be taken into account by replacing
one of the photon propagators by the vacuum polariza-
tion insertion (see [3]). In the case where leptons with
the mass p run a loop, it is given by

$v) =2~ (1-0*)(2-2%),

1=
and for a pion—antipion pair in the loop, it is
oo - -

dM? R (MZ)

M2 kz M2’

1_)(1
k2 3n

O.eé—)hadr (MZ)

Geéﬁuﬁ

R(M?) =

Here, the quantity M is the invariant mass of the
hadronic jet produced in a single-photon annihilation

of a lepton pair and R(M?) is the known experimen-
tal input ratio [4]. For the matrix element squared, we
then obtain

28q4
vp(lept) = 3t

d|IM(3

S(s,t, M?) — S(u,t, M*)] (10)

for the vacuum polarization induced by leptons, and

284
5|M‘vp hadr) — T
dM2 . .
X WR(MZ) [S(s,t, M?) — S(u,t,M?)] (11)
4m?2

for the hadronic vacuum polarization contribution.

The quantity S(s,t, M?) is universal irrespective of
the virtual pair running a self-energy loop and is given
by

d*k Tr(e) Tr(u)

moeea M

S(s,t, M?) =/

where

(1) = kz - Qkpl-,
(3) = k? — 2kq +1,

(2) = k2 + 2kp27
(4) = k2 - A27

1
Tr(e) = 7 SpA{P1YuPi Y (1 — k)Y

1
Tr(u) = 1 Sp{P2vuPsyw (P2 + k)T

2 2 2 2
pl_m37 pZ_mu‘/

t~:t_M27 q:pl_pll

Using a set of scalar, vector, and tensor box-type inte-
grals given in Appendix A, we can express the quantity
S(s,t, M?) through several basic integrals,

M? . -t }

S
S(S,t,M )—u{ln —t+Tan

- <5(3 —u) + %) (T34 + Ip3a] +

t ~
+s(s* +ut)I +s <u+ 5) [~Tas — Loa + 1], (14)

where

d'k 1
= | = wmy

d*k 1 (15)
= | & woem
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Performing loop-momentum integration and neglecting
terms of the order of m?, /(—t) < 1, we find, in the limit
of large invariant variables,

[S(s,t,MZ) — S(u,t,MZ)]

[t]>M?2
s 4+ u?
= t Lus(pm - th - PA) +
1 1 1 ,m
+ (u—s) <§7"2 + P — §L§t - §Lit +1In m_l:> +
+uLlg — sLy, (16)
M? Mem
pm:lnmma /JA—ln :9\211’
ey
Lstzlni, Loy =1ng, Lys =1n_—u.
—t t s

In the opposite limit, the result is found to be

[S(s,t,w) - S(u,t,M2)H _

M?2>|t|
1 [s®+u?
BYE] [TLus(ps + pu +2p5) +
3
+ g(uzps — 5%py) + 2 Lys + t(u — s) x

3 7 s +u?
X | = — .o(17
<2pm + 4> t—— | (17
For the leptonic vacuum polarization with the mass

412

M= ——
1—02

(where both cases u = m.,m, are taken into account),

further integration leads to the following expression

within the logarithmic accuracy:

dobor 242 3 10
wo— 2= 5oL, (2 B
ng 371'2 pt{ su <2Pt + P 3 )
5% —u’ 2 2 2
- m(Lst + Ly —277) +
2t
+ T [(t—s)Lgt — (t —u)Lye] p. (18)

To finalize this result, we must remove infrared di-
vergences. For this, the interference between the soft
photon emission tree-level amplitudes and those bear-
ing a leptonic vacuum polarization insertion must be
taken into account, with the result

do? 4a2 5
do”;’ — ~33 (/%-g) [(2ln A+4pr)Lsy+ptLsu—

_ %(Lgt — 1) —L12<1;Cﬂ, (19)

where A is given in Eq. (2), ¢ = cospy,p; is the co-
sine of the scattering angle in center-of-mass reference
frame, and the dilogarithm function is defined by the
standard formula

T

Liy(2) = — / @dt. (20)
0

Next, we must consider the contribution coming

from the soft lepton pair production with the total pair

energy not exceeding Ae (2u < Ae < ¢). This can be
read off, e.g., from Ref. [5],

dos, 202

- o9 Lsu Ls Lu
doo 3.2 Pt{ |:pt + Lst + Lut+

2 (ams - 2] o (1)) e

The final logarithmically accurate result for the total
correction given by the leptonic vacuum polarization
and the soft eé, ufi pair production is then brought to
the form (see Eqs. (18), (19), (21))

3 3

2
doypisp 2

o= gt 2(L2, — L2,) + 8LysIn A —
82 — u2
— m([;it + L?t — 271'2) +
2t [ 1-c
+82+—u2(thu_5Lst+ULut)+4L12 <T>:| . (22)

This expression is seen to contain only a next-to-leading
term (of the order of a?p;) and to be free of infrared
divergences.

We now consider the soft pion pair production with
the total pair energy below Ae and the invariant mass
squared M?2 bounded as

4m?2 < M? < (Ae)? < & = 5/4. (23)

The corresponding contribution to the differential

cross-section arises from the interference of the «up-—

down» pair production, which refers to pairs created

by virtual photons emitted from the electron line and
do

the muon line,
R =92 471'_0( 2@ X
dM?3dog |+ M2 ) M?

dSQ+dSQ— 4
X 7(5 _ - X
/ 2 2 (4+ +q- —q)

y <Qp’1 _ Qp1> <Qp’2 _ sz)
aw;  am avh  aqp2 )’
=M, Q=q+—q_.

(24)

3*
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We first perform the invariant pion pair phase space
integration,

B, d3q_
/M&(% +q- —q)QuQ, =

2e42e_

173 Qv 4m?
:__<gW_ 1;2 Q> B=4[1- - (25)

3 2

Upon rearranging the phase volume,

Ae
1
5 [ doJii-a a0, o)
Ve

the right-hand side of Eq. (24) can be recast to the form

€
2

A
«

R —M2
372 qo0 q

M
" / qu( pip2 piph >:
dm \p1q-p2q  DP1q-Dhy

_ @ (Lsu In 2#]\‘; + 0(1)). (27)

32

The final result is then given by

042

V| = e [Laloe — o) + O] (28)

dM2d0'0 ot

Obviously, the contribution coming from the box-type
diagrams with the hadronic vacuum polarization can-
not be obtained in analytic form because of the pres-
ence of the quantity R(M?).

3. SQUARED BOX AND THE
CORRESPONDING SOFT PHOTON
CORRECTIONS

The <«up—downy» interference of the soft photon
emission from the electron line and the muon line can
be evaluated using the expression

I _ 1 [ &k paps .
PaPB " gp w pak-ppk

w<Ae

:<IHA+10A> Lap+ ~ <L —In 2ﬂ>—
2 Me

4
2 1. /14+¢
% + §L12< >, (29)

where

2pa
Lagp=1In <—p pB) . papp =¢c>(1—c),
Mmemy,

pi:mgv p2B:m;2u EA=EB=E¢,
and the quantity w is the soft photon energy. Using
the known results for the interference of the Born and
box-type elastic amplitudes (see Appendix B), we ob-
tain that in the soft photon approximation, the single

soft photon emission contribution is given by
doy . a\’ t?
—20 = —) |2L + + —=—— X
dog T sulpe+ ) 52 4+ u?

u s s—u
X <;Lst - ZLut + 57 (n* + L2, +L§t)>:| X

1 1
—(L2, = L%) — 2Ly, (mA + pr> +

2
+L12<%>} (30)

In the case of the emission of two soft photons with the
total energy not exceeding Ae, we have

X |:_Lsupt +

do" 20\ 2 1
dog <7> { |: ptLsu + 4(th Lit) +

+ Lo (In A4 ——L1 =\ (31)
su 29,\ 2 2 6 su (*

Finally, from the evaluation of the squared box-type
graphs in Appendix B, we infer the logarithmic contri-
bution

dGBB 042 t2

dog = s2 4 th [Apt + B] (32)

where the coefficients are given by

5% 4+ u?

A=2 12 (L2 + 7?),
82 4u? u
B = 4= (Ly+7°)pa+2Lus (tL“t tht) n
s—u S
+—t [7T2(2Lst _Lus) _Lus(Lit_'_Lit)] _'_771_2.

4. SUMMARY

This paper is devoted to the determination of a
part of the second-order radiative corrections to the
cross-section of the process of large-angle quasi-elastic
eu scattering, namely those corresponding to eikonal
box-type diagrams. For box-type diagrams with a vac-
uum polarization insertion, we obtain the formulas in
Eqgs. (16), (17), and (28), which imply that the contri-
butions coming from the interference between the tree-
level diagram and those (bearing a vacuum polarization
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insertion) with the straight and crossed «legs» become
in fact equal when we exchange s <> u (with the ac-
curacy up to terms of the order of 7%) and alternate
the overall sign of the contribution. This is indeed a
manifestation of the well-known symmetry relation be-
tween amplitudes corresponding to different channels
of a given reaction.

The main results of this work are analytic formulas
given in the logarithmic approximation, but interme-
diate formulas presented to a power accuracy allow at
least a numeric evaluation of the impact of subleading
terms on the overall value of the corrections. For ex-
ample, in Sec. 2, we obtain two limiting cases of the
leptonic vacuum polarization contribution, for a small
(Eq. (16)) and large (Eq. (17)) lepton pair invariant
mass M with constant accuracy.

As a consistency check of the calculation, the aux-
iliary infrared parameter )\ is expected to completely
cancel in the final results. Within the gauge invariant
set of amplitudes considered in Sec. 2, we show that in-
tegrating over v and then adding the contribution given
by the soft lepton pair production, we indeed obtain a
result free of infrared divergences (Eq. (22)). The struc-
ture of this correction is in agreement with the RG pre-
dictions and does not contain large logarithms raised to
the power higher than the second. But the same cannot
be done for the contributions calculated in Sec. 3 be-
cause the analysis there is in fact incomplete. We also
give the expression for the cross-section of a soft pion
pair production (Eq. (28)). Here, we cannot explicitly
show the cancellation of leading or next-to-leading log-
arithms to occur when the expression is combined with
the corresponding virtual correction. This is because of
a partially nonanalytic form of the expression for the
radiative corrections caused by the hadronic vacuum
polarization insertion.

In Sec. 3, we examined the contribution coming
from squared box-type diagrams (see Eq. (32)) supplied
by the corresponding one and two soft photon emis-
sion contributions with the explicit expressions given
in Egs. (30) and (31). To complete the picture, we
must take the radiative corrections caused by genuine
two-loop eikonal-type amplitudes into account. Keep-
ing in mind the validity of the RG approach in the lead-
ing logarithmic approximation and the effect of can-
cellation of large logarithms in the expression for the
lowest-order radiative corrections to eikonal-type dia-
grams (see Ref. [1]), we expect the interference between
them and the Born-level amplitude to completely can-
cel when added to the contributions in Eqgs. (30)—(32).
Their explicit evaluation will be the subject of a forth-
coming paper.
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APPENDIX A

In this appendix, we give a set of scalar integrals
encountered in dealing with box-type diagrams with a
vacuum polarization insertion in one of the exchange
virtual photon propagators. Clearly, in this case, we
need the integrals with a virtual exchange photon en-
dowed with a mass M. In evaluating vector and tensor
integrals, we therefore use the technique presented in
Appendix B with the only change that all the scalar
integrals with three (I;;;) and four (I) denominators
are replaced by the following ones:

1) in the case of a large mass M (M? > s ~ —t)

3

2
.[123:%{—1HMT—1+
e[ 2 1)

M2|27 s 4]
1 M?
1134——W{1n—g+1+
+L-11n%2+1-}
M2|2 m2 4]
1 2
IQ34:_W{IH—3+1+ (A]_)
+L|:11n%2+1:|}
M2[2 m2  4]f’

2

77}7

1
I =——"—-1{2p, 2 _

N 1 2t s
Igztf—1124zm{—?ps+l—lnm+
LN ESE NS SAY

w2t T\ ) P

2) in the opposite limit —t > M?, we must use the
integrals

1 -t 7 1.5 —t
1134:;{1n—glnm+€+§ln W:|/
1 oot w1, —t
]234=;|:1n—31nm+€+§1n W:|’
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2

47 m
Io3 =—%[2pspm+?—P§+1n2—Z )
1
I:gps[pk+2pt_pm]a
1 —t 1, (A.2)
13=;[2Pslnm+/)s/)m—§%+
1 m 272
S e R I
+2 " M 3 ]

APPENDIX B

Here, we give the details of the box—box contribu-
tion calculation. First of all, we must distinguish three
cases: two box squares with straight and crossed legs
and one case with the interference of amplitudes with
crossed and straight legs.

To calculate the contributions, we must evaluate
tensor, vector, and scalar integrals with four and three
denominators. We first consider the integral for the box
with straight legs. The vector integral can be written

/ d* kkH
iw?(1)(2)(3)(4)

= Ap1y + Bpay + Cqy, (B.1)

where quantities (1), (2), and (4) were defined in (13),
and we use the notation m = m., M = m,, and (3) is
k2 — 2kq + t with

g=p—py=ph—p2, ¢ =t (B.2)
The coefficients A, B, and C are determined as
A= L[—tQa —t(2s + t)b — stc],
2stu
B = E[—t(23+t)a—t2b+stc], (B.3)
= M[—sta + sth — s¢],

a=1Ii23 — Irzs, b= 1I134 —I123, c=11I.

The scalar integrals I and I;j;, are given by

d*k
= / i (1)(2)3))
2

2 {1 - m] In

st

S

ﬁa

n——
m

; _/ d*k B
i 0)2)6)
s . A2
——%[2[lnm —171'] lan+
71'2 S 2
T~ i 2 M4 B.4
+ 3 {lan 171'] +In m]’ (B.4)
d*k 11 —t 272
I = _— = — —l 2_ S
/m<1><3><4> t{f 2773 ]
Y R
BZ @G @ 2 2T 3]

To consider the tensor integral, we use the algebraical
method,

/ dkkyk, N .
D)) T I

+ asepaupry + a12(Pr1up2u + ProP2u) +
+a1q(p1MQV+p1qu)+a2q (p2qu+p2uqu)+

+ agqquqv. (B.5)

Multiplying the above equation with four-vectors py,
p2, and ¢, we obtain a system of algebraic equations,
whence the quantities a;; are expressed through the
scalar integrals,

a9y = %(Ag — tasy),

ajp = é(z‘h + taig),

app = é(Al — 2a4 — taig),

ag = %(Ag — 2tagq — tayg + taz,), (B.6)
a1y = %(Al — A5 — taa),

asq = %H(Ag + A — A5 — Ay),

agq = D) (tAs + s(As + Ag — A1p)).

The quantities A; are given by

Av= (I3 ~ o),

As = Irzs + %(1—12 — Ix3) +

+ %(2134 — Ioz — Ing),

Az = Loz + %(2112 —hi3—Ixn)+

1
= Z(—123 + I34),
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1
Ay = Ii3q + ;(]12 —Ii3) +

1
+ ;(2]34 — Iz — L14),

1
As = ;(1—23 - -712)-
=10+ Loz + — (2112 — I3 — Ing),
Ao = I123,

where [;; denote scalar integrals with two denomina-
tors,

I —/7614’“ I S
2= [ ieme) - e M2

d'k d'k
ha = / ImE T / i (1)(4)
A? M?

+im+ 1,

=In— +In— +1
n]\42—|—nm2—}—7 (B5)
1—/ d'k —1—/ 'k '
2o ie@e) ) i@
AZ
:IDW_'_:[’

I / d'k 1 A —1 —t +1,
= | —————~=Ihh— -In—
o in2(3)(4) M? M?
and I;;; and I are determined above. For crossed legs
in a box-type diagram, we must evaluate the integrals

d*kEkH - . N
—ZAzn - Bphy, +Cqu, (B.9)
/ZW2( 1(2)(3)(4) g 20 "
where (2) = k% + pyk and
A= —[—#2%a—t(2 _
25t —ta t(u—}—t)b utd,
~ 1
B=—[—t(2 ~ 42 ~
25tu[ tRu+t)a—tb+utd, (B.10)
C:23t [— utda+uth—u? 7,
a = Iyz3 — I b= T3 — Lisq, ¢=1I.
The integrals are given by
4 —_ i
i:/L_Eln uln—t’
in2(1)(2)(3)(4)  uwt mM A
d*k 1
I35 = T 5 e = o X
im2(1)(2)(3) 2u
A2 w2
- B.11
{QIHmM lan+ 3 ( )

— M
2 = 2 2
an+nm’

I _/ d'k _1[11n2—_t+2i
27 ir3)3)4)  tl20 M2 O3]

and Iy34 is given in (B.4).
For the tensor integral, we have

/ d'kk,k, o .
— =40y, t+ a v
()R @) ) o T
~ ! ! ~ / /
+ @225, D5, — A12(P1uPs, + P1uPa,) +

+ CNllq(pluqu +p1uqu) - &Qq(plzu%/ +p,2u‘h1) +

+ Agqquqy, (B.12)
where we use
7 l(fi tasg)
a22 = w 2 A2q),
1 -
io—Loi i
al u( 4+ tdg),
. 1 - - -
19 = E(Al — 2ag — talq).,
. 1 - - - -
ag = E(Ag — 2tagq — tang + taag), (B.13)
. 1 - P .
alq = E(Al — A5 — ta2q),
- A+ Ajg— A5 — A
Q24 u+t( 3+ A1o 5 9),
(g = tA As + Ag — Ayp)).
Qqq t(u+t)( 3 +u(As + Ag — Aio))
The quantities /ij are given by
Ay = l(I I5)
1 — u 13 12/
~ 1
Ay = 534+_(I§_I§3)+
+ 3R — Iy — Iyy)
Ay =I5y + E(Qflé — Iz — Izs) +
1
— (=I5, + I
(s + Isa), (B.14)
1
Ay = ILiza + E(Iﬁ —Ii3) +
1
+ ;(2134 — I3 — I4),
A 1(I~ I,5)
5= w23 12/
~ ~ 1
Ag =10+ Lizs + ~ (213 — Iz = I5y),
1410 :I1§37

where I;; denote scalar integrals with two denomina-
tors,
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d*k A_2 —u

M2

d*k
-5~ | mom

—1In +1,

(B.15)

and I;j, and I are determined above. The other inte-
grals I3, I14, and I34 are given in (B.8).

With all these integrals, it is straightforward to ob-
tain the final result for the squared box-type diagrams.
With the intent to realize subsequent numeric calcula-
tions, we give it in the form where all terms not en-
hanced by large logarithms are retained,

Z | Mpoz|? = 16a*B(s, t, u),

2 2
B(s,t,u) = W(LZS +72) %
—1 —t
x In? <F> —4In <F> X
S—Uu 2 9
X Lus T(Lut + Lst - Lut - Lst) + Lus +
(s—u)? 1 1
+ S—2Lﬁt+§L‘s‘t +
+2(s —u) |—=L3, + EL;} +2[L2, + L] +

For completeness, we here present a formula for the
interference of a tree-level and a box-type diagram am-
plitudes,

2 Z M%oranOI =

0]
= Z |MBorn|2; {QLsu(pt + p/\) +

t? U s
R {z o gl t
sS—Uu
+ 2—t(71'2 + Lit + L?t):| } (B17)

Adding to this expression the contribution arising from
the «up—down» interference of a soft photon emission
by electron and muon lines, we arrive at the expression
for the radiative corrections given in Eq. (16) in [1].
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