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THE VACUUM�VACUUM AMPLITUDEAND BOGOLIUBOV COEFFICIENTSA. I. Nikishov *Lebedev Physial Institute, Russian Aademy of Sienes119991, Mosow, RussiaSubmitted 18 July 2002We onsider the problem of �xing the phases of Bogoliubov oe�ients in quantum eletrodynamis suh thatthe vauum�vauum amplitude an be expressed through them. For a onstant eletri �eld and partiles withspins 0 and 1/2, this is done starting from the de�nition of these oe�ients. Using the symmetry betweeneletri and magneti �elds, we extend the result to a onstant eletromagneti �eld. It turns out that fora onstant magneti �eld, it is neessary to distinguish the in- and out-states, although they di�er only by aphase fator. For a spin-1 partile with the gyromagneti ratio g = 2, this approah fails and we reonsider theproblem using the proper-time method.PACS: 11.55.-m, 12.20.-m, 03.80.+r1. INTRODUCTIONEven if the eletromagneti �eld does not reatepairs, virtual pairs lead to the appearane of a phase inthe vauum�vauum amplitude. This makes it nees-sary to distinguish the in- and out-solutions even whenit is ommonly assumed that there is only one ompleteset of solutions as, e.g., in the ase of a onstant mag-neti �eld. The in- and out-solutions then di�er only bya phase fator that is in essene the Bogoliubov oe�-ient. In terms of the in- and out-states, the propagatortakes the same form as for pair-reating �elds.We use the solutions with onserved quantum num-bers and do not onsider radiation proesses. Thenthe events in a ell with quantum numbers n are inde-pendent of the events in ells with di�erent quantumnumbers. In other words, we work in the diagonal rep-resentation. The knowledge of the Bogoliubov oe�-ients is su�ient for obtaining the probability of anyproess in the external �eld (disregarding the radiationproesses) [1�3℄. But the real part of the ation integralW that de�nes the vauum�vauum amplitude,h0outj0ini = eiW ; W = Z d4xL; (1)is not diretly expressed through the Bogoliubov o-e�ients. At the same time, some e�ets related to*E-mail: nikishov�lpi.ru

ReW are observable. Thus, the Lagrange funtion Lof a slowly varying �eld determines the dieletri per-mittivity and magneti permeability of the �eld [4; 5℄.The Lagrange funtion of a onstant eletromag-neti �eld was obtained in [6�8℄ in the one-loop ap-proximation and in [9℄ in the two-loop approximation.Studying a model of partile prodution, De Witt notedthat ReW an be expressed through Bogoliubov oe�-ients with the natural hoie of their phases [10℄. Ourpurpose is to hoose these phases suh that ReW anbe expressed through them. We show that for the on-stant eletri �eld and partiles with spins 0 and 1/2,the natural hoie would be su�ient if it were not forthe neessity to make renormalizations. For a vetorboson with the gyromagneti ratio g = 2, the situationis more ompliated even for a onstant eletri �eld.We note that the transition amplitude for an ele-tron to go from an in-state to an out-state is equal tounity. To show this, we write the Bogoliubov transfor-mations and the relation between h0n outj and h0n inj [2℄(where n is the set of quantum numbers)an out = 1nan in � �2nb+n in;b+n out = 2nan in + �1nb+n in;h0n outj = h0n inj(�1n � 2nan inbn in); (10)where j1nj2 + j2nj2 = 1:211 2*



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003Here, an in (b+n in) is the partile (antipartile) annihila-tion (reation) operator, an inj0n ini = 0, and similarlyfor the out-states; j0n ini is the vauum state in the ellwith the quantum number n, 1n and 2n are the Bo-goliubov oe�ients, and the asterisk denotes omplexonjugation.The third relation in (10) implies Eq. (28) below andthe �rst relation implies thata+n in = ��11n [a+n out + 2nbn in℄:Using this relation and the antiommutatorfan0 out; a+n ing = Æn0;n, we �nd [2℄h0n outjan outa+n inj0n ini == ��11n h0n outj0n ini = 1: (100)The Pauli priniple prohibits virtual pair reation inthe state oupied by the eletron. Therefore, even thephase of the sattering amplitude remains unhanged.In partiular, 2n = 0 for the onstant magneti �eld,but we annot assume that 1n = 1 without violatingEq. (100) and Eqs. (28), (29) below beauseW 6= 0 [4; 5℄.In other words, even if 2n = 0, the in- and out-vauaare di�erent. (This is in ontrast to the remark afterEq. (15) in [10℄.) The Bogoliubov oe�ient 1n musttherefore be oordinated with the vauum�vauum am-plitude. For the onstant eletromagneti �eld, we rep-resent the ation integral as a sum over the set of quan-tum numbers n,W = Z d4xL(x) = �nWn:ThenWn de�ne the phase of the Bogoliubov oe�ient(in general, omplex).In Ses. 2 and 3, starting from the de�nition of theBogoliubov oe�ients, we onsider the phase �xingfor partiles with the respetive spins 0 and 1/2. InSes. 4�6, we reonsider the problem using a more gen-eral proper-time method for spins 0, 1/2, and 1.2. SCALAR PARTICLE IN THE CONSTANTELECTROMAGNETIC FIELDFor a set of wave funtions with onserved quantumnumbers n, the Bogoliubov transformation is given by+ n = 1n + n + 2n � n;� n = �2n + n + �1n � n; (2)where j1nj2 � j2nj2 = 1and + n (+ n) is the positive-frequeny in- (out-) so-lution, and similarly for the negative-frequeny states.

We are free to hoose the phase of 1n by rede�ning n. Indeed, if we substitute� n = e�if� newn ; � n = e�if� newn ;1n = ei2f new1n ;then Eq. (2) and the propagator [2, 11℄G0(x; x0) = i�n��11n ��( + n(x)+ �n(x0); t > t0;� n(x)� �n(x0); t < t0 (20)retain their form in terms of the rede�ned quantities.For de�niteness, we assume that the partile hargeis e0 = �e; e = jej. For a onstant eletri �eld, we thenhave [2℄ (n = (p1; p2; p3), A� = �Æ�3Et)1n = p2���12 � i{� exp���{2 + i�4� ;2n = exp���{ � i�2� ; { = m2 + p21 + p222eE : (3)We note that in a weak eletri �eld, j2nj is exponen-tially small and an be negleted. The in- and out-states then di�er only by a phase fator. The samemust be true for the magneti �eld, where 2n = 0exatly and ln �1n is to be determined.The probability amplitude that the vauum in thestate n remains vauum is [2℄h0n outj0n ini = �1n�1: (4)The total vauum�vauum amplitude ish0outj0ini =Yn �1n�1 = eiW0 ;W0 =Xn W0n; W0n = i ln �1n: (5)As we see below, �1n must be replaed by C�ren1n in (4)and (5). This is the renormalization of �1n. From (3),we haveln �1n = 12 ln 2� � �{2 � i�4 � ln ��12 + i{� : (6)As shown in [2℄, the vauum�vauum probabilityjh0outj0inij2 obtained from (5) and (3) agrees with theShwinger result [8℄. This implies that ImW0 is or-retly given by (5) and (3). To �nd ReW0, we �rst on-sider the asymptoti representation (see Eq. (1.3.12)in [12℄)ln ��12 + i{� = i{[ln(i{) � 1℄ + 12 ln 2� ++Xk=1 B2k(1=2)2k(2k � 1)(i{)1�2k : (7)212



ÆÝÒÔ, òîì 123, âûï. 2, 2003 The vauum�vauum amplitude : : :(Letting k range to 1, we an say that the right-handside of (7) represent the left-hand side in a ertain senseexatly; the information enoded in the right-hand sidean be deoded [13℄.) From (6) and (7), it follows thatln �1n == �i"{(ln{�1)+�4+Xk=1 (�1)kB2k(1=2)2k(2k�1){2k�1# : (8)This asymptoti expansion ontains only the imaginarypart of ln �1n or only the real part ofW0. It an be seenfrom (8) that as the �rst step, we must pass from ln �1nto lnC�1n = ln �1n + i h{(ln{ � 1) + �4 i (9)in order to have lnC�1n ! 0 as { !1 (i.e. as E ! 0).Beause harge renormalization is neessary, we mustmake the seond step and introduelnC�ren1n = ln �1n + i �{(ln{ � 1) + �4 + 124{� : (10)In other words, we also let lnC�ren1n ontain the termwith k = 1 in (8). We then have the asymptoti repre-sentation lnC�ren1n = �iXk=2 (�1)kB2k(1=2)2k(2k � 1){2k�1 : (11)Summing (11) over n asXk ! Z d3pL3(2�)3 ; Z dp3 ! eET; (12)and making renormalization [8℄, we obtain the orretasymptoti representation for ReL0,ReL0 = 12E2 + (eE)216�2 ��Xk=2 (�1)kB2k(1=2)k(k � 1)(2k � 1){2k�20 ; {0 = m22eE : (13)To simplify formulas and minimize onfusion with T inEq. (50), we often set L = T = 1 in the expressionslike (12). In addition, we drop the Maxwell part of theLagrangian in what follows (E2=2 in this ase).We now show that expression (9) an be brought tothe form suggested by the proper-time formalism,lnC�1n � lnp2�+�(ln ��1)� ln ��12+�� = �F (�);F (�) = 12 1Z0 d�� e�2�� � 1sh � � 1�� ; � = i{: (14)

Di�erentiating (14) with respet to � and usingEq. (2.4.22.5) in [14℄, we see that the results in the left-and the right-hand sides oinide. In addition, bothsides have the same asymptoti behavior as � ! 1.We therefore havelnC�1n = �12 1Z0 dss sh � exp ��is(m2 + p2?)��� �1� sh �� � ; � = eEs; p2? = p21 + p22: (15)Next, we note that the term i=24{ in (10) an be writ-ten as i24{ = � 112 1Z0 d�e�2i{�; (16)and therefore,lnC�ren1n = �12 1Z0 dss sh � exp ��is(m2+p2?)�R(�);R(�) = 1��1� � �6� sh �: (17)Here, R(�) is a �regulator�. It is independent of thequantum numbers n and is the same as in the proper-time representation of the Lagrange funtion [8℄.We now onsider the ase where a onstant mag-neti �eld is ollinear with a onstant eletri �eld.ThenlnC�ren1n (E;H) = �12 1Z0 dss sh � �� exp��is[m2 + eH(2l+ 1)℄	R(�; �);� = eHs; l = 0; 1; : : : ; (18)and we assume that R(�; �) an be obtained by thesame reasoning as in [8℄ (or simply taken from [8℄),R(�; �) = 1�� 1�� + 16 H2 �E2EH � sh � sin �;� = eHs; � = eEs: (19)Integrating over p3, we obtain (see (12) with T = 1)Z dp3 lnC�ren1n (E;H) = �12eE 1Z0 dss sh � �� exp��is[m2 + eH(2l+ 1)℄	R(�; �): (20)213



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003In this expression, we an turn the eletri �eld o�,Z dp3 lnC�ren1n (E = 0; H) == �12 1Z0 dss2 exp��is[m2+eH(2l+1)℄	R(0; �); (21)R(0; �) = 1��1� + �6� sin �:To remove the integration over p3, we write the fators�2 as s�3=2s�1=2 and note that 1=ps must arise fromthe integration over p3,1ps = ei�=4p� 1Z�1 dp3 exp(�isp23): (22)Therefore,lnC�ren1n (E = 0; H) = �ei�=42p� 1Z0 dss3=2 �� exp��is[m2 + eH(2l+ 1) + p23℄	R(0; �): (23)(Substituting s ! �it, we see that expression (23) ispurely imaginary.) From here or from (21), we obtainiXn lnC�ren1n (E = 0; H) == i Z dp22� Z dp32� 1Xl=0 lnC�ren1n (E = 0; H) = L0 == � eH16�2 1Z0 dss2 sin � �� exp(�ism2)R(0; �) (L = T = 1); (24)whih agrees with [8; 9℄. Relation (39) below was usedhere and the sum over l was performed with the helpof the formula1Xl=0 exp [�iseH(2l+ 1)℄ = 12i sin(eHs) : (25)3. ELECTRON IN THE CONSTANTELECTROMAGNETIC FIELDThe Bogoliubov transformation is given by+ n = 1n + n + 2n � n;� n = ��2n + n + �1n � n; (26)

where j1nj2 + j2nj2 = 1:For the onstant eletri �eld, we have�1n = �ir2�{ e��{=2�(i{) ;2n = e��{; n = (p1; p2; p3; r): (27)These Bogoliubov oe�ients are independent of thespin state index r = 1; 2.As in the salar ase, we start with the relations [2℄h0n outj0n ini = �1n; (28)and h0outj0ini =Yn �1n = eiW1=2 ;W1=2 =Xn W1=2;n; W1=2;n = �i ln �1n: (29)It follows from (27) thatln �1n = � i�2 + 12 ln 2�{ � �{2 � ln �(i{): (30)The asymptoti expansion for �(i{) isln �(i{) = �i{ � 12� ln(i{)� i{ + 12 ln 2� ++ iXk=1(�1)k B2k2k(2k � 1)({)1�2k (31)(see Eq. (8.344) in [15℄ or Eq. (6.1.40.) in [16℄). From(30) and (31), we obtainlnC�1n � ln �1n + i�{ ln{ � { + �4� == �iXk=1(�1)k B2k2k(2k � 1)({)1�2k ; (32)lnC�ren1n � lnC�1n � i12{ == �iXk=2(�1)k B2k2k(2k � 1)({)1�2k : (33)As in the salar ase, we �nd thatlnC�1n = �12 1Z0 dxx e�2i{x�thx� 1x� ; (34)lnC�ren1n == �12 1Z0 dxx e�2i{x �1�� 1x + x3� thx� thx: (35)214



ÆÝÒÔ, òîì 123, âûï. 2, 2003 The vauum�vauum amplitude : : :Equation (2.4.22.6) in [14℄ was used to verify (34), f.the text before Eq. (15).The generalization of (35) to the presene of a on-stant magneti �eld is straightforward. We rewrite itas (x = � = eEs)lnC�ren1n (E;H) = �12 1Z0 d�� �� exp[�is(m2 + 2eHl)℄R(�; �) th �; (36)where n = (p1; p2; p3; r); l = lmin; lmin+1; : : : , lmin = 0for r = 1, lmin = 1 for r = 2, and R(�; �) an be takenfrom the Lagrange funtion [8, 9℄ (� = eHs),R(�; �) = 1�� 1�� + E2 �H23EH � tg � th �: (37)Integrating over p3 using the seond equation in (12),we �ndZ dp32� lnC�ren1n = �eE4� 1Z0 d�� �� exp[�is(m2 + 2eHl)℄R(�; �) th �: (38)The subsequent integration over p2 is performed usingthe formula similar to (12) [2℄,Z dp2 = eHL: (39)To sum over r and l in (36), we use the formula2Xr=1 1Xlmin e�2iseHl = �i tg(eHs) (40)that follows from (25). In agreement with the Lagrangefuntion for the onstant eletromagneti �eld [8, 9℄, wetherefore haveXn lnC�ren1n = ie2EH8�2 1Z0 d�� �� exp(�ism2)R(�; �) th � tg � (L = T = 1): (41)Returning to (38), we an swith the eletri �eldo�,Z dp32� lnC�ren1n = � 14� 1Z0 dss2 �� exp[�is(m2 + 2eHl)℄R(0; �); (42)

R(0; �) = 1��1� � �3� tg �;where l are given in (36). As in the salar ase, using(22), we obtainlnC�ren1n (E = 0; H) = �ei�=42p� 1Z0 dss3=2 �� exp[�is(m2 + p23 + 2eHl)℄R(0; �); (43)where n = (p1; p2; p3; r), l = 0; 1; 2; : : : for r = 1, andl = 1; 2; : : : for r = 2:In the subsequent setions, we give a heuristiderivation of lnC�ren1n not resorting to �1n, but usingthe proper-time method. The main problem ourringhere is that renormalizations must be made. We knowhow to renormalize L as a whole, but we must renor-malize the ontribution to it from a partiular state n.To do this, we assume, as before, that the regulator isindependent of n.4. SCALAR PARTICLEWe take the vetor potential of a onstant eletro-magneti �eld in the formA� = Æ�2Hx1 � Æ�3Et; (44)but start with the partile in a onstant magneti �eld,E = 0 in (44). The propagator with oiniding x andx0 is given by (see, e.g., [11℄)G0(x; xjE = 0; H) = ireH� 1Xl=0 1Z�1 dp22� �� 1Z�1 dp32� 1Z�1 dp02� 1Z0 dsD2l (�)l! �� expf�is[m2 + eH(2l+ 1) + p23 � p20℄g; (45)� = p2eH �x1 + p2eH � :In aordane with (1), we must integrate L0 and heneG0(x; x) over d4x. The integration over x1 is done us-ing the formula1Z�1 d�D2l (�) = p2� l!;or 1Z�1 dx1D2l (�) =r �eH l! (46)
215



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003Integrating over p0 and x1, we obtain1Z�1 dx1G0(x; x) = exp(3�i=4)2p� 1Z�1 dp22� �� 1Z�1 dp32� 1Xl=0 1Z0 dsps �� expf�is[m2 + eH(2l+ 1) + p23℄g: (47)As noted in [3℄ (see Eq. (2.12) therin), it follows fromShwinger results [8℄ that for a salar partile (boson),� i�Wb�m2 = Z d4xGb(x; x);or Wb = �i 1Zm2 d ~m2 Z d4xGb(x; xj ~m2): (48)This implies that L0 an be obtained from (47) by in-serting �1=s in the integrand. Also inserting the regu-lator from (21), we obtainiW0(E = 0; H) = iL0(E = 0; H) == exp(�i=4)2p� 1Z�1 dp22� 1Z�1 dp32� 1Xl=0 1Z0 dss3=2 �� expf�is[m2 + eH(2l+ 1) + p23℄gR(0; �) == � 1Z�1 dp22� 1Z�1 dp32� 1Xl=0 lnC�ren1n (L = T = 1): (49)For the onstant eletromagneti �eld desribed byvetor potential (44), we now insert the expressions forthe wave funtions in (20) (see [2℄ with the modi�a-tions for e0 = �e = �jej) and use relation (93) in [11℄(or a relation similar to (96) below). We then �ndG0(x; xjE;H) = e3�i=42p�eE 1Z�1 dp22� 1Z�1 dp32� �� 1Xl=0reH� D2ll! p2 1Z0 d�psh 2� �� exp��2i{� � i T 22 th �� ;� = eEs; T = p2eE �t� p3eE� : (50)Integrating over x1 (see (46)) and t, we obtain

1Z�1 dx1 1Z�1 dtG0(x; xjE;H) == i2 1Z�1 dp22� 1Z�1 dp32� 1Xl=0 1Z0 dssh(eEs) �� expf�is[m2 + eH(2l+ 1)℄g: (51)Passing from G0(x; x) to L0 is realized by inserting thefator �1=s in the integrand in (51). Also inserting theregulator R(�; �), see Eq. (19), we obtainW0(E;H) = i 1Z�1 dp22� 1Z�1 dp32� 1Xl=0 lnC�ren1n == � i2 1Z�1 dp22� 1Z�1 dp32� 1Xl=0 1Z0 dss sh � �� expf�is[m2 + eH(2l+ 1)℄gR(�; �): (52)5. SPINOR PARTICLEWe �rst onsider the eletron in the onstant mag-neti �eld, E = 0 in (44). The squared Dira equationan be brought to the form� d2d�2 � �24 + p20 � p232eH � 12�3�Z = 0;�3 =  �3 00 �3 ! ; (53)where � is the same as in (45). We see that Z an bewritten asZ = diag(f1; f2; f1; f2) exp �i(p2x2+p3x3�p0t)� ; (54)and f1 and f2 must satisfy the equation� d2d�2 � �24 + p20 � p232eH � 12� f1;2 = 0: (55)We hoose f1 = Dl�1(�) and f2 = Dl(�) in order thatp2? = 2eHl in both ases. The solutions of the Diraequation are obtained as the olumns of the matrix [2℄(m� i�̂)Z; (56)where �̂ = ���, �� = �i�� + eA�.Using the -matries in the standard representa-tion [4℄, we have216



ÆÝÒÔ, òîì 123, âûï. 2, 2003 The vauum�vauum amplitude : : :
m� i�̂ = 0BBBB� m+�0 0 ��3 ��1 + i�20 m+�0 ��1 � i�2 �3�3 �1 � i�2 m��0 0�1 + i�2 ��3 0 m��0 1CCCCA : (57)In terms of �, we obtain �1 + i�2 = �ip2eH � dd� � �2� ;�1 � i�2 = �ip2eH � dd� + �2� : (58)Also using the relations � dd� + �2�Dl(�) = lDl�1(�);� dd� � �2�Dl(�) = �Dl+1(�); (59)we �nd (with the exponetial fator in (54) omitted for brevity)(m� i�̂)Z = 0BBBB� (m+ p0)Dl�1(�) 0 �p3Dl�1(�) ilp2eHDl�1(�)0 (m+ p0)Dl(�) �ip2eHDl(�) p3Dl(�)p3Dl�1(�) �ilp2eHDl�1(�) (m� p0)Dl�1(�) 0ip2eHDl(�) �p3Dl(�) 0 (m� p0)Dl(�) 1CCCCA : (60)Choosing the seond and the �rst olumns as  1 and 2 (with the subsripts 1 and 2 indiating spin states)and normalizing them, we obtain+ 1 = Nn 266664 0(m+ p0)Dl(�)�ilp2eHDl�1(�)�p3Dl(�) 377775 eiq�x;Nn = �eH� �1=4s 12p0(p0 +m)l! ;p0 =qm2 + 2eHl+ p23; q � x = p2x2 + p3x3 � p0t;n = (p2; p3; l; r); � = p2eH �x1 + p2eH � ; (61)+ 2 = Nnpl266664(m+ p0)Dl�1(�)0p3Dl�1(�)ip2eHDl�1(�) 377775 eiq�x;l = 0; 1; 2; : : : (62)

As an be seen from (62), l atually begins with unityin this state. The negative-frequeny solutions � nare obtained from (61) and (62) by the substitutionq ! �q. We note that Eqs. (61) and (62) di�er fromEq. (10.5.9) in [4℄ beause the authors there assumedthe harge of a spinor partile to be positive.Having obtained the wave funtions, we next �ndthe ontribution to L1=2 from eah state  n. For the�eld that does not reate pairs, the propagator has thestandard formG1=2(x; x0) == i�n( + n(x)+ � n(x0); t > t0;�� n(x)� � n(x0); t < t0; � n =  �n�:(63)In the standard representation, we have� =  I 00 �I ! ; I =  1 00 1 ! : (64)From (61) and (64), we �nd217



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003tr+ 1(x)+ � 1(x) == N2nf[(m+ p0)2 � p23℄D2l (�) � 2eHl2D2l�1(�)g: (65)Integrating over x1, we obtain, see (46),1Z�1 dx1tr+ 1(x)+ � 1(x) = mp0 ;p0 =qm2 + 2eHl+ p23; l = 0; 1; : : : (66)From (62), we obtain, similarly,1Z�1 dx1tr+ 2(x)+ � 2(x) = mp0 ; l = 1; 2; : : : (67)For the negative-frequeny states, we must substi-tute p0 ! �p0. We an then write1jp0j = ei�=4p� 1Z0 dsps exp[�is(m2 + 2eHl+ p23)℄; (68)inorporating both lines in (63). It thus follows from(63) and (66)�(68) that1Z�1 dx1trG1=2(x; x) =Xn e3i�=4p� m 1Z0 dsps exp[�is(m2 + 2eHl+ p23)℄; (69)where l = 0; 1; : : : for r = 1 and l = 1; 2; : : : for r = 2.We next use the analogue of (48) for the eletron,W1=2 = i 1Zm d ~mTrG1=2(x; xj ~m); (70)where Tr means the integration over d4x and the traeover spin indies; we set V T = 1 as above. Beausei 1Zm d ~m ~m exp(�is ~m2) = e�ism22s ; (700)we see that W1=2 an be obtained from (69) by insert-ing the fator 1=2ms in the integrand. We therefore�ndL1=2 = �n e3i�=42p� �� 1Z0 dss3=2 exp[�i(m2 + 2eHl+ p23)℄R(0; �): (71)

This is in agreement with (43) and (29). To hek thisresult, we integrate over dp2=2� with the help of (39),over dp3=2� with the help of (22), and use (40). Then,as expeted, we obtainL1=2(E = 0; H) = eH8�2 1Z0 dss2 �� exp(�ism2)R(0; �) tg �; (72)see Eq. (47) in Ch. 1 in the last Ref. in [9℄ for E = 0.Passing over to the onstant eletromagneti �elddesribed by vetor potential (44), we use -matriesin the spinor representation beause both �3 and �3are then diagonal. The squared Dira equation has theform (�2 +m2 + g)Z = 0;g = e (H � iE)�3 00 (H + iE)�3 ! ; (73)with �� de�ned in (56). Hene,Z = diag(f1; f2; f3; f4) exp[i(p2x2 + p3x3)℄: (74)In terms of � and T (see (45) and (50)), we obtainthe equation�2eH �� �2��2 + �24 � 12�++ 2eE � �2�T 2 + T 24 � i2�+m2� f1;2 = 0 (75)for f1 and f2 and similarly,�2eH �� �2��2 + �24 � 12�++ 2eE � �2�T 2 + T 24 � i2�+m2� f3;4 = 0 (76)for f3 and f4. From these equations, it follows that+Z = diagfDl�1(�)D�i{�1(�);Dl(�)D�i{(�); Dl�1(�)D�i{(�);Dl(�)D�i{�1(�)g �� exp[i(p2x2 + p3x3)℄; � = ei�=4T: (77)Solutions of the Dira equation with -matries in thespinor representation are obtained as the olumns ofthe matrix218
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(m� i�̂)Z = 0BBBB� m 0 �0 +�3 �1 � i�20 m �1 + i�2 �0 ��3�0 ��3 ��1 + i�2 m 0��1 � i�2 �0 +�3 0 m 1CCCCAZ: (78)In terms of �, we have�0 ��3 = �e�i�=4p2eE� ��� � �2� ;� = ei�=4T: (79)Also taking (58), (59), and the relations(�0 +�3)D�(�) = �e�i�=4�p2eED��1(�);(�0 ��3)D�(�) = e�i�=4p2eED�+1(�) (80)into aount, we �nd four olumns of the matrix(m� i�̂) +Z,266664 mDl�1(�)D�i{�1(�)0e�i�=4p2eEDl�1(�)D�i{(�)�ip2eHDl(�)D�i{�1(�) 377775 ;266664 0mDl(�)D�i{(�)ilp2eHDl�1(�)D�i{(�)ei�=4{p2eEDl(�)D�i{�1(�)377775 ;266664ei�=4{p2eEDl�1(�)D�i{�1(�)ip2eHDl(�)D�i{(�)mDl�1(�)D�i{(�)0 377775 ;266664�ilp2eHDl�1(�)D�i{�1(�)e�i�=4p2eEDl(�)D�i{(�)0mDl(�)D�i{�1(�) 377775 :

(81)

Here and below, exp[i(p2x2 + p3x3)℄ is dropped forbrevity. We let + 1 (+ 2) denote the fourth (�rst)olumn multiplied by the normalization fator +Nn(+Nnpl ):+Nn = exp���{4 � (l!2eE)�1=2�eH� �1=4 : (82)We next onsider the positive-frequeny solution of(73) as t! �1,+Z = diagfDl�1(�)Di{(�); Dl(�)Di{�1(�);Dl�1(�)Di{�1(�); Dl(�)Di{(�)g; (83)

where � = �e�i�=4T . In terms of this variable, we have�0 ��3 = �ei�=4p2eE� ��� � �2� : (84)Similarly to (80), we �nd(�0 +�3)D�(�) = ei�=4p2eED�+1(�);(�0 ��3)D�(�) = �ei�=4�p2eED��1(�): (85)Using these relations, we obtain the four olumns ofthe matrix (m� i�̂)+Z in (78) and (83),266664 mDl�1(�)Di{(�)0e�i�=4{p2eEDl�1(�)Di{�1(�)�ip2eHDl(�)Di{(�) 377775 ;266664 0mDl(�)Di{�1(�)ilp2eHDl�1(�)Di{�1(�)ei�=4p2eEDl(�)Di{(�) 377775 ;266664ei�=4p2eEDl�1(�)Di{(�)ip2eHDl(�)Di{�1(�)mDl�1(�)Di{�1(�)0 377775 ;266664 �ilp2eHDl�1(�)Di{(�)e�i�=4{p2eEDl(�)Di{�1(�)0mDl(�)Di{(�) 377775 :
(86)

Using the fourth and the �rst olumns again, we have+ 1(x) = +Nn 266664 �ilp2eHDl�1(�)Di{(�)e�i�=4{p2eEDl(�)Di{�1(�)0mDl(�)Di{(�) 377775�� exp[i(p2x2 + p3x3)℄; (87)219



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003+ 2(x) == +Nnpl266664 mDl�1(�)Di{(�)0e�i�=4{p2eEDl�1(�)Di{�1(�)�ip2eHDl(�)Di{(�) 377775�� exp[i(p2x2 + p3x3)℄; (88)where +Nn = +Nn=p{, see (82).We note that �Z (�Z) an be obtained from +Z(+Z) by the substitution �! �� (� ! ��). To obtain� -funtions from the orresponding + -funtions, wealso hange the sign ofp2eE in the olumns in additionto these substitutions; this is beause of the relations(see (79) and (80))(�0 +�3)D�(��) = �e�i�=4�p2eED��1(��);(�0 ��3)D�(��) = �e�i�=4p2eED�+1(��): (89)Thus,� 1(x) = �Nn 266664�ilp2eHDl�1(�)D�i{�1(��)�e�i�=4p2eEDl(�)D�i{(��)0mDl(�)D�i{�1(��) 377775�� exp[i(p2x2 + p3x3)℄; (90)� 2(x) == �Nnpl266664 mDl�1(�)D�i{�1(��)0�e�i�=4p2eEDl�1(�)D�i{(��)�ip2eHDl(�)D�i{�1(��) 377775�� exp[i(p2x2 + p3x3)℄; �Nn = +Nn; (91)and similarly for � 1 and � 2.We note in passing that the wave funtions for theeletron in a onstant eletri �eld were written in [2℄using -matries in the standard representation. At-ing on these funtions by the operatorU = 1p2  I II �I ! ;we obtain the solutions in the spinor representation.Taking the magneti �eld into aount is realized bythe substitutionsexp(ip2x2)f1; p1 � ip2; p1 + ip2g ! �eH� �1=4 �� 1pl!fDl(�);�ilp2eHDl�1(�); ip2eHDl+1(�)g

for r = 1. For r = 2, we must replae l by l�1 in thesesubstitutions.The eletron propagator is given byG1=2(x; x0) == iXn ��11n ( + n(x)+ � n(x0); t > t0;�� n(x)� � n(x0); t < t0; (92)where � =  ��, n = (p2; p3; l; r) for the onstanteletromagneti �eld, and �1n is given in (27), wherep2? = 2eHl in the expression for {, see (3) and (15). Inthe spinor representation,� =  0 II 0 ! ; (93)and therefore,(a1; a2; a3; a4)� = (a3; a4; a1; a2):Using (81), (82), and (87), we now obtaintr(+ 1(x) + � 1(x)) =reH� me��{=2l!p2eE{ ��D2l (�)fe�i�=4D�i{(�)D�i{(��) ++ ei�=4{D�i{�1(�)D�i{�1(��)g: (94)Integrating over x1, we obtain, see (46),1Z�1 dx1tr(+ 1(x) + � 1(x)) == me��{=2p2eE{ fe�i�=4D�i{(�)D�i{(��) ++ ei�=4{D�i{�1(�)D�i{�1(��)g;{ = m2 + 2eHl2eE ; l = 0; 1; : : : (95)
For r = 2, we obtain the same expression, but withl = 1; 2; : : :We next multiply (95) with i=�1n aording to(92) and use the relation (see Eq. (93) in [11℄ with�i{ ! �i{ + 1=2)�(i{)D�i{(�)D�i{(��) = p2 1Z0 d�psh 2� �� exp(�2i{� + � � i2T 2 th �); � = eEs; (96)and the relation obtained from this by the substitutioni{ ! i{ + 1.220



ÆÝÒÔ, òîì 123, âûï. 2, 2003 The vauum�vauum amplitude : : :We now obtain from (95) and (96) that1Z�1 dx1 i�1n tr(+ 1(x) + � 1(x)) = �me�i�=4p2�eE �� 1Z0 d�psh 2�2 h � exp��2i{� � i2T 2 th �� ;T = p2eE �t� p3eE � : (97)
Integrating this expression over t, we obtain1Z�1 dt 1Z�1 dx1 i�1n tr(+ 1(x) + � 1(x)) == im 1Z0 ds th(eEs) exp[�is(m2 + 2eHl)℄;l = 0; 1; 2; : : : (98)For r = 2, we have the same expression, but withl = 1; 2; : : :Taking the remarks after Eq. (700) into aountand inserting the regulator R(�; �) in the integrand,we obtain the ontribution to L1=2 from the staten = (p2; p3; l; r). Summing over l and r (see (40)) andintegrating over dp2=2� and dp3=2� (see (39) and (12)),we obtain, in agreement with (41), thatL1=2 = e2HE8�2 1Z0 dss �� exp(�ism2)R(�; �) th � tg �: (99)We �nally note that for H = 0, we have1Z�1 dt i�1n tr(+ 1(x) + � 1(x)) = im 1Z0 ds th(eEs)�� exp[�is(m2 + p21 + p22)℄; l = 0; 1; 2; : : : (100)instead of (98). Inserting 1=2ms and R(�; 0), we seethat this agrees with (35) and (29).6. VECTOR BOSONThe propagator and the e�etive Lagrange funtionfor the vetor boson with the gyromagneti ratio g = 2in a onstant eletromagneti �eld were obtained byVanyashin and Terentyev [17℄. In another form, thepropagator was found by the author [11℄. In the latterpaper, there is a misprint in Eq. (73), where the argu-ment of sin and os should be 2� , not � . In addition,

the statement that the divergene term in the expres-sion for the urrent in Eq. (38) does not ontribute isnot true when the magneti �eld is present; this, how-ever, is of no onsequene beause the expression wasused only for the normalization of wave funtions.The results of Vanyashin and Terentyev imply thatrelation (48) in the present paper also holds for thevetor boson if we take Gb = G��. Using (48), we anreprodue the expression for L1 in [17℄ starting fromour propagator. Indeed, our result forG�� = e2EH16�2 ZC dssh � sin � exp(�ism2)���2 os 2�+2 h2�� im2 [eH tg �+eE th �℄� (101)an be written in a simpler form if we note thatdds 1sh � sin � == � 1sh � sin � [eH tg � + eE th �℄g;� = eHs; � = eEs: (102)We an then integrate the term in the square braketsin (101) by parts,� ie2EH16�2m2 ZC dssh � sin � �� exp(�ism2)[eH tg � + eE th �℄g !! �e2EH16�2 ZC dssh � sin � exp(�ism2); (103)where we disarded a divergent term independent of Eand H . Expression (101) is therefore equivalent toe2EH16�2 ZC dssh � sin � �� exp(�ism2)(2 os 2� + 2 h2� � 1): (104)Inserting �1=s in the integrand, we obtain Eq. (21)in [17℄; we agree with the subsequent formulas in thatpaper.Returning to our present problem, we note that fora onstant eletri �eld, �1n is independent of the polar-ization state of the vetor boson and is the same as inthe salar ase [11℄. Nevertheless, ImL1 is not simply3 ImL0 [17℄. The knowledge of �1n is therefore not use-ful in obtaining lnC�ren1n . Resorting to the proper-timemethod, we �nd that the problem is more di�ult thanin the previous ases. As seen already from (101), the221



A. I. Nikishov ÆÝÒÔ, òîì 123, âûï. 2, 2003dependene on m2 is more ompliated here and theontributions from the eletri and magneti �elds arenot fatorized in the proper-time integrand. For thesereasons, we here onsider only the onstant magneti�eld.It follows from [11℄ that for the spin statesr = 1; 2; 3,+ �1 (x) + �1�(x) =reH� 12jp0jl! 1(l+1)(m2+eHl)�� f�(l+ 1)2eHD2l (�) ++ [m2 + eH(2l+ 1)℄D2l+1(�)g; (105)+ �2 (x) + �2�(x) =reH� 12jp0jl!D2l (�); (106)+ �3 (x) + �3�(x) =reH� 12jp0jl! l2m2(m2 + eHl) �� f�2eH [m2 + eH(2l + 1)℄D2l (�) + [eHDl+1(�)�� (m2 + eHl)Dl�1(�)℄2 ++ [eHDl+1(�) + (m2 + eHl)Dl�1(�)℄2℄g: (107)Integrating the expressions in (105)�(107) over x1 withthe help of (46), we obtain 1=2jp0j in all three ases,but l = lmin; lmin + 1; : : : ;lmin = 8><>: �1; r = 1;0; r = 2;1; r = 3: (108)The vetor boson propagator is given by [11℄G��1 (x; x0) = i 1Z�1 dp22� 1Z�1 dp32� �� 3Xr=1 1Xlmin( + �n(x)+ ��n (x0); t > t0;� �n(x)� ��n (x0); t < t0: (109)We see from (68) and (48) and the above results thatthe ontribution to L1 from the state with the quantumnumbers n = (p2; p3; l; r) isi ln �1n = �iei�=42p� �� 1Z0 dss3=2 exp��is[m2 + eH(2l+ 1) + p23℄	 : (110)

The sum over r and l is performed using the formula3Xr=1 1Xlmin exp [�iseH(2l+ 1)℄ = 1 + 2 os 2eHs2i sin eHs (111)that an be obtained from (25). To integrate overdp2=2� and dp3=2�, we use (39) and (12). InsertingR(�), we then obtainXn Wspin1;n = � eH16�2 1Z0 dss2 sin � �� exp(�ism2)(3� 4 sin2 �)R(�): (112)In aordane with [17℄, R(�) is de�ned as3� 4 sin2 �sin � ! 3� 1sin � � 1� � �6�� 4(sin � � �) == 3� 4 sin2 �sin � R(�): (113)This implies thatR(�) = 1� sin �3� sin2 � �3� � 72�� ;R(�)j��1 = 29120�4: (114)From (110), we therefore havei lnC�ren1n = �iei�=42p� 1Z0 dss3=2 �� exp��is[m2 + eH(2l+ 1) + p23℄	R(�); (115)where l is given in (108). Substituting � ! �it androtating the integration ontour, we see that lnC�ren1nis real, as it should be for the magneti �eld.7. CONCLUSIONSWe have shown how the renormalized phase ofthe vauum�vauum amplitude in quantum eletro-dynamis an be expressed through the properly�xed phases of the Bogoliubov oe�ients; a nonzerophase of the former indiates nonzero phases of thelatter. In general, the knowledge of the Bogoliubovoe�ients is insu�ient for obtaining the phase of thevauum�vauum amplitude. Additional information isneeded. Thus, in the ase of onstant magneti andeletromagneti �elds, we have used the symmetry be-tween the eletri and magneti �elds in the Lagrangefuntion. In the ase of a vetor boson, the knowledge222
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