ЭФФЕКТ НЕЛИНЕЙНО-ЭЛЕКТРОДИНАМИЧЕСКОГО ЗАПАЗДЫВАНИЯ ЭЛЕКТРОМАГНИТНЫХ СИГНАЛОВ В ПОЛЕ МАГНИТНОГО ДИПОЛЯ

В. И. Денисов^{*}, И. В. Кривченков

Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

И. П. Денисова

МАТИ — Российский государственный технологический университет им. К. Э. Циолковского 121552, Москва, Россия

Поступила в редакцию 20 февраля 2002 г.

Проведено исследование распространения электромагнитных волн в магнитном дипольном и гравитационном полях нейтронной звезды, происходящего по законам нелинейной электродинамики вакуума. Показано, что в зависимости от поляризации электромагнитные сигналы в этом поле будут распространяться по различным лучам и с различной скоростью. Найден закон движения этих сигналов по лучам. Проведено вычисление разности времен распространения электромагнитных сигналов, имеющих различные поляризации, от одного и того же источника до детектора. Показано, что эта разность в отдельных случаях может достигать вполне измеримой величины 1 мкс.

PACS: 95.30.Sf, 97.60.Jd, 12.20.Fv, 11.10.Lm

1. ВВЕДЕНИЕ

Согласно квантовой электродинамике, эффективный лагранжиан электромагнитного поля в вакууме для случая слабых электромагнитных полей имеет вид

$$L = -\frac{1}{8\pi} [\mathbf{B}^2 - \mathbf{E}^2] + \frac{\alpha}{360\pi^2 B_q^2} \times \\ \times \left\{ (\mathbf{B}^2 - \mathbf{E}^2)^2 + 7(\mathbf{B} \cdot \mathbf{E})^2 \right\}, \quad (1)$$

где $\alpha = e^2/\hbar c \approx 1/137$ — постоянная тонкой структуры, а $B_q = m^2 c^2/e\hbar \approx 4.41 \cdot 10^{13}$ Гс — характерная квантовоэлектродинамическая индукция. Поэтому уравнения электромагнитного поля в вакууме приобретают вид нелинейных уравнений электродинамики сплошных сред:

$$\operatorname{rot} \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}, \quad \operatorname{div} \mathbf{D} = 0,$$

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}, \quad \operatorname{div} \mathbf{B} = 0,$$
(2)

отличаясь от них смыслом векторов **D** и **H**:

$$\mathbf{D} = \mathbf{E} + \frac{\alpha}{45\pi B_q^2} \{ 2(\mathbf{E}^2 - \mathbf{B}^2) \cdot \mathbf{E} + 7(\mathbf{B} \cdot \mathbf{E}) \mathbf{B} \},$$

$$\mathbf{H} = \mathbf{B} + \frac{\alpha}{45\pi B_q^2} \{ 2(\mathbf{E}^2 - \mathbf{B}^2) \cdot \mathbf{B} - 7(\mathbf{B} \cdot \mathbf{E}) \mathbf{E} \}.$$
(3)

Нелинейная электродинамика вакуума длительное время не имела экспериментального подтверждения и поэтому воспринималась многими как абстрактная теоретическая модель. В настоящее время ее статус существенно изменился. Эксперименты [1] по неупругому рассеянию лазерных фотонов на гамма-квантах подтвердили, что электродинамика в вакууме действительно является нелинейной теорией. Поэтому ее различные предсказания, доступные проверке на эксперименте, заслуживают самого серьезного внимания.

В научной литературе последних лет было предложено [2-7] несколько экспериментов по изучению таких эффектов. Однако при достижимых в земных лабораториях полях $B, E \sim 10^6$ Гс нелинейные поправки к уравнениям Максвелла настолько малы,

^{*}E-mail: Denisov@srd.sinp.msu.ru

что измерить эффекты, вызываемые ими в вакууме, непросто.

Поэтому в ряде работ [8–10] была рассмотрена возможность наблюдения нелинейно-электродинамических эффектов в сильных магнитных полях нейтронных звезд. Действительно, такие нейтронные звезды, как пульсары имеют магнитные поля, сравнимые по величине с квантовоэлектродинамическим полем B_q . Еще большими магнитными полями $B \sim 10^{15}$ – 10^{16} Гс обладают недавно открытые магнетары. Таким образом, окрестности нейтронных звезд представляют собой уникальную природную лабораторию для проявления различных нелинейно-электродинамических и гравитационных эффектов.

Целью настоящей работы является исследование одного эффекта нелинейной электродинамики вакуума, который в магнитных полях пульсаров и магнетаров может достигать измеримой величины. В основе этого эффекта лежит двулучепреломление вакуума во внешнем электромагнитном поле и, как следствие, зависимость скорости распространения электромагнитных сигналов в этом поле от их поляризации. Поэтому, если два сигнала с двумя разными поляризациями излучаются в один и тот же момент времени из одного источника, а затем проходят через поле нейтронной звезды, то в детектор они попадут не одновременно. В результате измерение времени запаздывания электромагнитного импульса, имеющего одну нормальную поляризацию, по сравнению с электромагнитным импульсом другой нормальной поляризации, позволит более детально проверить предсказания нелинейной электродинамики вакуума. Так как магнитосфера пульсаров и магнетаров может содержать вещество, поглощающее электромагнитные волны, в дальнейшем под электромагнитными волнами будем понимать импульсы гамма-излучения, для которых магнитосфера является заведомо прозрачной.

2. УРАВНЕНИЕ ЛУЧЕЙ В ПОЛЕ МАГНИТНОГО ДИПОЛЯ

Рассмотрим нейтронную звезду, имеющую магнитное дипольное поле, индукция которого **B** может достигать значения B_q . В этом случае уравнения электромагнитного поля нелинейной электродинамики вакуума имеют два малых параметра. Одним из них является относительная величина нелинейных слагаемых в выражениях (1) и (3), которая при $|\mathbf{B}| = B_q$ может доходить приблизительно до 10^{-4} . Другим малым параметром является величина r_g/r шварцшильдовского гравитационного поля звезды:

$$g_{00} = 1 - \frac{r_g}{r}, \quad g_{rr} = -\frac{r}{r - r_g},$$
$$g_{\theta\theta} = -r^2, \quad g_{\varphi\varphi} = -r^2 \sin^2 \theta.$$

Так как массы типичных нейтронных звезд по порядку величины близки к массе Солнца, а их радиус R заключен в пределах от 100 км до 300 км, будем считать, что $r_g/R \sim 10^{-2}$. Поэтому для обеспечения одинакового уровня точности нам необходимо проводить вычисления, учитывая влияние гравитации с квадратичной по r_g/r точностью.

Перепишем уравнения (2) нелинейной электродинамики вакуума в общековариантном виде:

$$\begin{aligned} \frac{\partial F_{mn}}{\partial x^k} &+ \frac{\partial F_{nk}}{\partial x^m} + \frac{\partial F_{km}}{\partial x^n} = 0, \\ \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^n} \left\{ \sqrt{-g} \left[\left(1 - \frac{\alpha}{18\pi B_q^2} J_2 \right) F^{mn} + \right. \\ \left. + \frac{7\alpha}{45\pi B_q^2} F^{ml} F_{lk} F^{kn} \right] \right\} = 0, \end{aligned}$$

$$(4)$$

где $J_2 = F_{ik}F^{ki}$ — инвариант электромагнитного поля.

Решение уравнений (4), описывающее дипольное магнитное поле нейтронной звезды, в интересующем нас приближении имеет вид

$$F_{31}^{(0)} = -\frac{|\mathbf{m}|}{r^2}\sin^2\theta, \quad F_{32}^{(0)} = \frac{2|\mathbf{m}|}{r}\sin\theta\cos\theta, \quad (5)$$

где **m** — магнитный дипольный момент звезды.

Рассмотрим электромагнитную волну, распространяющуюся в плоскости $\theta = \pi/2$ магнитного экватора звезды. Уравнение эйконала для этой волны, следующее из системы уравнений (4), (5), зависит от ее поляризации. В частности, для электромагнитной волны, поляризованной перпендикулярно плоскости $\theta = \pi/2$, эйконал S_1 удовлетворяет уравнению

$$\left(1 + \frac{r_g}{r} + \frac{r_g^2}{r^2}\right) \left(\frac{\partial S_1}{\partial x^0}\right)^2 - \left(1 - \frac{r_g}{r}\right) \left(\frac{\partial S_1}{\partial r}\right)^2 - \frac{1}{r^2} \left(\frac{\partial S_1}{\partial \varphi}\right)^2 + \frac{7\alpha |\mathbf{m}|^2}{45\pi B_q^2 r^6} \left\{ \left(\frac{\partial S_1}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial S_1}{\partial \varphi}\right)^2 \right\} = 0, \quad (6)$$

в то время как для электромагнитной волны, поля-

ризованной в плоскости магнитного экватора, эйконал S_2 должен удовлетворять другому уравнению:

$$\left(1 + \frac{r_g}{r} + \frac{r_g^2}{r^2}\right) \left(\frac{\partial S_2}{\partial x^0}\right)^2 - \left(1 - \frac{r_g}{r}\right) \left(\frac{\partial S_2}{\partial r}\right)^2 - \frac{1}{r^2} \left(\frac{\partial S_2}{\partial \varphi}\right)^2 + \frac{4\alpha |\mathbf{m}|^2}{45\pi B_q^2 r^6} \left\{ \left(\frac{\partial S_2}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial S_2}{\partial \varphi}\right)^2 \right\} = 0. \quad (7)$$

Рассмотрим первое из этих уравнений. Используя стандартный формализм, несложно получить уравнение лучей для электромагнитной волны первого типа поляризации. Если обозначить прицельное расстояние луча через b_1 , то в полярных координатах r и φ будем иметь

$$\varphi = \varphi_0 \mp b_1 \int \frac{dr}{r^2 \sqrt{F(r)}} \left[1 + \frac{r_g}{r} + \frac{r_g^2}{r^2} \right], \quad (8)$$

где

$$\begin{split} F(r) &= 1 + \frac{2r_g}{r} + \frac{3r_g^2}{r^2} + \frac{7\alpha |\mathbf{m}|^2}{45\pi B_q^2 r^6} - \\ &- \frac{b_1^2}{r^2} \left[1 + \frac{r_g}{r} + \frac{r_g^2}{r^2} \right]. \end{split}$$

Однако использовать уравнение лучей в форме (8) для наших целей неудобно. Поэтому воспользуемся методом Дарвина [11] и преобразуем выражение (8) к виду

$$r = \frac{b_1}{V_1 + W_1 \sin \Psi_1(\varphi)},$$
 (9)

где

$$V_{1} = \frac{r_{g}}{2b_{1}}, \quad W_{1} = 1 + \frac{7\alpha |\mathbf{m}|^{2}}{90\pi B_{q}^{2}b_{1}^{6}} + \frac{5r_{g}^{2}}{8b_{1}^{2}},$$

$$\Psi_{1}(\varphi) = \varphi + \varphi_{1} + \frac{r_{g}}{2b_{1}}\cos(\varphi + \varphi_{1}) - - -\frac{r_{g}^{2}}{32b_{1}^{2}}\{30(\varphi + \varphi_{1}) + \sin 2(\varphi + \varphi_{1})\} - - -\frac{7\alpha |\mathbf{m}|^{2}}{2880\pi B_{q}^{2}b_{1}^{6}} \times \{60(\varphi + \varphi_{1}) + \sin 4(\varphi + \varphi_{1}) - 16\sin 2(\varphi + \varphi_{1})\}.$$
(10)

Угол φ_1 и прицельное расстояние b_1 являются теми параметрами, изменяя которые, мы пробегаем все семейство лучей. В частности, если источник электромагнитных волн находится в точке $r = R_0, \varphi = \pi$, то

$$\varphi_{1} = -\xi_{1} + \frac{r_{g}}{2b_{1}} \cos \xi_{1} + \frac{3r_{g}^{2}}{32b_{1}^{2}} \{10(\pi - \xi_{1}) + \sin 2\xi_{1}\} + \frac{7\alpha |\mathbf{m}|^{2}}{2880\pi B_{q}^{2}b_{1}^{6}} [60(\pi - \xi_{1}) - \sin 4\xi_{1} + 16\sin 2\xi_{1}],$$

где для сокращения записи введено обозначение

$$\xi_1 = \arcsin\left\{\frac{b_1}{R_0} \left[1 - \frac{7\alpha |\mathbf{m}|^2}{90\pi B_q^2 b_1^6} - \frac{5r_g^2}{8b_1^2}\right] - \frac{r_g}{2b_1}\right\}$$

Используя эти выражения, несложно найти угол гравитационного и нелинейно-электродинамического искривления данного луча:

$$\delta\varphi_1 = -\frac{2r_g}{b_1} - \frac{7\alpha |\mathbf{m}|^2}{48B_a^2 b_1^6} - \frac{15\pi r_g^2}{16b_1^2}.$$
 (11)

Знак минус в этом выражении показывает, что гравитационное и магнитное поля нейтронной звезды в плоскости магнитного экватора действуют на электромагнитные волны как собирающая линза.

Совершенно аналогично можно построить уравнения для лучей электромагнитных волн второго типа поляризации. Если прицельное расстояние луча в этом случае обозначить через *b*, то будем иметь

$$r = \frac{b}{V + W \sin \Psi(\varphi)},\tag{12}$$

где

$$V = \frac{r_g}{2b}, \quad W = 1 + \frac{2\alpha |\mathbf{m}|^2}{45\pi B_q^2 b^6} + \frac{5r_g^2}{8b^2}.$$

$$\begin{split} \Psi(\varphi) &= \varphi + \varphi_0 + \frac{r_g}{2b} \cos(\varphi + \varphi_0) - \\ &- \frac{r_g^2}{32b^2} \{ 30(\varphi + \varphi_0) + \sin 2(\varphi + \varphi_0) \} - \\ &- \frac{\alpha |\mathbf{m}|^2}{720\pi B_q^2 b^6} \times \\ &\times \{ 60(\varphi + \varphi_0) + \sin 4(\varphi + \varphi_0) - 16\sin 2(\varphi + \varphi_0) \}. \end{split}$$

Для луча, проходящего через точку $r = R_0, \varphi = \pi$, угол φ_0 имеет вид

$$\varphi_{0} = -\xi_{0} + \frac{r_{g}}{2b} \cos \xi_{0} + \frac{3r_{g}^{2}}{32b^{2}} \{ 10(\pi - \xi_{0}) + \sin 2\xi_{0} \} + \frac{\alpha |\mathbf{m}|^{2}}{720\pi B_{q}^{2}b^{6}} \left[60(\pi - \xi_{0}) - \sin 4\xi_{0} + 16\sin 2\xi_{0} \right],$$

где введено обозначение

$$\xi_0 = \arcsin\left\{\frac{b}{R_0} \left[1 - \frac{2\alpha |\mathbf{m}|^2}{45\pi B_q^2 b^6} - \frac{5r_g^2}{8b^2}\right] - \frac{r_g}{2b}\right\}$$

Угол искривления электромагнитного луча с данной поляризацией оказывается меньше угла искривления (11):

$$\delta\varphi = -\frac{2r_g}{b} - \frac{\alpha |\mathbf{m}|^2}{12B_a^2 b^6} - \frac{15\pi r_g^2}{16b^2}.$$
 (13)

Следует отметить, что при $r_g \rightarrow 0$ выражения (11) и (13) переходят в соответствующие выражения для нелинейно-электродинамического искривления лучей [9,10], а при $|\mathbf{m}|^2 \rightarrow 0$ — в выражение работы [12] для гравитационного искривления этих лучей.

3. ЗАКОН ДВИЖЕНИЯ ЭЛЕКТРОМАГНИТНЫХ СИГНАЛОВ ПО ЛУЧАМ В ПОЛЕ МАГНИТНОГО ДИПОЛЯ

Используя уравнения (6) и (7), можно найти закон движения электромагнитных сигналов по лучам. В случае электромагнитных волн первого типа поляризации имеем

$$t = t_0 \pm \frac{1}{c} \int \frac{dr}{\sqrt{F(r)}} \left[1 + \frac{2r_g}{r} + \frac{3r_g^2}{r^2} + \frac{7\alpha |\mathbf{m}|^2}{45\pi B_q^2 r^6} \right].$$
(14)

Следует отметить, что *t* — это время, измеряемое по часам наблюдателя, находящегося на значительном удалении от нейтронной звезды.

Дифференцируя равенство (14) по r и используя соотношения (8)–(10), приходим к уравнению

$$\begin{aligned} \frac{dt}{d\Psi_1} &= -\frac{r^2}{cb_1} \left\{ 1 + \frac{7\alpha |\mathbf{m}|^2}{90\pi B_q^2 b_1^6} + \frac{r_g^2}{2b_1^2} \right\} - \\ &- \frac{3r_g r}{2cb_1} - \frac{b_1}{c} \left\{ \frac{15r_g^2}{8b_1^2} + \frac{7\alpha |\mathbf{m}|^2}{90\pi B_q^2 b_1^6} \times \right. \\ & \left. \times \left[1 + \sin^2 \Psi_1 + 2\sin^4 \Psi_1 \right] \right\}. \end{aligned}$$

Интегрируя это дифференциальное уравнение, найдем закон движения $t = t(\varphi)$

$$t = t_1 + \frac{r}{c} \left[1 + \frac{r_g^2}{8b_1^2} \right] \cos \Psi_1(\varphi) - \frac{r_g}{c} \ln \left| \frac{V_1 \operatorname{tg} \left(\frac{\Psi_1(\varphi)}{2} \right) + W_1 - \sqrt{W_1^2 - V_1^2}}{V_1 \operatorname{tg} \left(\frac{\Psi_1(\varphi)}{2} \right) + W_1 + \sqrt{W_1^2 - V_1^2}} \right| -$$

$$-\frac{b_1}{c} \left\{ \frac{15r_g^2}{8b_1^2} \Psi_1(\varphi) + \frac{7\alpha |\mathbf{m}|^2}{360\pi B_q^2 b_1^6} \left[9\Psi_1(\varphi) - (2\sin^2 \Psi_1(\varphi) + 5)\sin \Psi_1(\varphi)\cos \Psi_1(\varphi)\right] \right\}, \quad (15)$$

где t_1 — постоянная интегрирования.

Полагая, что электромагнитный сигнал был испущен из точки $r = R_0$, $\varphi = \pi$ в момент времени t = 0, получим

$$\begin{split} t_1 &= \frac{R_0}{c} \left[1 + \frac{r_g^2}{8b_1^2} \right] \cos \xi_1 + \\ &+ \frac{r_g}{c} \ln \left| \frac{V_1 \operatorname{ctg} \left(\xi_1 / 2 \right) + W_1 - \sqrt{W_1^2 - V_1^2}}{V_1 \operatorname{ctg} \left(\xi_1 / 2 \right) + W_1 + \sqrt{W_1^2 - V_1^2}} \right| + \\ &+ \frac{b_1}{c} \left\{ \frac{15r_g^2}{8b_1^2} \left(\pi - \xi_1 \right) + \frac{7\alpha |\mathbf{m}|^2}{360\pi B_q^2 b_1^6} \times \right. \\ &\times \left[9(\pi - \xi_1) + \left(2\sin^2 \xi_1 + 5 \right) \sin \xi_1 \cos \xi_1 \right] \right\}. \end{split}$$

Совершенно аналогично закон движения $T = T(\varphi)$ электромагнитного сигнала с другой поляризацией будет иметь вид

$$T = t_0 + \frac{r}{c} \left[1 + \frac{r_g^2}{8b^2} \right] \cos \Psi(\varphi) -$$
$$- \frac{r_g}{c} \ln \left| \frac{V \operatorname{tg}\left(\frac{\Psi(\varphi)}{2}\right) + W - \sqrt{W^2 - V^2}}{V \operatorname{tg}\left(\frac{\Psi(\varphi)}{2}\right) + W + \sqrt{W^2 - V^2}} \right| -$$
$$- \frac{b}{c} \left\{ \frac{15r_g^2}{8b^2} \Psi(\varphi) + \frac{\alpha |\mathbf{m}|^2}{90\pi B_q^2 b^6} \left[9\Psi(\varphi) - \right] - (2\sin^2 \Psi(\varphi) + 5) \sin \Psi(\varphi) \cos \Psi(\varphi) \right\}.$$
(16)

Постоянная интегрирования t_0 при тех же начальных условиях принимает вид

$$\begin{split} t_0 &= \frac{R_0}{c} \left[1 + \frac{r_g^2}{8b^2} \right] \cos \xi_0 + \\ &+ \frac{r_g}{c} \ln \left| \frac{V \operatorname{ctg} \left(\xi_0 / 2 \right) + W - \sqrt{W^2 - V^2}}{V \operatorname{ctg} \left(\xi_0 / 2 \right) + W + \sqrt{W^2 - V^2}} \right| + \\ &+ \frac{b}{c} \left\{ \frac{15r_g^2}{8b^2} (\pi - \xi_0) + \frac{\alpha |\mathbf{m}|^2}{90\pi B_q^2 b^6} \times \right. \\ &\times \left[9(\pi - \xi_0) + (2\sin^2 \xi_0 + 5)\sin \xi_0 \cos \xi_0 \right] \right\}. \end{split}$$

Выражения (15), (16) вместе с (9), (10) и (12) дают закон движения электромагнитных сигналов двух различных поляризаций по лучам в магнитном дипольном и гравитационном полях нейтронной звезды.

4. АНАЛИЗ ЭФФЕКТА НЕЛИНЕЙ-НО-ЭЛЕКТРОДИНАМИЧЕСКОГО ЗАПАЗДЫВАНИЯ ЭЛЕКТРОМАГНИТНЫХ СИГНАЛОВ

Рассмотрим источник гамма-излучения, находящийся в точке $r = R_0$, $\varphi = \pi$. Предположим, что в момент времени t = 0 из этого источника излучаются два электромагнитных сигнала, поляризованных во взаимно перпендикулярных плоскостях. Для того чтобы эти сигналы проходили через один и тот же детектор, находящийся с другой стороны нейтронной звезды на расстоянии R_1 от нее, они должны распространяться по разным лучам, имеющим разное прицельное расстояние: $b_1 \neq b$. Из выражений (11) и (13) следует, что при $R_1 \gg b_1$ и $R_1 \gg b$ прицельные расстояния b_1 и b должны быть связаны уравнением

$$\frac{2r_g}{b_1} + \frac{7\alpha |\mathbf{m}|^2}{12B_q^2 b_1^6} + \frac{15\pi r_g^2}{16b_1^2} = \frac{2r_g}{b} + \frac{\alpha |\mathbf{m}|^2}{3B_q^2 b^6} + \frac{15\pi r_g^2}{16b^2}.$$

Так как в рассматриваемом нами случае нелинейно-электродинамические слагаемые пропорциональны квадрату r_g/b , данное уравнение имеет приближенное решение:

$$b = b_1 \left[1 - \frac{\alpha |\mathbf{m}|^2}{8r_g B_q^2 b_1^5} \right].$$
(17)

Таким образом, существуют две причины, из-за которых сигналы придут к месту их регистрации неодновременно. Первой из них является разная зависимость скорости распространения нормальных волн от величины внешнего магнитного поля. Второй причиной является то, что сигналы с различной поляризацией должны распространяться по различным лучам, длина которых неодинакова.

Если источник гамма-излучения находится на значительном расстоянии от нейтронной звезды $(R_0 \gg b_1)$, то из выражений (15)-(17) следует, что основной вклад в величину запаздывания дает все же первая причина. В результате ведущий член разности $\delta t = t - T$ в точке регистации примет вид

$$\delta t = \frac{3\alpha B_0^2}{40B_q^2} \frac{b_1}{c},$$
 (18)

где B_0 — магнитное поле звезды на расстоянии b_1 от ее центра.

Однако интенсивность регистрируемых сигналов в этом случае из-за значительного удаления источника и детектора гамма-излучения от нейтронной звезды будет сильно подавлена. Поэтому более реалистично наблюдение рассматриваемого эффекта в том случае, когда источник гамма-излучения находится вблизи нейтронной звезды. Предположим, что этот источник находится в перицентре первого луча, т. е. на расстоянии

$$R_0 = b_1 \left[1 - \frac{r_g}{2b_1} - \frac{7\alpha m^2}{90\pi B_q^2 b_1^6} - \frac{3r_g^2}{8b_1^2} \right]$$

Тогда из выражений (15)-(17) следует, что

$$\xi_1 = \frac{\pi}{2}, \quad \xi_0 = \frac{\pi}{2} - \sqrt{\frac{\alpha m^2}{4\pi B_q^2 b_1^5 r_g}} + \frac{7\alpha m^2}{120\pi B_q^2 b_1^6}$$

Подставляя эти соотношения в выражения (15) и (16), несложно убедиться, что и в этом случае основной вклад в разность $\delta t = t - T$ вносит разная зависимость скорости нормальных волн от величины магнитного поля. Ведущий член разности δt в этом случае оказывается вдвое меньше выражения (18):

$$\delta t = \frac{3\alpha B_0^2}{80B_a^2} \frac{b_1}{c}.$$
 (19)

Как показывает анализ, интенсивность регистрируемых сигналов при таком расположении источника оказывается незначительно подавленной нелинейно-электродинамическим и гравитационным рассеянием лучей.

Из выражения (19) следует, что при прохождении электромагнитных сигналов с прицельным расстоянием $b_1 \sim 10^3$ км через те области магнитного поля магнетара, где $B \leq B_q$, время запаздывания δt по порядку величины будет около 1 мкс. Так как современная электроника позволяет регистрировать приход гамма-импульсов с таким разрешением, рассмотренный эффект является измеримым.

5. ЗАКЛЮЧЕНИЕ

Таким образом, при современном уровне развития внеатмосферной гамма-астрономии имеются реальные возможности для измерения нелинейно-электродинамического эффекта запаздывания электромагнитных сигналов, происходящего в сильных магнитных полях нейтронных звезд. И хотя проведение таких измерений сопряжено со значительными техническими сложностями, полученные результаты позволят не только выяснить экспериментальный статус этого предсказания нелинейной электродинамики вакуума, но и оценить независимым способом величину магнитного поля в окрестности различных нейтронных звезд.

Настоящая работа выполнена при частичной поддержке РФФИ (проект 02-02-16598).

ЛИТЕРАТУРА

- D. L. Burke, R. C. Feld, G. Horton-Smith et al., Phys. Rev. Lett. 79, 1626 (1997).
- 2. Н. Б. Нарожный, ЖЭТФ 55, 714 (1968).
- Е. Б. Александров, А. А. Ансельм, А. Н. Москалев, ЖЭТФ 89, 1181 (1985).

ЖЭТФ, том **122**, вып. 2 (8), 2002

- 4. Н. Н. Розанов, ЖЭТФ 103, 1996 (1993).
- 5. V. I. Denisov, Phys. Rev. D 61, 036004 (2000).
- 6. V. I. Denisov, J. of Opt. A 2, 372 (2000).
- 7. В. И. Денисов, И. П. Денисова, Опт. и спектр. 90, 1022 (2001).
- 8. В. Л. Гинзбург, В. Н. Цытович, ЖЭТФ 74, 1621 (1973).
- 9. Д. В. Гальцов, Н. С. Никитина, ЖЭТФ 84, 1217 (1983).
- **10**. В. И. Денисов, И. П. Денисова, С. И. Свертилов, ДАН **380**, 754 (2001).
- 11. C. Darwin, Proc. R. Soc. London A 263, 39 (1961).
- 12. R. Epstein and I. I. Shapiro, Phys. Rev. D 22, 2947 (1980).