О РАННИХ СТАДИЯХ ГЕНЕРАЦИИ ДВУМЕРНЫХ СТРУКТУР МЕТОДОМ ДИНАМИКИ КОНФОРМНЫХ ОТОБРАЖЕНИЙ ХАСТИНГСА–ЛЕВИТОВА

Т. А. Ростунов^{*a**}, Л. Н. Щур^{*a,b,c*}

^а Институт теоретической физики им. Л. Д. Ландау Российской академии наук 142432, Черноголовка, Московская обл., Россия

^b Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy B. P. 239, F- 54506 Vandoeuvre les Nancy Cedex, France

^c Istituto Nazionale di Fisica Nucleare, Universitá Milano-Bicocca I-20126, Milano, Italy

Поступила в редакцию 28 сентября 2001 г.

Изучались двумерные структуры, получаемые с помощью конформного отображения Хастингса-Левитова при относительно небольшом числе отображений n. Фрактальная размерность D структур вычислялась по недавно предложенной схеме Давидовича-Прокаччиа [6] как функция n. При малых $n < n_0$ $(n_0 - число частиц на первом слое) <math>D$ экспоненциально быстро убывает, что должно было бы подтверждать вывод работы [6] о возможности сколь угодно точного определения фрактальной размерности при относительно небольшом числе отображений $n \approx n_0$. С другой стороны, оказалось, что D нерегулярно отклоняется от некоторого значения D_0 , зависящего от начального размера выроста $\sqrt{\lambda_0}$, что противоречит основному утверждению работы [6]. Однако наш анализ не исключает возможности определения фрактальной размерности двумерных структур оригинальным методом Хастингса-Левитова.

PACS: 05.10.Ln, 05.50.+q, 05.70.Fh, 64.60.Fr, 75.10.Hk

1. ВВЕДЕНИЕ

В природе существует множество объектов, рост которых происходит в результате диффузии частиц, формирующих кластер (например, рост кристаллов, образование узоров на стекле, образование вкраплений минералов в горных породах, рост колоний бактерий, формирование речных протоков и аналогичные явления, например, процесс диэлектрического пробоя).

Описанные явления в ряде случаев могут рассматриваться как динамические критические процессы. Наиболее интересные характеристики этих процессов — это фрактальная размерность *D* получаемых объектов и мультифрактальные свойства поверхности их роста. Последние представляют собой свойства ансамбля поверхностей объектов, и их изучение требует разработки подходящего способа усреднения по ансамблю [1].

Начало интенсивному исследованию процессов роста было положено примерно 20 лет назад, когда Виттен и Сандерс в 1981 г. предложили модель DLA (Diffusion Limited Aggregation) [2], в результате применения которой можно получить двумерные структуры, качественно похожие на упомянутые выше (см., например, недавний обзор [3]).

В модели DLA процесс начинается с помещения затравочной частицы в центр координат и последующего роста кластера за счет диффузии частиц с бесконечности (при моделировании — с окружности с радиусом много больше размера конечного кластера). Когда частица касается кластера, она к нему прилипает. Так происходит рост кластера. После прилипания или ухода частицы на бесконечность (на расстояние много больше радиуса окружности, с которой выпускаются частицы) выпускается следую-

^{*}E-mail: rostunov@itp.ac.ru

щая частица. Получающийся в результате кластер, по-видимому, имеет фрактальную структуру.

Заметный прогресс в изучении DLA-подобных объектов был достигнут за последние несколько лет благодаря применению принципиально нового метода моделирования роста структур, предложенного Хастингсом и Левитовым [4]. В этой модели кластер генерируется с помощью последовательности отображений внешности единичной окружности на внешность растущего объекта. При этом на каждом шагу применяется конформное отображение, переводящее внешность единичной окружности во внешность единичной окружности с выростом в форме полуэллипса. Таким образом, каждое преобразование добавляет новую частицу к кластеру. Параметр преобразования λ , отвечающий за площадь выроста, выбирается исходя из моделируемой задачи. Например, для модели DLA величина λ выбирается таким образом, чтобы после последовательного применения к единичной окружности всех преобразований размеры всех выростов были равны (подробнее см. ниже в разд. 2).

В 1996 г. Хастингс [5], используя метод конформных преобразований, применил ренормгрупповой подход к приближенному аналитическому нахождению фрактальной размерности в модели DLA. Полученное им рациональное значение D = 17/10довольно близко к значению D = 1.71, обычно получаемому в результате прямого численного моделирования.

В методе Хастингса и Левитова фрактальная размерность определяется по зависимости от количества частиц первого члена разложения в ряд Лорана функции генерации кластера [4]. Позднее Давидович и Прокаччиа предложили модифицированный метод численного нахождения фрактальной размерности кластера [6] (подробнее см. ниже). Ими было сделано утверждение о том, что фрактальная размерность может быть определена с высокой точностью уже на ранних стадиях роста, в то время как обычно требуется анализ кластеров гигантских размеров¹. Основная цель настоящей статьи состоит в проверке этого очень сильного утверждения.

Статья построена следующим образом. В разд. 2 описывается модель Хастингса–Левитова [4]. В разд. 3 приведен предложенный в [6] метод определения фрактальной размерности и описана его реализация, использованная нами. Детали вычислений и результаты приведены в разд. 4, где обсуждаются самоусреднение вычисляемой по методике Давидовича–Прокаччиа фрактальной размерности на ранних стадиях роста и изменение ее величины в зависимости от числа частиц для некоторого набора параметров задачи. В разд. 5 приведены некоторые выводы, полученные на основании проведенного моделирования.

2. МОДЕЛЬ ХАСТИНГСА-ЛЕВИТОВА

Пусть u(z) — плотность вероятности нахождения частицы в точке z. Она определяется решением уравнения Лапласа

$$\Delta u = 0 \tag{1}$$

с граничными условиями

$$u = 0 \tag{2}$$

на поверхности кластера и

$$u = \frac{1}{2\pi} \ln(|z|) \tag{3}$$

на окружности большого радиуса $(|z| \rightarrow \infty)$.

Выражение (1) описывает диффузию без источников. Условие (2) говорит о том, что частица, достигшая поверхности, прилипает к ней и уже более не является свободной (что и обеспечивает рост кластера в модели DLA), а условие (3) — о том, что частицы диффундируют с бесконечности равновероятно с любого направления.

Вероятность роста DLA-кластера в некоторой точке его границы определяется как вероятность того, что частица коснется элемента *dl* границы, содержащего эту точку:

$$dP(z) \propto |\nabla u| dl$$

(эта вероятность пропорциональна потоку на границе).

В общем случае можно определить вероятность роста кластера как

$$dP \propto |\nabla u|^{\alpha} dl \tag{4}$$

с произвольным значением степени α . Значение $\alpha = 1$ соответствует модели DLA, которая представляет собой частный случай модели диэлектрического пробоя [8] DBM (Dielectric Breakdown Model). Модель DBM по определению является моделью, в которой вероятность роста (т. е. вероятность пробоя изолятора) пропорциональна некоторой степени α поля (градиента потенциала) у поверхности.

 $^{^{1)}}$ Например, в работе [7] изучались двумерные кластеры из $10^8\,$ частиц.

Рис.1. Действие отображений $\phi_{\lambda_n,\theta_n}$, f_{λ_n,θ_n} , F_{n-1}, F_n

Задача (1)-(3) может быть смоделирована с помощью процесса итерации конформных отображений внешности единичной окружности на внешность растущего кластера [4]. На каждом шагу применяется композиция двух отображений. Функция

$$\phi_{\lambda,\theta}(z) = e^{i\theta}\phi_{\lambda}(e^{-i\theta}z) \tag{5}$$

отображает внешность окружности единичного радиуса во внешность окружности с δ -образным выростом размера

$$2\sqrt{\lambda}+O(\lambda^{3/2}),\quad \lambda\ll 1,$$

в точке $z = e^{i\theta}$, что мы изобразили схематически на рис. 1*а*. В оригинальной работе [4] функция $\phi_{\lambda}(z)$ была выбрана в виде

$$\phi_{\lambda}(z) = \frac{1+\lambda}{2z}(z+1) \times \left(z+1+\sqrt{z^2+1-2z\frac{1-\lambda}{1+\lambda}}\right) - 1. \quad (6)$$

Тогда преобразование

$$f_{\lambda,\theta}(z) = z^{1-a} \phi^a_{\lambda,\theta}(z)$$

отображает внешность окружности во внешность окружности с выростом некоторой формы. Форма выроста вокруг точки окружности $z = e^{i\theta}$ определяется параметром a. При a = 2/3 вырост имеет одинаковый размер $(4/3)\sqrt{\lambda}$ в любом направлении и его можно рассматривать как налиппую круглую частицу. На *n*-м шаге итераций результирующая функция $F_{n-1}(z)$, являющаяся суперпозицией n-1 отображений f для предыдущих шагов, отображает окружность в кластер, состоящий из n-1

частиц, а окружность с выростом — в кластер из n частиц (см. рис. 16).

Таким образом, кластер из *n* частиц получается из единичной окружности последовательностью *n* отображений

$$F_n(z) = F_{n-1}(f_{\lambda_n,\theta_n}(z)),$$

где начальная функция $F_0(z) = z$. При этом λ_n определяется так, что после преобразования F_{n-1} площадь *n*-го выроста пропорциональна $\lambda_0 |\nabla u|^{\alpha-1}$, а вероятность роста на элементе поверхности кластера пропорциональна $|\nabla u|$ (где λ_0 — параметр, определяющий начальный размер частиц). Так как при конформных преобразованиях линейные размеры в точке *z* изменяются пропорционально $(F'(z))^{-1}$ (штрих обозначает производную), то

$$\lambda_n = \frac{\lambda_0}{(F'_{n-1}(z)|_{z=F_{n-1}(e^{i\theta_n})})^{1+\alpha}} .$$
 (7)

Пропорциональная зависимость вероятности роста (4) учитывается через соответствующее изменение размера частицы (7): если вначале площадь объекта, который состоит из нескольких выростов, пропорциональна $\lambda_n dl_0$, где dl_0 — элемент длины начального зародыша (т. е. окружности), то после преобразования F_{n-1} площадь будет пропорциональна

$$\lambda_n (F'_{n-1})^2 dl_0.$$

С другой стороны, площадь пропорциональна элементу длины поверхности конечного кластера *dl* и вероятности роста, которая, в свою очередь, пропорциональна степени градиента поля на его поверхности. Поэтому площадь объекта должна быть

$$\lambda_0 |\nabla u|^{\alpha} dl \propto \lambda_0 |F'_{n-1}|^{-\alpha+1} dl_0.$$

Приравнивая оба выражения для площади, получаем (7).

В работе [4] было показано, что θ_n равномерно распределена на интервале [0; 2π]. Действительно, для вероятности роста, принимая во внимание то, что множитель $|\nabla u|^{\alpha-1}$ учитывается размером новой частицы, имеем

$$dP \propto |\nabla u| dl \propto |\nabla u| \frac{dl_0}{|\nabla u|} \propto dl_0 \propto d\theta.$$

Характерный линейный размер кластера определяется как коэффициент $F_n^{(1)}$ при z в разложении $F_n(z)$. Поскольку u удовлетворяет уравнениям электростатики с нулевым потенциалом на кластере, можно ввести эффективную окружность, которая на бесконечности с точки зрения электростатики выглядела бы так же, как и кластер. Исходно потенциал имеет следующую асимптотику:

$$u \propto \ln |z|$$

Функция $f_{\lambda,\theta}$ разлагается в ряд Лорана

$$f_{\lambda,\theta}(z) = (1+\lambda)^a z + \sum_{k \leqslant 0} a_k z^k$$

и имеет на бесконечности асимптотику

$$f_{\infty}(z) = (1+\lambda)^a z.$$

Степени, большие 1, в разложении отсутствуют, поскольку $f_{\lambda,\theta}$ исходно выбирается таким образом, чтобы не затрагивать удаленных областей ничем, кроме масштабных преобразований. Асимптотика конечного преобразования имеет вид

$$F_{\infty}(z) = F_n^{(1)} z$$

где

$$F_n^{(1)} = \prod_{k=1}^n (1+\lambda_k)^a.$$
 (8)

При таком преобразовании потенциал на бесконечности имеет вид

$$u \propto \ln\left(\frac{|z|}{F_n^{(1)}}\right),$$

что соответствует потенциалу окружности радиуса $F_n^{(1)}$. Поэтому за линейный размер кластера с числом частиц n принимается величина $F_n^{(1)}$.

Из изложенного выше можно сделать вывод о частичной эквивалентности моделей DLA и Хастингса–Левитова при $\alpha = 1$. Кроме того, в работе [4] приведены кластеры, построенные для различных значений α , вид которых (для $\alpha = 1$) имеет сходство с видом кластеров DLA. Тем не менее строгое доказательство эквивалентности этих двух моделей пока отсутствует.

3. МЕТОД ОПРЕДЕЛЕНИЯ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ, ПРЕДЛОЖЕННЫЙ ДАВИДОВИЧЕМ И ПРОКАЧЧИА

Одной из основных характеристик фрактальных объектов является их фрактальная размерность. Модель Хастингса–Левитова предоставляет уникальную возможность исследования различных структур и нахождения их размерностей, в частности для моделей DLA и DBM, в рамках единообразного подхода.

Фрактальную размерность можно найти [5] по асимптотическому поведению зависимости линейного размера кластера $F_n^{(1)}(\lambda_0)$ от числа частиц nпри фиксированных параметрах λ_0 , α и a. При больших n линейный размер интерполируется степенной функцией $n^{1/D}$, откуда и находится фрактальная размерность D.

Значение фрактальной размерности DLA-структур до сих пор не удалось получить никакими методами с относительной точностью лучше, чем ~ 0.01 . Это связано с тем, что с увеличением количества частиц величина D сходится очень медленно при применении стандартных методов вычисления фрактальной размерности (см., например, сборник [9]).

В работе [6] авторы утверждают, что им удалось найти процедуру определения D, которая сходится достаточно быстро, и что с ее помощью можно получить гораздо более точные результаты. А именно, зависимость $F_n^{(1)}(\lambda_0)$ может быть представлена в виде универсальной функции $F_*^{(1)}(x)$ уже для малых $x \ll 1$, где

$$x = \sqrt{\lambda_0} n^{1/D}, \tag{9}$$

причем $F_n^{(1)}(\lambda_0)$ сходится к $F_*^{(1)}(x)$ уже при $n \ge n_0,$ здесь

$$n_0 = \frac{3}{2} \frac{\pi}{\sqrt{\lambda_0}} \tag{10}$$

определяет для данного λ_0 число частиц, с помощью которого можно покрыть зародыш одним слоем. Тогда, находя значения n, соответствующие одному и тому же значению линейного размера кластера $F^{(1)}$ (т. е. одному и тому же x) для различных λ_0 ,

$$F_{n}^{(1)}(\lambda_{0}) = F_{n'}^{(1)}(s\lambda_{0}),$$

получаем фрактальную размерность

$$D(n; \lambda_0) = \frac{2(\ln n - \ln n')}{\ln s},$$
 (11)

где n — номер шага итерации (число частиц кластера), соответствующий параметру размера частиц λ_0 , а n' — номер шага итерации, соответствующий другому параметру размера частиц $s\lambda_0$, при которых достигается одно и то же значение линейного размера кластера. Поскольку n и n' могут быть достаточно малы, в случае верности этого метода появляется

возможность легко набирать статистически значимое количество реализаций и, усредняя $D(n; \lambda_0)$ по большому числу реализаций, получать результаты с высокой точностью при фиксированном значении λ_0 . При этом, по утверждению авторов работы [6], при уменьшении λ_0 ожидается быстрая сходимость значения фрактальной размерности уже при малом числе отображений $n \approx n_0$.

В настоящей работе мы исследуем именно эту схему вычисления фрактальной размерности.

4. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

4.1. Процесс моделирования

Рост кластеров моделировался следующим образом.

1. Выбирались значения параметра площади частиц λ_0 , параметра формы частиц a = 2/3, соответствующие круглой частице, и степени градиента потенциала $\alpha = 1$ для модели DLA и $\alpha = 2.5$ для модели DBM.

 В качестве начального зародыша на комплексной плоскости выбиралась окружность единичного радиуса с центром в начале координат.

3. Начальная функция отображения выбиралась в виде, переводящем начальную окружность саму в себя: $F_0(z) = z$. Начальное значение линейного коэффициента разложения в ряд Лорана функции $F_0(z)$ полагалось равным $F_0^{(1)} = 1$. Начальный номер шага n = 1.

4. На *n*-м шаге берется псевдослучайное число θ_n из промежутка [0; 2 π], определяющее положение новой частицы, которому соответствует точка на поверхности кластера $z_n = F_{n-1}(e^{i\theta_n})$ (см. рис. 16).

5. В этой точке вычисляется производная преобразования $F'_{n-1}(z)|_{z=z_n}$, определяющая линейное растяжение окрестности точки относительно ее окрестности на начальном зародыше.

6. С помощью производной находится соответствующее значение параметра λ_n , определяемого формулой (7), характеризующее размер *n*-й частицы.

7. По значению λ_n находим новую функцию отображения $F_n(z) = F_{n-1}(f_{\lambda_n,\theta_n}(z))$ единичной окружности на кластер из n частиц (см. рис. 16), а также соответствующее новое значение размера кластера $F_n^{(1)} = F_{n-1}^{(1)}(1 + \lambda_n)^a$.

Далее моделирование сводится к повторению пунктов 4–7 с увеличением n на 1. Таким образом, мы находим зависимость линейного коэффициента разложения $F_n^{(1)}(\lambda_0)$ от n. Описанный выше процесс

Рис.2. Экспоненциальная релаксация $D(n; \lambda_0)$ при малых $n \leq 0.35 n_0; \ \lambda_0 = 10^{-5}$

мы называем одной реализацией. При одинаковых начальных параметрах из п. 1 реализации отличаются друг от друга только различными наборами случайных чисел θ_n . Средние значения и их дисперсии вычисляются по ансамблю реализаций.

4.2. Поведение D при малых $n < n_0$

Подход Давидовича-Прокаччиа [6] основан на утверждении, что фрактальная размерность $D(n; \lambda_0)$ быстро убывает как функция номера итерации n, сходясь к некоторому стационарному значению D_0 , которое практически не изменяется при $n \gtrsim n_0$. В настоящей работе мы в первую очередь исследовали поведение фрактальной размерности $D(n; \lambda_0)$ на ранних стадиях роста $(n < n_0)$. Было проведено моделирование при $\alpha = 1$ (модель DLA) при значении параметров $a = 2/3, \lambda_0 = 10^{-5}$ для 9000 реализаций в интервале $n \in [0; n_0/3]$.

Для каждой из основных реализаций роста кластера моделировалась дополнительная реализация с вдвое большим (s = 2 в выражении (11)) начальным значением $\lambda_0 = 2 \cdot 10^{-5}$ и по ней определялся соответствующий номер итерации n', при котором значения функций $F_n^{(1)}(\lambda_0)$ и $F_{n'}^{(1)}(2\lambda_0)$ совпадали. Путем усреднения по этим реализациям получены значения D как функции n в указанном выше интервале: для каждой пары реализаций по формуле (11) вычислялась зависимость $D(n; \lambda_0)$, которая после этого усреднялась по реализациям.

На рис. 2 построены зависимости $\ln(D(n; \lambda_0) - D_0)$ от безразмерного отношения n/n_0 для трех значений $D_0 = 1.75, 1.76$ и 1.77 —

возможных асимптотических значений $D(n; \lambda_0)$ при больших *n*. Чем ближе D_0 к асимптотическому значению, тем меньше зависимость $\ln(D(n; \lambda_0) - D_0)$ отличается от линейной. Видно, что при значениях $D_0 = 1.75$ и 1.77 кривые отклоняются от прямолинейной зависимости соответственно вверх и вниз, поэтому промежуточное значение $D_0 = 1.76$ можно принять как значение фрактальной размерности Давидовича-Прокаччиа при значении параметра $\lambda_0 = 10^{-5}$.

4.3. Распределение значений D

Для корректного усреднения полученных значений *D* необходимо знать их статистическое распределение.

Вычисления функции распределения значений Dпроводились для $\alpha = 1$ и 2.5. При всех реализациях было выбрано $\lambda_0 = 10^{-5}$. Для каждого значения α проводилось 10 серий реализаций, после чего результаты усреднялись по этим сериям с вычислением среднеквадратичного отклонения.

Каждая серия представляет собой построение гистограммы по 11700 точкам, полученным из 900 реализаций (из каждой реализации бралось 13 значений D на разных стадиях роста кластера при некоторых n из интервала $[n_0; 4n_0]$). Шаг гистограммы $\delta D = 0.05$ для $\alpha = 1.0$ и $\delta D = 0.1$ для $\alpha = 2.5$. Результаты приведены на рис. 3a, b. Видно, что распределения близки к гауссову.

Обозначим \overline{D} усредненное значение всех $D(n; \lambda_0)$ для $n > n_0$ при фиксированных значениях α и λ_0 .

Для $\alpha = 1$ значение $\overline{D} = 1.76$, а для $\alpha = 2.5$ $\overline{D} = 1.55$. В обоих случаях средние значения совпадают с положением максимума распределения в пределах погрешности, что говорит о симметрии распределения. Так, для $\alpha = 1$ положение максимума распределения $D_{max} = 1.761 \pm 0.001$, а среднее значение $\overline{D} = 1.762 \pm 0.004$. Для $\alpha = 2.5$ соответствующие величины равны $D_{max} = 1.538 \pm 0.002$ и $\overline{D} = 1.538 \pm 0.008$. Заметим, что в случае $\alpha = 1$ (т. е. в случае DLA-кластера) полученное нами по методу Давидовича–Прокаччиа значение $\overline{D} = 1.76$ не совпадает с «классическим» значение $\overline{D} = 1.71$ (подробнее это обсуждается в разд. 4.5).

4.4. Самоусреднение D

В системах с фазовым переходом второго рода в окрестности критической точки корреляционная длина может становиться очень большой и превосходить конечный размер системы при приближении к

Рис. 3. Распределения значений фрактальной размерности D для $\alpha = 1$ (a) и 2.5 (б). Сплошные кривые являются гауссовыми интерполяциями распределений

критической точке. При этом при наличии беспорядка в системе для ряда величин может наблюдаться отсутствие самоусреднения. Такое поведение можно ожидать, например, для корреляционной функции в спиновых решеточных моделях с вмороженными примесями [10].

Самоусреднение величины χ определяется поведением ее относительной флуктуации

$$\mathcal{R}_{\chi} = \frac{\langle \chi^2 \rangle - \langle \chi \rangle^2}{\langle \chi \rangle^2}$$

в зависимости от характерного линейного размера системы L.

В термодинамическом пределе $L \to \infty$ эта величина обычно убывает обратно пропорционально объему системы:

$$\mathcal{R}_{\chi} \propto 1/L^d$$
,

где d — размерность системы. Если же убывание \mathcal{R}_{χ} происходит медленнее, т. е.

$$\mathcal{R}_{\chi} \propto 1/L^{\gamma}, \quad \gamma < d,$$

то считается, что величина χ рассматриваемой системы усредняется слабо. В случае, если с увеличением объема системы L^d значение \mathcal{R}_{χ} стремится к отличной от нуля константе, говорят об отсутствии усреднения величины χ в системе.

Метод построения кластеров в модели DLA является стохастическим, хотя полную аналогию с вмороженными примесями в термодинамической системе провести невозможно. Тем не менее можно ожидать, что полное самоусреднение в модели DLA будет отсутствовать.

В нашей системе линейный размер задается радиусом кластера $F^{(1)}$. Вместо него можно менять размер частиц λ_0 , оставляя при этом $F^{(1)}$ постоянным, т.е. определить степень γ в выражении для зависимости относительной флуктуации размерности D:

$$\mathcal{R}_D \propto \lambda_0^{\gamma/2} \propto n^{-\gamma/D}.$$
 (12)

Таким образом, в модели Хастингса–Левитова зависимость относительной флуктуации фрактальной размерности от начального размера выроста содержит информацию о степени ее самоусреднения.

Для изучения самоусреднения величины *D* в нашей системе проводились серии моделирований при значениях параметра

$$\lambda_0 = (0.5; 1.0; 1.5; 2.0; 3.0; 5.0; 8.0) \cdot 10^{-5}$$

для $\alpha = 1$ и

$$\lambda_0 = (0.3; 0.5; 1.0; 1.5; 3.0; 4.0; 5.0) \cdot 10^{-5}$$

для $\alpha = 2.5$. Для каждого значения λ_0 проводилось девять серий по 100 реализаций. Из каждой реализации бралось 14 точек для определенных значений $F^{(1)}$ вплоть до значения $F^{(1)} = 1.1$. Полученные значения \mathcal{R}_D затем усреднялись по девяти сериям.

Зависимости $\mathcal{R}_D(\lambda)$ и их аппроксимации приведены на рис. 4*a*, *б* в дважды логарифмическом масштабе. Путем их линейной аппроксимации можно получить следующие значения γ в выражении (12): $\gamma = 1.268 \pm 0.034$ для $\alpha = 1$ и $\gamma = 0.510 \pm 0.036$ для $\alpha = 2.5$.

Для обеих моделей величина D слабо самоусредняется. Это следует из того, что показатель степени γ/D в выражении (12) для приведенных выше значений γ (с учетом того, что D = 1.71 при $\alpha = 1$, а -3.6-3.8-4.0-4.2-4.4-4.6-4.8-5.0 $-12.5 \ -12.0 \ -11.5 \ -11.0 \ -10.5 \ -10.0 \ -9.5$ -9.0 $\ln \lambda_0$ $\ln \mathcal{R}_D$ -1.6-1.7б -1.8-1.9-2.0-2.1-2.2-2.3-2.4-2.5-13.0 -12.5 -12.0 -11.5 -11.0 -10.5 -10.0 -9.5 $\ln \lambda_0$

 $\ln \mathcal{R}_D$

a

-3.0

 $-3.2 \\ -3.4$

Рис.4. Зависимости $\ln \mathcal{R}_D(\ln \lambda_0)$ для $\alpha = 1$ (*a*) и 2.5 (*b*)

при $\alpha = 2.5$ значение D заметно больше единицы), оказывается меньше единицы. Так, для $\gamma = 1$ показатель экспоненты $\gamma/D = 0.74$. Следовательно, \mathcal{R}_D с ростом n убывает медленнее, чем обратный «объем кластера» 1/n (тогда как в системах с нормальным самоусреднением эти величины убывали бы одинаково).

Если сделать предположение, что поведение флуктуаций фрактальной размерности, вычисляемой традиционным способом [4, 7, 13] (т.е. вычисляемые по зависимости $F^{(1)} \propto n^{1/D}$), аналогично поведению флуктуаций фрактальной размерности Давидовича–Прокаччиа (11), то наш результат также объясняет медленную сходимость фрактальной размерности с увеличением размера системы.

Рис.5. Зависимость $D(n; \lambda_0)$ для $n \leq 3n_0$ для моделей с различными значениями λ_0 : $4 \cdot 10^{-5}$ (1), 10^{-5} (2), $2.5 \cdot 10^{-6}$ (3), 10^{-6} (4), 10^{-7} (5), 10^{-8} (6), 10^{-9} (7)

4.5. Поведение *D* при большом числе отображений

Согласно методу, предложенному Давидовичем и Прокаччиа [6], при больших значениях числа отображений n найденные значения фрактальной размерности $D(n; \lambda_0)$ не зависят ни от n, ни от λ_0 , что позволяет говорить о существовании единой функции $F_*^{(1)}(x)$. На этом предположении основан их метод нахождения фрактальной размерности.

Для проверки правильности этого предположения мы провели прямое численное определение зависимости фрактальной размерности D как функции числа отображений n и размера выроста λ_0 при $n > n_0$.

Зависимость $D(n; \lambda_0)$ для различных значений λ_0 исследовалась в случае модели DLA ($\alpha = 1$) при $n \leq 3n_0$. Мы использовали методику, описанную в разд. 4.2. Зависимости усредненной по реализациям фрактальной размерности $D(n; \lambda_0)$ для различных значений λ_0 приведены на рис. 5. Погрешности везде (кроме окрестностей точек пересечения кривых) много меньше расстояния между кривыми.

Из рисунка видно, что, во-первых, значения $D(n; \lambda_0)$ не стремятся к постоянной величине по мере увеличения числа отображений n и, во-вторых, имеется сильная зависимость фрактальной размерности $D(n; \lambda_0)$ от λ_0 при больших n. Значения λ_0 , соответствующие значения n_0 , количество реализаций N и максимальные числа n_{max} отображений, до которых проводились вычисления, приведены в таблице. В последнем столбце таблицы приведе-

Значения n_0 , n_{max} , N, \overline{D} для различных λ_0

λ_0	n_0	n_{max}/n_0	N	\overline{D}
$4 \cdot 10^{-5}$	745	2.62	3200	1.769
10^{-5}	1490	1.95	3600	1.765
$2.5 \cdot 10^{-6}$	2980	1.98	560	1.766
10^{-6}	4712	2.68	210	1.754
10^{-7}	14901	2.10	64	1.724
10^{-8}	47123	2.55	20	1.704
10^{-9}	149018	2.69	7	1.723

ны значения фрактальной размерности \overline{D} , полученные усреднением $D(n; \lambda_0)$ по интервалу значений $n \in [1.0:2.5]$. Из таблицы видно, что полученные значения \overline{D} изменяются от 1.77 при $\lambda = 10^{-5}$ до 1.70 при $\lambda = 10^{-8}$, т.е. различаются уже во втором знаке после запятой.

Поведение $D(n; \lambda_0)$ при $\lambda_0 = 10^{-9}$ отличается от поведения функции для остальных значений λ_0 . Этот факт можно объяснить следующим образом. Производная функции конформного отображения в выражении (6) сильно неоднородна на размерах порядка $\sqrt{\lambda_0}$, поэтому при росте частицы вблизи уже существующей частицы последняя будет существенно искажать размер и форму присоединяемой частицы. Эта проблема и возможности ее преодоления подробно обсуждаются в работе Степанова и Левитова [13]. При большом количестве частиц этот эффект будет достаточно заметным, поскольку при уменьшении λ_0 (и увеличении n) увеличивается вероятность образования в одном месте большого количества частиц. Эта же особенность ставит под вопрос возможность получения точных результатов без дополнительного контроля за ростом частиц, а также точное соответствие моделей DLA и Хастингса-Левитова (подробное обсуждение см. в работе [13]).

При небольшой толщине слоя налипших частиц и малом по сравнению с начальным радиусом размере частиц $\sqrt{\lambda_0}$ наша задача близка к задаче роста плоского слоя [12]. Тогда по мере уменьшения размера частиц можно ожидать, что значение фрактальной размерности, полученное по методу Давидовича-Прокаччиа, будет стремиться к известному значению размерности структуры при росте плоского слоя, примерно равному 1.66–1.68 (см. работу [12] и ссылки в ней). Если отложить значения \overline{D} из таблицы в зависимости от $(-1/\ln \lambda_0)$, то четыре из них (при $\lambda_0 = 2.5 \cdot 10^{-6}$, 10^{-6} , 10^{-7} и 10^{-8}) ложатся

Рис. 6. Зависимость $F^{(1)}(x;\lambda_0)$ от $x = \sqrt{\lambda_0} n^{1/D}$ при D = 1.70 (a) и D = 1.75 (б) для различных значений $\lambda_0 = 4 \cdot 10^{-5}, 10^{-5}, 2.5 \cdot 10^{-6}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}$. На вставках, выполненных в более крупном масштабе, видно, что кривые близки, но не сливаются

на прямую и линейная экстраполяция дает значение D = 1.6(1). Конечно, эта экстраполяция весьма приблизительна, тем не менее она является аргументом в пользу нашего предположения, что с помощью метода Давидовича–Прокаччиа можно грубо вычислить фрактальную размерность другой задачи — задачи роста плоского слоя.

Для дальнейшей проверки утверждений Давидовича и Прокаччиа, мы построили аналоги полученных в [6] зависимостей функции $F^{(1)}(x; \lambda) - 1$ от «инвариантной» переменной $x = \sqrt{\lambda_0} n^{1/D}$. Совпадение этих кривых при различных значениях λ_0 свидетельствовало бы о существовании универсальной функции $F^{(1)}_*(x)$.

Эти зависимости приведены на рис. 6*a*, *б* для различных λ_0 и для двух значений фрактальной размерности D = 1.70 и 1.75^{2}). Нами были выбраны именно такие значения фрактальной размерности, поскольку величина D = 1.70, близкая к общепринятому значению размерности в модели DLA, была выбрана авторами [6] при построении аналогичных рисунков, а для величины D = 1.75 получается наиболее плотное расположение кривых, соответствующих различным значения λ_0 .

Анализируя рисунки, можно отметить следующее.

1. Поскольку при D = 1.75 кривые, соответствующие различным λ_0 , располагаются плотнее, чем в случае D = 1.70 (рассматриваемом в работе [6]), более справедливым было бы утверждение о существовании единой функции $F_*^{(1)}(x)$ при D = 1.75.

2. При недостаточно крупном масштабе (таком, какой был выбран на рис. 3–5 в [6]) может показаться, что все $F^{(1)}(x; \lambda)$ сливаются в одну функцию $F_*^{(1)}(x)$, как при D = 1.75, так и при D = 1.70.

3. Для различных значений λ_0 функции $F^{(1)}(x;\lambda)$ близки, но все же они не сливаются. Кроме того, характер их поведения таков, что они не будут сливаться ни при каком значении D. (При D = 1.75 существуют как участки графика, на которых кривые сливаются, так и участки, на которых они не сливаются. Если же взять другое значение D, то на сливающихся при D = 1.75 участках кривые разойдутся.) Следовательно, единой функции $F_*^{(1)}(x)$, скорее всего, не существует.

Таким образом, можно сделать следующий вывод: предложенный в [6] подход не имеет, по всей видимости, достаточного обоснования и вряд ли может служить для получения результатов высокой точности.

5. ВЫВОДЫ

Таким образом, проведенное в работе моделирование позволяет сделать следующие выводы.

1. Распределение D по различным реализациям кластеров близко к гауссову. Величина D усредняется слабо, что может объяснять медленную сходимость результатов вычисления фрактальной размерности традиционным способом.

2. $D(n; \lambda_0)$ действительно экспоненциально быстро релаксирует к некоторому значению (релаксация происходит на размерах порядка $n_0/2$), поэтому кластер, рассматриваемый на размерах порядка n_0 , можно считать стационарным.

3. Исследованное нами поведение функции $D(n; \lambda_0)$ указывает на то, что с помощью метода, предложенного в [6], нельзя получить сколь угодно точных значений фрактальной размерности при $\lambda_0 \rightarrow 0$. По-видимому, в этом пределе размерность стремится к размерности задачи роста плоского слоя. Таким образом, это совсем иная задача, которая требует отдельного исследования.

Авторы благодарны Л. С. Левитову и М. Г. Степанову за критические замечания. Работа частично поддержана грантом РФФИ 99-02-18412. Л. Н. Щ. благодарит за поддержку также фонд Карипло и Centro-Volta—Landau Network (Италия) и программу сотрудничества Эколь Нормаль Супериор (Париж) и Института теоретической физики им. Л. Д. Ландау.

ЛИТЕРАТУРА

- T. C. Halsey, B. Duplantier, and K. Honda, Phys. Rev. Lett. 78, 1719 (1997).
- T. A. Witten and L. M. Sanders, Phys. Rev. Lett. 47, 1400 (1981).
- 3. T. C. Halsey, Physics Today 53, 36 (2000).
- M. B. Hastings and L. S. Levitov, Physica D 116, 244 (1998).
- 5. M. B. Hastings, Phys. Rev. E 55, 135 (1997).
- B. Davidovitch and I. Procaccia, Phys. Rev. Lett. 85, 3608 (2000).
- 7. P. Ossadnik, Physica A 195, 319 (1993).

²⁾ Эти зависимости аналогичны рис. 3-5 из [6], отличие состоит только в том, что нами использован более крупный масштаб рисунков.

- L. Nimeyer, L. Pietronero, and H. J. Wiessmann, Phys. Rev. Lett. 52, 1033 (1984).
- Fractals and Disordered Systems, ed. by A. Bunde and S. Havlin, Springer-Verlag, Berlin, Heidelberg (1996).
- S. Wiseman and E. Domany, Phys. Rev. Lett. 81, 22 (1998); Phys. Rev. E 58, 2938 (1998).
- E. Somfai, L. M. Sander, and R. C. Ball, Phys. Rev. Lett. 83, 5523 (1999).
- 12. B. Kol and A. Aharony, Phys. Rev. E 63, 046117 (2001).
- 13. M. G. Stepanov and L. S. Levitov, Phys. Rev. E 63, 061102 (2001).