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CROSS-SECTION OF THE MUON-NUCLEARINELASTIC INTERACTIONA. V. Butkevih *, S. P. Mikheyev **Institute for Nulear Researh, Russian Aademy of Sienes117312, Mosow, RussiaSubmitted 6 February 2002It is shown that the ombination of the struture funtions F2 predited by the CKMT model at low andmoderate values of Q2 and the MRS99 parton distribution funtions at high Q2 gives a good desription of thedata over the omplete measured region of x and Q2. Using these struture funtions, the main harateristisof the muon-nulear inelasti sattering are alulated. Nulear e�ets and ontributions of the neutral urrentand the �Z interferene are taken into aount.PACS: 13.10.+q, 13.60.-r1. INTRODUCTIONMuon inelasti sattering o� nulei plays an impor-tant role in muon propagation through matter. In thisproess, the muon an loose a signi�ant part of its en-ergy and an be sattered at large angles. Therefore,the muon-nulear inelasti sattering is of interest innumerous appliations related to the muon transport inmatter, in partiular, in alulations of the muon inten-sity at large depth of matter, the muon-indued hadron�ux underground, the bakground produed by atmo-spheri muons in underground neutrino experiments,et.Several models [1�4℄ have been developed to de-sribe the muon-nulear inelasti interation; however,unertainties of this proess are muh larger than forpurely eletromagneti interations. The reason isthat the bulk of this proess is haraterized by alow squared four-momentum transfer Q2. The small-ness of Q2 does not allow us to use the perturbativeQCD (pQCD) to alulate the nulear struture fun-tion, and phenomenologial models suh as the Reggeor General Vetor Dominane Model (GVDM) mustbe used. The parameterization of the nuleon stru-ture funtions obtained in these models depends onfree parameters that an be determined from a �t ofexperimental data and an be applied in the range*E-mail: butkevi�al20.inr.troitsk.ru**E-mail: mikheyev�pbai10.inr.ruhep.ru

Q2 � 1�3 GeV2. This range is often referred to as pho-toprodution. But these models fail to desribe deepinelasti sattering (DIS) data at high Q2. The pQCD(NLO QCD) gives a good desription of the struturefuntions at Q2 � 3 GeV2. A model ombining variousaspets of these approahes is therefore needed to de-sribe the Q2 behavior of nuleon struture funtionsover the entire range from photoprodution to DIS.The widely used approximation [4℄ of the muonphotonulear ross-setion was obtained twentyyears ago in the GVDM framework. Experimentaldata for Q2 � 100 GeV2 and x � 0:01 were usedto determine the parameters. Reently, preisedata [5℄ on struture funtions in wide ranges of Q2(0:045 � Q2 � 104 GeV2) and x (10�6 � x � 0:98)have been obtained and new nulear e�ets (antishad-owing and EMC e�ets) were observed.The main goal of this paper is the alulation ofthe muon-nulear inelasti ross-setion, based on themodern nuleon struture funtions and on the presentknowledge of nulear e�ets.The paper is organized as follows. In Se. 2, we givethe general relations and de�nitions used in desribingthe neutral urrent harged lepton�nuleon sattering.The proedure of the alulation of the nuleon stru-ture funtion using the CKMT Regge model [6℄ and theMRS99 parton distribution funtion [7℄ is desribed inSe. 3. In Se. 4, nulear e�ets and their parameteri-zation are desribed. The total ross-setion, the muon2 ÆÝÒÔ, âûï. 1 (7) 17
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γ Z+Fig. 1. Shemati diagrams for the neutral urrentharged lepton sattering o� nuleonenergy loss, and the angular distributions of satteredmuons are given in Se. 5. In Conlusions, we summa-rize the main results of the paper.2. NEUTRAL CURRENT CHARGEDLEPTON�NUCLEON SCATTERINGCROSS-SECTIONThe ross-setion of the neutral urrent harged lep-ton sattering o� nuleon,l(k) +N(p)! l(k0) +X(p0); (1)is given by the sum of ontributions of the proessesshown in Fig. 1 Here, k(E;k) and k0(E0;k0) are theinitial and �nal lepton four-momenta, q = k� k0 is thevirtual photon or Z-boson momentum, p and p0 are theinitial nuleon momentum and the total momentum ofthe �nal hadrons X , respetively. This proess an bedesribed by the transferred four-momentum Q2, theBjorken variable x, and the lepton energy loss � (orinelastiity y) de�ned asQ2 = �q2 = (k � k0)2;x = Q22pq ; � = qpM ; y = pqpk : (2)In laboratory systemQ2 = 2(EE0 � k � k0)� 2m2;x = Q22M� ; � = E �E0; y = �E ; (3)where M and m are the nuleon and lepton masses,respetively.The general form of the di�erential ross-setion forthe sattering of a harge nonpolarized lepton on a non-polarized nuleon, summed over the �nal lepton polar-izations, an be expressed asd2�l�;l+d� dQ2 = 2��2Q4E2 ��hEl�;l+(x;Q2)�I l�;l+(x;Q2)+Zl�;l+(x;Q2)i; (4)

where El�;l+ = 2xF el1 (x;Q2)Y1 + F el2 (x;Q2)Y2; (5)I l�;l+ = PZ�gV h2xF I1 (x;Q2)Y1 + F I2 (x;Q2)Y2i�� gAxF I3 (x;Q2)Y3�; (6)Zl�;l+ = P 2Z�(g2V + g2A)�2xFZ1 (x;Q2)Y1 ++ FZ2 (x;Q2)Y2�� 2gV gAxFZ3 (x;Q2)Y3�; (7)and Y1 = �Q2 � 2m2� �Q2 ;Y2 = �2E(E � �)� Q22 � 1� ;Y3 = 2E � �: (8)Here, the term PZ aounts for the Z0 propagator,PZ = Gp2 Q22�� m2ZQ2 +m2Z ; (9)where G=p2 is the Fermi onstant, � = 1=137 is the�ne struture onstant, and mZ is Z-boson mass. Thelepton weak oupling onstants gV and gA aregV = �12 + 2 sin2 �W ; gA = �12 ; (10)where �W is the Weinberg angle.The funtions F el;Zi are the eletromagneti (-ex-hange) and neutral urrent (Z-exhange) struturefuntions, respetively. The funtions F Ii orrespondto the deomposition over invariant funtions of thetensor (�Z interferene)W I �X�Dp0jJel� jpEDpjJZ� jp0E++ Dp0jJZ� jpEDpjJel� jp0E�Æ(p0 � p� q): (11)The upper sign in Eqs. (6) and (7) orresponds to thelepton sattering (e�; ��) and the lower sign is for theantilepton (e+; �+) sattering.The term proportional to the funtion F I3 is dueto the interferene between the eletromagneti sat-tering amplitude and the axial-vetor urrent weak in-teration amplitude. The amplitudes have opposite C18



ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002 Cross-setion of the muon-nulear inelasti interationparities, and the orresponding terms therefore haveopposite signs for the lepton and the antilepton sat-tering. At low Q2, the �Z interferene term is muhsmaller than the -exhange one, but it inreases lin-early with Q2 (Eq. (9)) and beomes omparable to the-exhange term at Q2 �103 GeV2.In terms of the parton distribution in the LO-ap-proximation, the struture funtions an be written asF el1 = 12X e2q (fq + f�q) ; (12)F el2 = xX e2q (fq + f�q) ; (13)FZ1 = 12X�v2q + a2q� (fq + f�q) ; (14)FZ2 = xX�v2q + a2q� (fq + f�q) ; (15)FZ3 = 2X vqaq (fq � f�q) ; (16)F I1 =X eqvq (fq + f�q) ; (17)F I2 = 2xX eqvq (fq + f�q) ; (18)F I3 = 2X eqaq (fq � f�q) : (19)Here, fq and f�q are parton distribution funtions in theproton; eq, vq , and aq are the harge, vetor, and axial-vetor week ouplings of quarks. For the up-quarks(u; ; t) they are given byeu;;t = 23 ; vu;;t = 12 � 43 sin2 �W ; au;;t = 12 (20)and for the down-quarks (d; s; b),ed;s;b = �13 ; vd;s;b = �12 + 23 sin2 �W ;ad;s;b = �12 : (21)It an be seen from Eqs. (4) and (9) that the mainontribution to the total ross-setion is due to pho-toprodution (a low-Q2 proess); however, at a �xedoutgoing muon energy, the large sattering angle or-responds to high Q2,os � = �EE0 �Q2=2�m2� =jkjjk0j: (22)Therefore, the alulation of the muon sattering atlarge angles requires the knowledge of the behavior ofthe nuleon struture funtions in the wide range ofQ2 � 0:01�106 GeV2.

3. LOW- AND HIGH-Q2 APPROXIMATIONSOF THE NUCLEON STRUCTUREFUNCTIONSAt high Q2, the QCD preditions for the nuleonstruture funtions are obtained by solving the DGLAPevolution equations at the NLO approximation in theMS or DIS shemes. These equations yield the par-ton distribution funtions at all values of Q2 providedthese funtions are given as a funtion of x at someinput sale Q20 = 1:2�5 GeV2. The latest global �tsperformed by several groups (MRS99 [7℄, GRV98 [8℄,and CTEQ5 [9℄) give a good desription of the experi-mental data. At Q2 below Q20, the perturbative QCDfails to desribe data and phenomenologial nonper-turbative (GVDM or Regge) models are required. Aonsiderable number of nonperturbative models havebeen developed reently [10�12℄. These models preditthe orret limit of F2 at Q2 = 0 and give a good de-sription of the struture funtions at low and mediumQ2. Thus, neither the nonperturbative approahes norpQCD an be expeted to desribe the Q2 behaviorof the struture funtions over the entire range fromphotoprodution to DIS. A number of models ombin-ing QCD and phenomenologial approahes have beendeveloped to desribe data in the transition region ofQ2 (see review [13℄). In this paper, we use the CKMTmodel [6℄ at low and moderate Q2 and the MRS99 �tof the parton distribution funtion [7℄ at high Q2.The CKMT model proposes the following parame-terization of the proton struture funtion F p2 :F p2 (x;Q2) = F pS(x;Q2) + F pNS(x;Q2): (23)The singlet termF pS(x;Q2) = ASx��(Q2) (1� x)n(Q2)+4 ��� Q2Q2 + a�1+�(Q2) (24)orresponds to the Pomeron ontribution that whihdetermines the small-x behavior of sea quarks and glu-ons. The dependene of the e�etive interept of thePomeron � on Q2 is parameterized as�(Q2) = �0 �1 + 2Q2Q2 + d� : (25)The x! 1 behavior of FS(x;Q2) is determined by thefuntion n(Q2) = 32 �1 + Q2Q2 + � : (26)19 2*



A. V. Butkevih, S. P. Mikheyev ÆÝÒÔ, òîì 122, âûï. 1 (7), 2002The parameterization of the nonsinglet term, whihorresponds to the seondary (f ,A2) reggeon (valenequark) ontribution, is given byF pNS(x;Q2) = Bx(1��R) (1� x)n(Q2) ��� Q2Q2 + b��R ; (27)where the behavior as x! 0 is determined by the se-ondary reggeon interept �R. The valene quark dis-tribution an be separated into ontributions of the uand d valene quarks by replaingF pNS(x;Q2) = xUV (x;Q2) + xDV (x;Q2); (28)wherexUV (x;Q2) = Bux(1��R) (1� x)n(Q2) ��� Q2Q2 + b��R ; (29)xDV (x;Q2) = Bdx(1��R) (1� x)n(Q2)+1 ��� Q2Q2 + b��R ; (30)and Bu and Bd are �xed at Q2 = Q20 by the normal-ization onditions for valene quarks in proton:1Z0 1x �xUV (x;Q2)� dx = 2e2u;1Z0 1x �xDV (x;Q2)� dx = e2d: (31)The limit of Q2 = 0 orresponds to the interationof real photons. The total ross-setion for real photonsan be written as�totp (�) = �4�2�Q2 F2(x;Q2)�Q2=0 : (32)We see from Eqs. (23), (24), and (28) that F2 � Q2 asQ2 ! 0 for a �xed �. Thus, the parameterization�totp (�) = 4�2�hAsa�1��0(2M�)�0 ++ (Bu +Bd)b��R(2M�)�R�1i (33)applies in the CKMT model.In this way, we �nd parameterizations of both theF p2 and p ross-setions with seven free parameters:a; b; ; d;�0; �R, and AS . To determine the parameters,

we have made a joint �t of the �totp data and the NMC,E665, SLAC, ZEUS, and H1 data on the proton stru-ture funtion F2 in the regions 0:11 � Q2 � 5:5 GeV2and 10�6 � x � 0:98 [5℄. As the initial ondition for thevalues of di�erent parameters, we used those obtainedin the previous �t in Ref. [6℄. A global �t results inthe following values of the parameters (all dimensionalparameters are expressed in GeV2):a = 0:2513; b = 0:6186;  = 3:0292; d = 1:4817;�0 = 0:0988; �R = 0:4056; AS = 0:12:The values of the parameters Bu = 1:2437 andBd = 0:1853 were determined from the normalizationonditions for valene quarks (at Q20 = 2 GeV2). Thequality of the desription of all experimental data isvery good and �2=d.o.f. = 754:8=600, where only thestatistial errors have been used. Reently, a modi�edversion of the CKMTmodel with the new data on F p2 atlow Q2 was published [14℄. The values of the main pa-rameters are in a good agreement with those obtainedin the present work.To alulate F2 in the entire region of Q2, we there-fore use the CKMT model at Q2 � 5 GeV2, the MRS99parton distribution funtion at Q2 � 6 GeV2, and alinear �t between F p2 (CKMT) and F p2 (MRS99) in theregion 5 � Q2 � 6 GeV2. The result of the �t of F p2 and�totp is shown in Figs. 2 and 3 (F p2 versus x for di�erentvalues of Q2) and Fig. 4 (F p2 versus Q2 for di�erent val-ues of x) along with the experimental data [5; 15℄. Theross-setion �totp as a funtion ofW 2 = M2+2M��Q2is shown in Fig. 5 (the data from [16; 17℄).A good desription of experimental data is obtainedfor all x and Q2 values. We note thata) the reent ZEUS BPT97 data [15℄ were not in-luded in our �t, but are in agreement with the CKMTmodel predition at Q2 � 0:1 GeV2;b) the rise of F p2 at low x and low Q2 is welldesribed by the CKMT model with the slope�0 = 0:0988, while the experimental value is0:102� 0:070 [15℄;) the �totp values found by the ZEUS ollaborationare the result of a phenomenologially motivated ex-trapolation.In Figs. 2�5, we show the struture funtion F p2 and�totp that were obtained by Bezrukov and Bugaev [4℄and were used for alulating the muon photonulearross-setion are also shown. At x < 10�3, the stru-ture funtions rise slower than the present data indi-ate. On the other hand, in the region x > 0:01 andQ2 > 5 GeV2, the struture funtions are overesti-mated.20
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In the ase of the SU(2)-symmetri sea, the parton dis-tribution funtion of �d is equal to that of �u, and there-fore, SG = 1=3. But the NMC ollaboration [5℄ givesSG = 0:235 � 0:026 at Q2 = 4 GeV2, whih is signi�-antly below 1/3 and shows that F p2 (x) � Fn2 (x) ! 0and Fn2 (x)=F p2 (x) ! 1 as x ! 0. Taking these resultsinto aount, the singlet term of Fn2 must be modi�ed.Beause of the isotopial invariane of the strong inter-ation, the nonsinglet term FnNS isFnNS(x;Q2) = 14xUV (x;Q2) + 4xDV (x;Q2); (36)where xUV (x;Q2) and xDV (x;Q2) are given by21
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between Fn2 (CKMT) and Fn2 (MRS) in the transitionregion 5 < Q2 < 6 GeV2. The struture funtionF d2 (Fig. 6) and the ratio Fn2 =F p2 (Fig. 7) versus Q2for di�erent values of x are shown along with exper-imental data. Figure 8 shows F p2 � Fn2 versus x atQ2 = 4 GeV2. The alulations are in agreement withthe NMC data [18℄.For the alulation of the ross-setion of lepton�nuleon sattering, the behavior of the struture fun-tion 2xF1 must be known in a wide range of Q2 and x.This funtion an be expressed using the longitudinalstruture funtionFL = �1 + 4M2x2Q2 �F2 � 2xF1: (38)Then 2xF1 = 11 +R �1 + 4M2x2Q2 �F2; (39)22
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In the region 10�3 < x < 5 � 10�3, a linear �t betweenR(MRS99, x = 10�3) and R (SLAC98, x = 5 � 10�3) isused. At Q2 < Q20,R(x;Q2) = RGVDM (x;Q2) = C(x) Q2Q2 +m2� ; (42)where the funtion C(x) is determined by the normal-ization ondition at Q20,RGVDM (x;Q20) = R(x;Q20); (43)and the funtion R(x;Q20) is alulated using Eq. (41).Figure 9 shows the experimental values of R as a fun-tion ofQ2 in four ranges of x along with the result of theparameterization in Eqs. (41) and (42). In the region oflow Q2 < Q20, R dereases with Q2 at all values x, butthe dependene on x is not strong (Fig. 10). However,the extrapolation of R outside the kinematial rangeof data (namely, as Q2 ! 0 and x ! 0) based on thepresently available data is a rather deliate problem.In Figs. 11 and 12, we show the results of alu-lations of the di�erential ross-setions of the neutralurrent e�p sattering d�=dQ2 and d�=dy at high Q2.The ross-setion d�=dQ2 dereases by six orders ofmagnitude between Q2 = 400 and 4000 GeV2. Thisderease is due to the photon propagator. The ross-setion d�=dy is shown for di�erent Q2 regions. ForQ2 > 400 GeV2, the bulk of the ross-setion is on-entrated at small values of y. For Q2 > 104 GeV2, thedi�erential ross-setion is approximately onstant in y.The preditions using the MRS99 parton distributionfuntion give a good desription of the measured ross-setions. The neutral urrent sattering at high Q2 issensitive to the ontribution of Z0. In aordane withEqs. (4)�(9), the Z0 ontribution redues the e+p (e�p)ross-setion at Q2 > 104 GeV2 by approximately 25%(12%).4. NUCLEAR STRUCTURE FUNCTIONSThe struture funtions measured for di�erent nu-lei A are found to di�er from the struture fun-tions measured on deuteron [24; 25℄. The modi�a-tions are usually observed as a deviation of the ra-tio rA=d = FA2 =F d2 from unity, where FA2 and F d2are the struture funtions per nuleon measured ina nuleus and deuteron, respetively. Negleting nu-lear e�ets in the deuteron, F d2 an approximatelystand for an isospin averaged nuleon struture fun-tion, FN2 = (F p2 + Fn2 ) =2. Di�erent nulear e�ets areobserved in di�erent regions of x.24
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with mi = Mi [1�Ns(A)=A℄ ; (50)where M1 = 0:129, M2 = 0:456, and M3 = 0:553. Weused Eq. (49) to alulate rA=d up to x0 < 10�3.The value of x0 as a funtion of A was obtained asfollows. The experimental data [26℄ show that in theregion 5 � 10�3 < x < 0:1, the ratio rA=d dereases withx. Generally, small x orrespond to small Q2, and theapproah of the real photon interation an thereforebe used. Hene, as x ! 0, rA=d ! �A = �A=A�N ,where �A is the photon-nulear ross-setion and �Nis the photon�nuleon ross-setion averaged over pro-ton and neutron. The expression for the funtion �Ahas been obtained in Ref. [4℄ using the optial nulearmodel, �A = 0:75G(z) + 0:25; (51)where G(z) = 3z2 �z22 � 1 + e�z(1 + z)� (52)and z = 0:00282A1=3�N (�). Using Eq. (34) with thevalues of parameters obtained in this work, we anwrite the averaged photon�nuleon ross-setion as�N = 12(�p + �n) == 112:2 �0:609�0:0988 + 1:037��0:5944� : (53)In the range x� 1, Eq. (49) is redued torA=d(x) = xm1(1 +m2): (54)From the asymptoti onditionrA=d(x0) = 0:75G(z) + 0:25; (55)we then obtain the expression for x0:x0 = � 11 +m2 (0:75G(z) + 0:25)�1=m1 : (56)At x < x0, we assumed that the funtion rA=d is on-stant and rA=d(x) = rA=d(x0): (57)The results of approximating the ratio rA=d are pre-sented in Fig. 13 as funtions of x for di�erent nuleartargets and are in a good agreement with experimentaldata.27
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A = 207Fig. 14. The total ross-setion �A(�) for C, Cu, andPb as a funtion of the real photon energy. Resultsof our alulations (solid urves) and alulations byBezrukov and Bugaev [4℄ (dashed urves) as omparedto experimental data [27℄and the muon energy lossbn(E) = NAvA �maxZ�min � d��Ad� d� (62)are shown in Fig. 16. The allowed kinematial regionfor the variables � and Q2 is determined by the equa-tions Q2 = 2 (EE0 � jkjjk0j os �)� 2m2 (63)with os � = �1 andQ2 = 2M� +M2 �W 2: (64)The results in Ref. [4℄ are also given in these �guresfor omparison. We note that the ross-setion and themuon energy loses [4℄ have been alulated taking onlythe shadowing e�et into aount. The ross-setion ofthe inelasti muon sattering obtained in the presentwork is larger by the fator 1.2 and the muon energyloss bn(E) is also larger by about 8% at E =103 GeVand 30% at E =106 GeV. As a result, the total en-ergy loss (the sum of bremsstrahlung, pair prodution,and inelasti muon sattering) inrease by about 1% atE =103 GeV and 4% at E =106 GeV. These di�erenesare mainly due to ontributions of small x and smallQ2, where the modern struture funtions are largerthan that used by Bezrukov and Bugaev [4℄.The probabilities P (� �;� v) of the muon satter-ing in a single interation at the angles larger than �

with the outgoing muon energy E0 � vE are shown inFig. 17 as a funtion of � for di�erent values of v andprimary muon energies. The results are given for the�� and �+ sattering. The main peuliarities of theinelasti muon sattering are as follows.(i) At �xed values of � and E0, the probability de-reases very rapidly with the initial muon energy E.For example, for � � 2Æ and E0 = 10 GeV, we haveP = 6:3 � 10�4 at E = 102 GeV and P = 3:8 � 10�6 atE = 103 GeV.(ii) At �xed values of � and E, the probability in-reases with dereasing the outgoing muon energy E0.For � � 2Æ and E = 103 GeV, we have P = 7:8 � 10�7at E0 � 102 GeV and P = 3:8 � 10�6 at E0 � 10 GeV.(iii) At �xed values of E and E0, the mean val-ues of x and Q2 (hxi and hQ2i) inrease with �. Forthe muon energies E = 102 GeV and E0 � 0:1E, thevalues of hxi and hQ2i inrease from hxi = 0:12 (anti-shadowing region) and hQ2i = 0:75 GeV2 at � = 0:25Æup to hxi = 0:25 (EMC region) and hQ2i = 34 GeV2at � = 6Æ. For the energies E = 103 GeV andE0 � 0:1E, we have hxi = 0:09 (shadowing region),hQ2i = 28 GeV2 at � = 0:25Æ and hxi = 0:46 (EMC re-gion) and hQ2i = 925 GeV2 at � = 6Æ. The probabilityof sattering at large angles is therefore suppressed bythe EMC e�et. 6. CONCLUSIONSWe have studied the inelasti muon sattering o�nulei.1. It is shown that the ombination of the struturefuntion F2 predited by the CKMT model at low andmoderate values of Q2 and the MRS99 parton distri-bution funtions at high Q2 gives a good desriptionof the data over the entire measured region from pho-toprodution to DIS. In partiular, the CKMT modelwell desribes the rise of F p2 at low x and Q2 with theslope �0 = 0:0988. Furthermore, the expression forthe neutron struture funtion Fn2 an be obtained inthe framework of this model. The result is in a goodagreement with the F 2p =F 2n and F 2p � F 2n data.2. The MRS99 parton distribution funtions welldesribe the di�erential ross-setions d�=dQ2 andd�=dy alulated taking not only the eletromagnetiurrent ontribution but also the ontributions of theneutral urrent and the �Z interferene into aount.The �Z interferene ontribution is learly seen athigh Q2 > 103 GeV2.3. The nulear e�ets modify the nuleon stru-ture funtions in the entire measured region of x and29
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