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THE THEORY OF OPTICAL COMMUNICATION LINESWITH A SHORT-SCALE DISPERSION MANAGEMENTS. B. Medvedev *, E. G. Shapiro, M. P. Fedoruk, E. G. TuritsynaInstitute of Computational Tehnologies, Siberian Division, Russian Aademy of Sienes630090, Novosibirsk, RussiaInstitute of Automation and Eletrometry, Siberian Division, Russian Aademy of Sienes630090, Novosibirsk, RussiaSubmitted 9 November 2001We investigate, theoretially and numerially, properties of dispersion-managed (DM) solitons in �ber lineswith the dispersion ompensation period L muh shorter than the ampli�ation distane Za. We present thepath-averaged theory of DM transmission lines with a short-sale management in the ase of asymmetri maps.Applying a quasi-idential transformation, we demonstrate that the path-averaged dynamis in suh systemsan be desribed by an integrable model in some limits.PACS: 42.65.Tg, 42.81.Dp1. INTRODUCTIONRealization of the soliton-based optial data trans-mission has learly demonstrated how results of thefundamental soliton theory (see, e.g., [1�12℄) an besuessfully used in very important pratial applia-tions. The dispersion management tehnique proposedreently allows the inrease of the bit-rate per hanneland the suppression of the interhannel interation inWDM systems in omparison with the traditional soli-ton transmission [13℄. The dispersion-managed (DM)soliton is a novel type of an optial information ar-rier with many attrative properties (see, e.g., [15�57℄and referenes therein) ombining features of the tradi-tional fundamental soliton and the dispersion-managednon-return-to-zero transmission. The power of the DMsoliton is enhaned [19℄ ompared to the orrespondingfundamental soliton. This inreases the signal-to-noiseratio, redues the Gordon�Haus jitter, and thereforeimproves the transmission system performane. How-ever, in the systems (transmission regimes) limited bynonlinear pulse interations rather than by noise, theenhaned soliton power an beome a less attrativefeature. For instane, the data transmission with highbit-rates of 40 Gb/s per hannel and more requires adense pulse paking, and onsequently, short soliton*E-mail: mife�it.ns.ru

widths. The DM soliton energy inreases with thederease of the pulse width (or in other words, withthe inrease of the map strength). The average powerof the traditional soliton signal inreases with the in-rease of the bit-rate (assuming the soliton width to bea fration of the time slot) as the square of the bit-rate.For the DM soliton, this growth is even more drasti,and for short pulses, the DM soliton power an there-fore beome too high to be realized in pratie [55℄.Additionally, soliton interation beomes an importantissue as the signal power inreases [55℄. The energyontrol by the orresponding redution of the averagedispersion is limited by �utuations of the dispersionalong the �ber and by higher-order dispersive e�ets.Therefore, in designing soliton-based (and also generalreturn-to-zero signal) transmission systems, the solitonpower must be kept su�iently large for the signal-to-noise ratio requirement and suppressed jitter, and atthe same time, not too large to avoid the strong solitoninteration and to meet the teleommuniation stan-dards on the signal power. One way to �nd suh anoptimum for a high bit-rate DM transmission is to usea hirped-return-to-zero signal [55; 56℄ with less powerthan the DM soliton power in the orresponding sys-tem. Even though suh arriers are not stable in a ri-gorous mathematial sense and emit radiation as theypropagate, they an be suessfully used in pratial1040



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of optial ommuniation lines : : :systems. A hallenge for the soliton theory, however,is to �nd high-bit-rate (� 40 Gb/s per hannel) trans-mission regimes with a truly periodi soliton-like signalpropagation. The short-sale dispersion managementis a means of ontrolling the DM soliton energy whilekeeping the average dispersion not too small and takingadvantage of the four-wave-mixing (FWM) suppressionin the WDM transmission by a high loal dispersion.The traditional dispersion management for long-haul transmission assumes the ampli�ation distaneto be muh shorter than the dispersion ompensationperiod (see, e.g., [14℄). Another important applia-tion is the implementation of dispersion-ompensatingshemes in the existing terrestrial �ber links based onthe standard monomode �bers, whih typially requiresrather lose spaing of the dispersion ompensating�bers beause of the high dispersion of the standardmonomode �bers at 1:55�m. In this ase, the ampli-�ation distane is typially of the order of the om-pensation period. The existing tehnologies make itpossible to manufature �bers with the ontinuous al-ternation of positive and negative dispersion setionsof few kilometers long without any spliing [27℄. Thefundamental properties of the optial signal transmis-sion in this regime are less studied ompared to otherregimes. In this paper, we investigate the optial pulsetransmission in DM �ber systems with the ompensa-tion length that is muh shorter than the ampli�ationdistane [41℄. We examine the ase of an asymmetridispersion map. Compared to lossless models, the sys-tems with di�erent periods of the ampli�ation (Za)and dispersion ompensation (L) possess an importantnew degree of freedom, the parameter L=Za. A short-sale dispersion ompensation (L� Za) leads to a re-dution of the DM soliton power if we �x all systemparameters and the pulse width and vary only L=Za.Below, we show that the short-sale management anbe onsidered as a possibility of an advantageous pra-tial realization of the weak-map regime.2. THE BASIC MODELWe �rst reall the basi equations and the notation.The optial pulse propagation in a asaded transmis-sion system with varying dispersion is governed byi�E�z + �20D(z)4�l �2E�t2 + 2�n2�0Aeff jEj2E == i[�(z) + rk NXk=1 Æ(z � zk)℄E = iG(z)E; (1)

where z is the propagation distane in [km℄, t is theretarded time in [ps℄, jEj2 = P is the optial powerin [W℄, and D(z) is the group veloity dispersion mea-sured in ps/nm�km. We assume a periodi dispersionmanagement with the period L, D(z + L) = D(z);zk are the ampli�er loations. We onsider a peri-odi ampli�ation with the period Za. If  = kis onstant between two adjaent ampli�ers, thenrk = [exp(kZa) � 1℄ is the ampli�ation oe�ientafter the �ber span between the k-th and (k � 1)-thampli�er, n2 is the nonlinear refrative index, Aeff isthe e�etive �ber area,  = 0:05 ln 10� (with � mea-sured in dB/km) is the �ber loss of the orresponding�ber, l is the speed of light, and �0 = 1:55�m is thearrier wavelength. We onsider the general ase whereL and Za are rational and ommensurable, namely,nZa = mL = Z0 with integer n and m. In this paper,we fous on the systems with the short-sale manage-ment with n = 1, m > 1, and Z0 = Za = mL. It isustomary to pass from the original optial �eld E(z; t)to A(z; t) = E(z; t) exp24 zZ0 G(z0)dz035 :The evolution of the saled envelope A is then givenby the nonlinear Shrödinger (NLS) equation with pe-riodi oe�ientsiAz + d(z)Att + �(z)jAj2A = 0; (2)where �(z) = 2�n2�0Aeff exp[2 zZ0 G(z0)dz0℄;d(z) = �20D(z)4�l : (3)
3. THE PATH-AVERAGED MODELIn this setion, we brie�y reall the derivation ofthe path-average model [28, 42℄ desribing the hangeof the signal waveform over one ompensation period.Equation (3) governing the z-evolution of an optialpulse an be written in the Hamiltonian formi�A�z = ÆHÆA� = �d(z)Att � �(z)jAj2A (4)with the HamiltonianH = Z �d(z) jAtj2 � �(z)2 jAj4� dt: (5)4 ÆÝÒÔ, âûï. 5 1041



S. B. Medvedev, E. G. Shapiro, M. P. Fedoruk, E. G. Turitsyna ÆÝÒÔ, òîì 121, âûï. 5, 2002The true breathing soliton is a solution of Eq. (3)of the form A(z; t) = exp(ikz)F (z; t)with a periodi funtion F (z+Z0; t) = F (z; t). It is in-teresting to �nd a systemati way to desribe a familyof periodi solutions F with di�erent quasi-momenta k.The basi idea suggested in [28℄ is to use the small pa-rameter � to derive a path-averaged model that gives aregular desription of the breathing soliton in the lead-ing order in �. Averaging annot be performed diretlyin Eq. (1) in the ase of large variations~d� hdi;where d(z) = ~d+ hdi with h ~di = 0:However, a path-averaged propagation equation an beobtained in the frequeny domain [28℄. We show thatin some important limits, the averaged equation for theperiodi breathing pulse an be transformed to the in-tegrable NLS equation.First, to eliminate the periodi dependene of thelinear part, we follow [28℄ in applying the so-alledFloquet�Lyapunov transformationA! = �! expf�i!2R(z)g; dR(z)dz = d(z)� hdi; (6)where A! = A(z; !) is the Fourier transform ofA(z; t) = Z A! exp[�i!t℄d!:An important observation used in what follows is thatfor a �xed amplitude of d, the amplitude of the varia-tion of R dereases as m = Za=L inreases. It an beeasily found that max[R(z)℄ / 1=m:In the new variables, the equation beomesi��!�z �hdi!2�!+� Z G!123(z)Æ(!+!1�!2�!3)�� ��1�2�3d!1d!2d!3 = 0; (7)where G!123(z) = (z) expfi�
R(z)gis Za-periodi and�
 = !2 + !21 � !22 � !23 :

We note that G!123 depends only on the spei� om-bination of the frequenies given by the resonane sur-fae �
. Both the Fourier transform and Floquet�Lyapunov transform (6) are anonial and the trans-formed Hamiltonian H is given byH = hdiZ !2 j�! j2 d!�"Z G!1232 Æ(!+!1�!2�!3)�� ��!��1�2�3d!d!1d!2d!3: (8)It is important that " and hdi are small, and Eq. (7)therefore has the so-alled Bogolubov standard formand the averaging proedure an then be applied. Wenow apply the Hamiltonian averaging [50, 51℄. Wehange the variables as�! = '! + � Z V!123Æ(! + !1 � !2 � !3)�� '�1'2'3d!1d!2d!3 + : : : ;whereV!123(z) = i zZ0 [G!123(�) � T!123℄d� + iV!123(0);hV!123i = 0withT!123 = hG!123i = 1Z0 G!123(z)dz == 1Z0 (z) expfi�
R(z)gdz: (9)In the leading order in �, the path-averaged evolutionof signal in the DM line is governed by the Gabitov�Turitsyn model [28℄i�'!�z �hdi!2'!+� Z T!123Æ(!+!1�!2�!3)�� '�1'2'3d!1d!2d!3 = 0: (10)The Hamiltonian averaging introdued here repre-sents a regular way to alulate the next-order orre-tions to the averaged model. We note that Eq. (10)possesses a remarkable property. The matrix elementT!123 = T (�
) is a funtion of�
 and on the resonantsurfae given by!+!1�!2�!3 = 0; �
 = !2+!21�!22�!23 = 0;1042



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of optial ommuniation lines : : :both T!123 and its derivative with respet to �
 areregular. This observation allows us to make a quasi-idential transformation that eliminates the variablepart of the matrix element T!123,'! = a! � �hdi Z T0 � T!123�
 �� a�1a2a3Æ(! + !1 � !2 � !3)d!1d!2d!3; (11)where T0 = T (0). This transformation has no singu-larities. If the integral part in this transformation issmall ompared to a!, then in the leading order weobtaini�a!�z � hdi!2a! + � Z T0Æ(! + !1 � !2 � !3)�� a�1a2a3d!1d!2d!3 = 0: (12)This is nothing else but the integrable nonlinearShrödinger equation written in the frequeny domain.Obviously, this transformation is quasi-idential only ifthe integral in Eq. (11) is small ompared to a!. Thisis not true in the general ase and that is why the path-averaged DM soliton given by the solution of Eq. (10)then has a form di�erent from the osh-shaped NLSequation soliton [28; 43; 49℄. A omprehensive analysisof the DM soliton solutions of the Gabitov�Turitsynequation has been published in [46�48℄. The �rst high-preision numerial solution of the Gabitov�Turitsynequation was presented in [48℄. We note that if thekernel funtion in Eq. (11) is small,jS(�
)j = ����T0 � T!123(�
)�
 ����� 1; (13)then the averaged model an be redued to the NLSequation. In other words, this is a ondition on thefuntions (z) and d(z) that makes the quasi-identialtransformation possible. The path-averaged DM soli-ton propagation in systems satisfying requirement (13)is lose to the dynamis of the traditional soliton andat the same time preserves all the advantages of thesuppression of FWM by a high loal dispersion.4. SYSTEMS WITH A SHORT-SCALEMANAGEMENTIn this setion, we alulate the matrix elementT!123 for systems with a short-sale management(L� Za) and demonstrate that a path-averaged prop-agation (even with large variations of the dispersion)an be desribed by the integrable NLS equation inthis regime. The matrix element T plays an important

role in the desription of the FWM [52℄. To be spe-i�, we onsider a two-step dispersion map with theampli�ation distane Za = Z0 (n = 1) and dispersionompensation period L = Za=m km. The dispersion isd(z) = d+ hdiif km < zZa < k + amand d(z) = daa� 1 + hdiif k + am < zZa < k + 1m ;where k = 0; 1; 2; : : : ;m � 1 and the parametera 2 (0; 1) desribes the position of the step. The mean-free funtion R de�ned above an be found asR(z) = d(z � Zak=m� aZa=(2m))if km < zZa < k + amand R(z) = daa� 1 �z � Zakm � (a+ 1)Za2m �if k + am < zZa < k + 1m :Straightforward alulations show that in this system,the matrix element T!123 isT!123 = exp(2Za)� 12Za exp(2Za) �1 + id�
2 � id�
 �� �1� 2Za=mexp(2Za=m)� 1 �� exp [(2(1� a) + iad�
)Za=m℄� 1(2(1� a) + iad�
)Za=m ���� exp ��iad�
 Za2m� : (14)To show a self-similar struture of this matrix element,we rewrite T!123 asT!123 = B(G) � F (a;X; Y ); (15)B(G) = G� 1G lnG;F (a;X; Y ) = �1 + iYX � iY �1� XeX � 1 �� exp[(1�a)X+iaY ℄�1(1�a)X+iaY �� exp�� iaY2 � ; (16)
1043 4*
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Fig. 1. Real (solid line) and imaginary (dashed line)parts and the absolute value (dotted line) of thefuntion F (a;X; Y ) are plotted for a = 0:5 andX = 0:63 ln(10)dBwhere the amplitude B is a funtion of only G == exp(2Za) and is independent of m. The shapeF (a;X; Y ) is a funtion of the parameter a and spei�ombinations of X = 2Za=m and Y = d�
Za=m.The real part (solid line), the imaginary part (dashedline), and the absolute value (dotted line) of F (a;X; Y )are plotted in Fig. 1. Here, � = 0:21 dB/km,Za = 60 km, m = 2, and a = 0:5. Minima of thefuntion jF j orrespond to operation regimes with thesuppressed FWM [52℄. In the d = 0 limit, we obvi-ously reover results of the traditional path-averaged(guiding-enter) soliton theory [24�26℄.In Fig. 2, the funtion jF (a;X; Y )j is plotted ver-sus Y for the di�erent a with the same parameters asin Fig. 1. We now estimate the matrix element of thequasi-idential transformationjS(�
)j � ������ 1Za ZaZ0 (z)[exp(i�
R(z))� 1℄�
 dz������ �� max(R)hi = ad2mhi:It an be seen that as m inreases (with the other pa-rameters �xed), the path-averaged model (10) govern-ing the DM soliton propagation onverges to the inte-grable NLS equation withT (0) = G� 1G lnG:

40

−40

80

0

−80

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

Y

a

|F
|

Fig. 2. The funtion jF (a;X; Y )j versus Y for the sys-tem with di�erent aIt is obvious that in the limit of a very weak loss(small ), we again obtain the lossless model approxi-mation for T , T!123 = sin(aY )aY :However, the inrease of m (derease of L) under the�xed harateristi bandwidth of the signal makes theosillatory struture of the kernel insigni�ant. Thisimplies that if T (�
) is pratially onentrated insome region, then the orresponding region in �
 islarger for large m than for small m. For the pulseswith the same spetral width, this means that T ismuh �atter for large m: as a matter of fat, the fun-tion T an be well approximated by the value T (0) forlargem (small L). As a result, the NLS equation modelworks rather well in this limit and the solution (of thepath-averaged model!) should be lose to the osh-likesoliton of the NLS equation. We note that although itis known that the DM soliton shape is lose to osh forthe lossless model in the so-alled weak map (S < 1)limit [19, 28, 36, 34℄, this is not so obvious for a systemwith loss and di�erent periods of the ampli�ation anddispersion variations. In suh a system, DM solitonstherefore possess the dual advantages of being hirped(whih is important for the suppression of the four-wave mixing in WDM systems) and of having the in-tegrable path-averaged dynamis, whih allows the useof well developed mathematial tools in studying pra-1044



ÆÝÒÔ, òîì 121, âûï. 5, 2002 The theory of optial ommuniation lines : : :

Propagation distane, km
Chirp

Propagation distane, kmPulsewidth,ps
Peakpower,m
W

Dispersion,ps/
nm�km

840�4�8 0 10 20 30 40 0 10 20 30 408106

12840 10 20 30 400 10 20 30 40
1680�8�16

Fig. 3. Evolution of the soliton peak power (right top), hirp (left bottom), and full-width at half maximum (right bottom)along one setion is shown for the transmission system with the short-sale dispersion map (left top). Here, S = 2, theampli�ation distane is 40 km, and the dispersion ompensation period is 4 kmtial perturbations. This additionally implies that allthe ontrol tehniques developed for the improvementof the traditional soliton transmission an be diretlyused in these systems.5. A SINGLE PULSE PROPAGATIONIn this setion, we onsider numerial simulationresults for a single pulse propagation in systems witha short-sale management. In ontrast to the losslessmodel, the evolution of soliton parameters over one pe-riod is here asymmetri beause of the loss. Rapid vari-ations of the pulse width, peak power, and hirp are a-ompanied by the exponential deay of the power dueto the loss. Nevertheless, numerial simulations haverevealed that there exists a true periodi solution thatreprodues itself at the end of the ompensation ell(in this ase, at the end of the ampli�ation period).For the DM soliton with the map strength S = 2, theevolutions of its peak power (right top), hirp (left bot-

tom), and full width at half maximum (right bottom)along one setion are shown in Fig. 3 for a transmissionsystem with the short-sale dispersion map (left top).The ampli�ation distane is 40 km and the dispersionompensation length is 4 km. The following parame-ters were used in the simulations: the dispersion in thetwo-step map �16+0:1 ps/nm�km (see Fig. 3), the non-linear oe�ient � = 2�n2=�0Aeff = 2:43 W�1�km�1,and the �ber loss � = 0:21 dB/km.The observed DM soliton is very stable and propa-gates without radiation as seen in Fig. 4 (where systemparameters are the same as in Fig. 3). Figure 4 illus-trates the hirp of the DM soliton versus the width.The left and right �gures show this dependene for the�rst and the 140th setions, respetively.An important feature of solitons in systems witha short-sale dispersion management is the reduedpower. The DM soliton identi�ed here has a reduedpower ompared to the previously studied DM solitonregimes (L � Za) for the same width propagating in a�ber system with the same average dispersion (with the1045
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here small due to small L. It is seen from Fig. 5 thatthe short-sale dispersion management (m = 10) in-deed provides a redued power of the DM soliton forthe same pulse width (and the same average dispersionand the same other parameters exept the ratio L=Za).Beause the soliton power grows very rapidly with theredution of the pulse width (after the urves in Fig. 5pass some �ritial� turning points, for instane, form = 1 suh a point is around 16 ps), this e�et anbe very important for high-bit-rate transmissions usingshort pulses.6. SOLITON INTERACTIONThe nonlinear pulse-to-pulse interation is one themain limiting fators in the high-bit-rate optial datatransmission. In this setion, we present results on thesoliton interation in systems with a short-sale man-agement with the ampli�ation period Za = 60 kmand the dispersion ompensation period L = 4 km(m = 15), L = 6 km (m = 10), and L = 12 km (m = 5).Numerial simulations in this setion inlude the third-order dispersion and Raman e�ets. An important ad-vantage of operating lose to the integrable limit (weakmaps) disussed above is that the well developed teh-1046
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