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Mobility of electrons in quasicrystals is considered in the framework of the fractional Fermi surface model, i.e., a
multiconnected FS with many electron—hole pockets. The Mott law for the variable range hopping conductivity
is obtained when intervalley scattering processes with small momentum transfer are taken into account. The
transition to the power law temperature dependence is discussed.

PACS: 72.80.Tm, 71.23.F¢
1. INTRODUCTION

Quasicrystals are materials that have a long-range
aperiodic atomic order and rotational symmetries that
are crystallographically forbidden for periodic struc-
tures (e.g. five-, eight-, ten-, and twelwe-fold rotational
axes). Quasircystals (QC’s) usually are the intermetal-
lic alloys, but their physical properties differ from those
of the crystalline and amorphous metallic phases. Like
metals, quasicrystals have a nonzero electronic contri-
bution to the specific heat, although it is smaller than
the value calculated within the free-electron model. At
the same time, the electronic resistivity of quasicrys-
tals at low temperature is anomalously high and in-
creases with increasing the structural order and an-
nealing the defects. The highest resistivity of all the
known quasicrystals occurs in icosahedral (i) Al-Pd-
Re quasicrystal, where the value of resistivity at 4.2 K
exceeds 1 Q- cm. Large values of the resistivity ra-
tio R = p(4.2 K)/p(295 K), up to 200, are also ob-
served for this material (the values of R are 1.1 for
i-Al-Li-Cu, up to 2 for i-Al-Cu-Fe, and about 4 for Al-
Cu-Ru), which shows how perfect the sample is [1-5].
In contrast to the Matissen rule, where the resistivities
are additive, the conductivity of quasicrystals behaves
as 0 = 0(0) + Ao(T) over a wide range of tempera-
tures, where ¢(0) is the residual conductivity at zero
temperature, and Ag(T) represents the T-dependent
part. Usually, 0(0) increases with the structural disor-
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der and Ao (T) increases with increrasing the temper-
ature as Ao (T) oc TP [1-3]. In a series of i-Al-Pd-Re
samples with different R, Gignoux et al. [3] obtained
1 < f < 1.5 in the temperature range from 7 K to
700 K. Pierce et al. [4] measured the o(T") dependence
of several i-Al-Pd-Re samples (with various R ratio)
and found the power-law dependence with £ in the
range 0.5 to 1 for temperatures from 0.45 K to 3 K.

Different explanations of the transport properties of
quasicrystals have been proposed. Much attention has
been given to the power-law temperature dependence of
o(T). The role of the pseudogap in the density of states
(DOS) at the Fermi level, the role of quantum inter-
ference effects (weak localization and electron-electron
interactions), proximity to the metal-insulator transi-
tion, the spiky structure of the electronic spectrum, and
the criticality of wave functions have been discussed in
connection with this problem (see the review articles
by Poon [1] and Rapp [2]). Fujiwara et al. [6, 7] tried
to obtain the o(T') dependence on the basis of the band
structure and Fermi surface (FS) calculations for crys-
talline approximants. Macia [8] gave a phenomenolog-
ical description of ¢(T') based on the DOS model that
takes the pertinent experimental results into account.
The problem was analyzed by Burkov et al. [9], who
used the fractional FS model, i.e., a multiconnected FS
with many electron—hole pockets. They considered the
intravalley and intervalley scattering processes in order
to explain the power-law dependence of o(T). They
also predicted a zero value of ¢ at T = 0 K for the
perfect QC (with no scattering centers) and a small
residual conductivity for «dirty» QC.



Yu. Kh. Vekilov, E. I. Isaev, D. V. Livanov

MKITD, Tom 121, Bem. 1, 2002

Currently, the physical origin of the high resistiv-
ity of intermetallic quasicrystalline alloys compared to
other systems composed only of metals is not well un-
derstood, and this has challenged the experimentalists
to examine the possibility of a metal-insulator transi-
tion (MIT) in quasicrystalline systems and to investi-
gate whether these materials are metallic. Recent ex-
periments on the perfect icosahedral Al;gsPds;Res s
quasicrystals have shown that at low temperatures,
their conductivity follows the Mott law for the variable
range hopping (VRH) conductivity,

o =ogexp[—(To/T)"], (1)

where p = 1/4 [10-13]. The temperature range
where the Mott law is fulfilled was found to be 0.45—
10 K, 0.02-0.6 K, and 0.5-7 K according to Guo
and Poon [10], Delahaye et al. [12], and Wang et
al. [13]7 respectively. In ’L'—A170_5Pd21R68_5_anx, it
was found that the VRH including the Coloumb in-
teraction (p = 1/2) can describe the experimental data
for 2 < & < 4 [10]. The experimental data on bulk
i-Al-Pd-Re samples are rather contradictory. Differ-
ent authors quote different values of Ty. According to
Refs. [10, 11, 13], Ty reaches 100 K and is higher for
samples with higher R. On the other hand, in Ref. [12],
the very low value of Ty ~ 1 mK was given. However,
the lowest temperature reached in this experiment was
20 mK and the value of Ty was determined by extrapo-
lation. Moreover, in Ref. [10], a small but finite value of
o(0) was obtained, although it decreased with increas-
ing the perfectness of the sample [11]. At the same
time, in Refs. [12, 13], the conductivity was fitted to
Eq. (1) without including any extra ¢(0) term, while
it was used by Guo and Poon [10] in order to analyse
their experimental data on conductivity. We note that
the presence of a residual conductivity is quite possi-
ble, because the different conductivity channels in QC
are parallel, and a nearly vanishing conductivity o(0)
cannot hide the VRH conductivity.

The occurrence of the Mott law (Eq. (1)) shows
that electronic states in QC are localized and the sam-
ple is on the insulating side of the MIT. Qualitatively,
the possible role of the hopping conduction between
localized states in QC at low temperatures have been
previously discussed by several authors on experimen-
tal grounds [1, 3, 5, 14]. Poon [1], Pierce et al. [14],
and Mayou et al. [5] discussed the possibility of ex-
plaining the power-law dependence of o by a hopping
mechanism taking the criticality of the wave functions
into account. Janot [15] considered this problem in
the framework of the hierarchical cluster model and
predicted the conductivity that scales roughly as T3/2.

But the localization lengths ¢ obtained experimentally
(we recall that Ty oc €72 in accordance with the Mott
theory) are much larger than the separation, ~ 20 A, of
the ideal clusters that are assumed to be structure units
between which the electrons hop in the Janot model. In
addition, in the subsequent paper [16], Janot proposed
that « ... the power law 7% may be lost experimen-
tally because of extrinsic effects due to structural de-
fects, boundaries, and periodic approximant distorsion
which may restore the 77'/4 law of the Mott model».
That is, the existence of the Mott law was related to
the presence of disorder in QC, which contradicts the
experimental data. A rather interesting but unrealis-
tic idea was put forward by Rivier and Durand [17]
based on the results obtained for the one-dimensional
model. In order to obtain the VRH conductivity, they
suggested that the electronic structure of a quasicrystal
looks somewhat similar to highly doped, p-type semi-
conductors, but no reliable explanation of the Mott law,
Eq. (1), for quasicrystals was given.

In this paper, we proceed on the ground of the band
structure theory to explain the VRH conductivity in
QC. Although the Bloch theorem does not apply to a
quasicrystal the ideas of the band structure theory can
be used to describe the transport properties of QC,
with the quasicrystalline state considered as a struc-
tural limit of a sequence of rational periodic approxi-
mants with increasing periods. Therefore, we take the
band structure effects into account that are specific for
the quasicrystalline symmetry and use the fractional
Fermi surface model [9] to explain the origin of the
VRH conductivity in QC. However, the hopping mech-
anism of conductivity involves hops between localized
states, and we therefore begin with the discussion of
the nature of localization in the regular and perfect
QC without phasons and other distortions.

The paper is organized as follows. In Sec. 2, the lo-
calization of electrons in quasicrystals is discussed. The
VRH conductivity is discussed in Sec. 3. In Sec. 4, the
crossover to the power-law temperature dependence of
conductivity is considered.

2. LOCALIZATION OF ELECTRONS IN
QUASICRYSTALS

For amorphous alloys, granular metal films, and
doped semiconductors the electronic localization plays
an important role in the low-temperature electron
transport. For the above systems, the localization of
electrons is known to arise from disorder. But the ob-
ject of our discussion is the origin of localization in
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QC. The Al-Pd-Re QC is a highly ordered material
with very sharp X-ray diffraction spots, and as men-
tioned above, improving the perfection of the quasilat-
tice order has been found to lead to increasing of the
resistivity.

The experimental results for i-Al-Pd-Re show that
at low temperatures, the regular and perfect quasicrys-
tal behaves as a material in the Fermi-glass state, that
is, the DOS is finite at the Fermi level, but the elec-
trons are localized. This localization in a QC is a con-
sequense of the coherent interference of the electronic
states caused by the specific symmetry and the struc-
ture of the material, and the more perfect the material
is, the more localized the electrons are. Whereas in
a disordered metal or a heavily doped semiconductor,
the origin of the localization is the destruction of the
phase coherency of the wave functions due to disor-
der (the Anderson localization), in the QC, the phase
coherency of the wave functions is the main source of
localization. The following simple observations can jus-
tify this conclusion.

First, within the six-dimensional periodic descrip-
tion of the icosahedral structure, it is obvious that each
scattering wave vector in the quasicrystal corresponds
to a reciprocal wave vector in the periodic structure
of a higher dimension. Thus, the set of the reciprocal
lattice vectors densely fills the reciprocal space of the
quasicrystal, and all the electron states at the Fermi
level have zero group velocity (the standing waves) due
to the Bragg reflections (evidently, with different inten-
sities), i.e., due to the constructive interference of the
electron states at the Fermi level.

Second, it is convenient to elucidate this picture by
considering the quasicrystal as a structural limit of a se-
quence of rational approximants (crystal analogs) with
an increasing lattice period. The Brillouin zone (BZ)
volume is diminished with increasing the order of the
approximant because the lattice period increases, and
the BZ volume becomes infinitely small (~ h3) in the
quasicrystalline limit. Therefore, employing the usual
approach to the construction of the FS [18], one can see
that in the hierarchy of higher-order approximants, the
energy bands are folded down and the FS becomes frac-
tional in the quasicrystalline limit, namely, it is mul-
ticonnected with a large number of electron and hole
«pocketsy, and for atomically ordered perfect QC as
was pointed out by Poon [1], the electron states must
be localized at zero temperature, because the strong lo-
calization condition k% I ~ 1 (where [ is the mean free
path and k% is Fermi momentum) is satisfied for the
electrons in each valley i. Therefore, each valley plays
a role similar to that of a localization center in a disor-
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dered object. Hence, there is a formal analogy between
a well-ordered quasiperiodic object with a fractional FS
and a disordered metal or a heavily doped semiconduc-
tor. This analogy helps one to explain the occurence of
the Mott law in perfect quasicrystals at very low tem-
peratures, because the electrons in localized states can
participate in conductivity only via hopping between
localization sites.

3. VRH CONDUCTIVITY IN QC

Mott was the first to point out that at low temper-
atures, the most frequent hopping process would not
be the hopping to a nearest neighbour [19]. To ex-
plain the conduction with an activation energy mono-
tonically decreasing with decreasing the temperature,
Mott proposed a model where in strongly localized sys-
tems with a sufficiently high density of states N(Ep)
near the Fermi level, the states that are optimal for
conduction accumulate closer and closer to the Fermi
level as T' decreases. Thus, the activation energy de-
creases, while the hop length grows with decreasing the
temperature. The simplest arguments were as follows.
Within a radius R around a given site, the total number
of electron states near the Fermi energy is

TRN(Br). )
and the lowest activation energy AFE for a hopping pro-
cess at the distance R is reciprocal to Eq. (2),

3 1

AE= >~ —— .
i1 R3N(Er)

(3)
Therefore, AE decreases with increasing the hopping
range. But hopping by a large distance involves tun-
neling with the probability proportional to exp(—2aR),
where 1/a = ¢ is the decay length of the localized wave
function. Therefore, there exists an optimum hopping
distance R,p:, for which the expression

exp(—2aR) exp(—AE/kpT) (4)

has a maximum. This maximum occurs at the mini-
mum value of the exponent

3 1
2
R+ R N(Br)ksT (5)
which gives
a9\ ©)
ot = \8rN(Ep)akgT )
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Inserting R, in (4), we obtain that the hopping prob-
ability, and hence the conductivity, is given by Eq. (1)
with p = 1/4 and

1

" ENEn

(7)

We now consider the quasicrystalline state. In the
fractional FS model with a practically infinite number
of valleys, all the electrons in the atomically ordered
quasicrystal are localized at zero temperature. At a
finite temperature, the scattering of an electron from
a particular valley to the state in a neighboring val-
ley can occur not only due to thermal exitation but
also due to tunneling via the gap formed by Bragg re-
flections. At very low temperatures, the process with
a higher probability is the scattering with a small mo-
mentum transfer; in the real space, that corresponds to
a hopping by a large distance. But the tunneling and
correspondingly, the large-distance hopping is a neces-
sary process for the VRH mechanism. Thus, following
the Mott procedure [19] and using expression (5), we
immediately obtain Eq. (1). The Mott formalism usu-
ally fails when R < £ or Ty < T'. But in the case of
a quasicrystal, it is always possible to find a state for
which Ty < T', even though R > £. As a matter of fact,
the material with a fractional FS has a hierarchy of
localization lengths. Therefore, the characteristic tem-
perature Ty can change from sample to sample in an
arbitrary way.

This mesoscopical situation is typical of QC and
conventional disordered systems in the vicinity of
MIT [20]. It is known that in amorphous alloys and
heavily doped semiconductors, the electron wave func-
tions show a characteristic change from localized to ex-
tended behavior because of this transition. This cor-
responds to a change from the states that do not en-
able transport in the limit of vanishing temperature to
the states that do, thereby distinguishing the insulat-
ing and metallic character. In the localized regime, the
spatial behavior of the wave functions is usually de-
scribed by an exponential decay length reflecting the
spatial extent of the wave function, whereas on the
metallic side, the wave functions are extended. As the
MIT is approached, the localization length diverges.
Close to the MIT, the localization length is already
much greater than the numerically accessible system
size, and therefore, there can be no direct reflection of
the localization in the calculated eigenstates. Exactly
at the MIT, where the characteristic length scale is ab-
sent, the eigenstates show fractal characteristics and
the wave functions are critical. However, characteriz-
ing the eigenstates and wave functions at the transition
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point requires a more general concept of multifractality.
This implies that different parts of the same eigenstate
must scale with different exponents, thus extending the
simple fractal picture that comprised only one scaling
exponent. Schriber and Grussbach found that at the
crytical point of the 3D Anderson model, strong fluc-
tuations of the wave function amplitudes display the
multifractal character on all length scales and the sin-
gularity spectrum of the critical wave function does not
depend on the system size [21]. The same state is typ-
ical of QC [11]. As shown in Ref. [22], most of the
wave functions in a three-dimensional icosahedral QC
are critical and their electronic spectrum contains a sin-
gular part. The situation is mesoscopic, and it is pos-
sible to experimentally obtain different values of Tj for
different samples (see Refs. [10-13]). We also note that
the fractional FS model implies that the VRH mecha-
nism ceases to work beginning with some &,,;,, when
tunneling probability becomes negligibly small.

The VRH mechanism in the fractional FS model de-
pends on the structure of the FS; for a perfect material,
the VRH conductivity must always exist in bulk sam-
ples and in films. Recently, it was shown by Rosenbaum
et al. [23] that some thin (2200 A) icosahedral films
of Al;sPdsgReg prepared by magnetron sputtering ex-
hibit insulating transport properties down to 0.07K
where their resistivity follows an activated Mott VRH
law. Although we did not consider the role of electron—
electron interactions, it is possible to assume that with
decreasing the temperature, the Mott law (T~'/*) is
followed by the Efros-Shklovskii law (T-'/2). Al-
though it is difficult to distinguish between 7-'/* and
T—'/2 dependences experimentally, one could observe
this crossover on the high-quality i-Al-Pd-Re samples
with a high resistance ratio R.

In contrast to the Anderson localization, the local-
ization of electrons in quasicrystals is due to construc-
tive interference (phase coherence) of the wave func-
tions and is unstable with respect to small perturba-
tions [22]. The system can therefore be driven to the
metallic side of MIT by increasing the temperature or
the number of imperfections. Moreover, in a «dirty»
object at the temperatures larger than approximately
10 K, the electronic states are smeared by the inelastic
scattering processes that wash out the fine details of
the FS with a large number of pockets and lead to the
FS with an effectively finite number of pockets, depend-
ing on the perturbations [13]. When the number of FS
pockets is finite, the VRH mechanism does not work,
and the crossover to another temperature dependence
must occur.
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4. HIGH-TEMPERATURE CONDUCTIVITY

In a real quasicrystal one must take the smearing
of electron states in the momentum space into account.
Because the energy of a quasiparticle is defined with the
uncertainity de ~ max (7', i/7), where T' is the temper-
ature and 7 is the electron relaxation time, the splitting
of the FS within the procedure described above makes
sense as long as the characteristic size of the pockets
is larger than de. This leads to the FS with a finite
number of electron—hole pockets with the size of the
pocket defined by the uncertainity of the electron en-
ergy. This also leads to a nonmetallic regime of the
conductivity caused by an intravalley scattering. At
these conditions, the VRH mechanism does not work,
because the intervalley scattering with the small mo-
mentum transfer is ineffective. On the contrary, the
momentum transfer that is now required for the inter-
valley scattering is large (of the order 1/a, where a is
the quasilattice constant). In the FS model with a fi-
nite number of valleys, the temperature-dependent con-
ductivity is governed by the intravalley and intervalley
processes. As shown in Ref. [9], o is inversely pro-
portional to the scattering relaxation time and should
increase with increasing the temperature according to a
power law dependence. However, the high-temperature
region (T > u/a ~ Op, where u is the sound velocity,
and © p is the Debye temperature) has not been consid-
ered previously, and we now appropriately analyze this
regime. In this region, the temperature dependence of
o is governed by the electron—phonon intervalley scat-
tering processes and a sharp decrease of the electron—
phonon scattering time should be observed, accompa-
nied by the corresponding change in the character of
conductivity.

We consider the probability for an electron with the
momentum k in a tiny pocket of the Fermi surface to
be scattered by a phonon to the free electron state with
the momentum k’. This probability is given by

w(k, k') = g*(K) [0(erw — exc — hiwg)ng fil(1 = fiir) +
+ 0(ew — ex + hwq)(noq + 1) (1 - fﬁ)] . (8)

Here, K = k' — k, g+ g = k' — k (where g is a re-
ciprocal lattice vector), wq is the phonon energy, nq is
the Bose—Einstein distribution, fyx is the Fermi-Dirac
distribution, and g(K) = n(n./Er)(Ke)/\/N;M;wq is
the matrix element of the electron—phonon interaction,
where n, is the electron density at the Fermi level, e
is the phonon polarization vector, NV; and M; are the
ion density and mass, respectively (in the case where
the Fermi surface pocket is considered as a sphere of
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the diameter g, we have n./Er = 24/3). To obtain
the electron—phonon relaxation time 7y, we must inte-
grate Eq. (8) over k and k. This integration procedure
is similar to those for the electron—phonon relaxation
time calculation in usual metals: the integration over
the modulus of k' eliminates the delta function; the in-
tergration of the Fermi distribution function over the
modulus of k gives the so-called structural factor. The
remaining angular integrations can then be easily re-
duced to an integral over the angle ® between the vec-
tors k and k'. After the final integration over ©, we
find the equation for 7y for the hypothetical metal with
one tiny valley,

ety (TN
0 WQmNiMiG)D @D
@D/T 25
x / A—e (e 1) 9)

0

where ¢p and ©p are the Debye wave vector and tem-
perature, respectively. For the object with the N-
component Fermi surface under the conditions of the
valley uniformity, we obtain T;lph = N7y ', where N
is a parameter of the model. The effective number N
of the FS electron—hole pockets can be estimated us-
ing X-ray or electron diffraction experiments, from the
amount of the main strong Bragg reflections that sat-
isfy the condition G = 2kp (G is a vector of the six-
dimensional reciprocal lattice) [1], including the multi-
plicity factor.

In discussing the application of these relations to
quasicrystals, one should remember that the electron—
phonon interaction can change the electron momentum
only by a small amount, of the order T'/u. We again
note that a large momentum transfer is necessary for
the intervalley scattering to occure. Hence, there exists
a characteristic temperature 7* ~ u/a ~ ©p, below
which the phonons are unable to scatter the electrons
from one pocket to another, thereby permitting only
the intravalley processes. Accordingly, the electron—
phonon scattering mechanism is ineffective for the tem-
peratures T' < T* because Eq. (7) does not contain the
factor N > 1. Hence, we can neglect the electron—
phonon scattering in the low-temperature region and
consider the high-temperature limit of Eq. (9) only.
The integral in Eq. (9) is then proportional to (0/7)*
and we find that the electron—phonon relaxation time
at high temperatures is given by
N ko(N;Mgu?m)~'T.

—1 ~

T on R

€

Because the probability of the electron scattering by
phonons is linear in 7', it is easy to show, using the
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results of Ref. [13], that the temperature dependence
of the conductivity at high temperatures must be lin-
ear. We note that according to some experimental data,
the o(T') dependence at high temperatures for some
i-quasicrystals is indeed nearly linear [2, 24, 25].

We finally estimate the conductivity at zero tem-
perature. The relaxation of the electronic momentum
on the structural imperfections results in a finite value
of o, in analogy with metallic systems. On the other
hand, it was found that ¢(0) is proportional to the con-
centration of the structural imperfections, in contrast
to the usual metallic Drude-like conductivity [9],

o(0) = e2h ' N2m*nipmy|Us |2,

where |Up| is the amplitude of the Born scattering
of an electron by the structural defects, m is the
electron mass, and n;yp is the concentration of de-
fects. To check the agreement of the predicted data
with the experimental ones, we numerically estimate
the magnitude of ¢(0). With the rough assumptions
\Ug| ~ 1078 ¢m (atomic radius) and njpm, ~ 10%? cm 3,
we immediately obtain ¢(0) ~ 10 N? [2~!.cm™1]. For
N, we can assume a reasonable value of about one hun-
dred [1], which gives the reasonable estimation for (0).
For the imperfection concentration n;m,, ~ 1075, a(0)
isabout 1 Q~'-cm ™', which approximately corresponds
to the experimental values for the perfect Al-Pd-Re al-
loys with the high resistance ratio R [2].

5. CONCLUSION

We have considered a «scenario» in which the
band structure effects, namely the constructive in-
terference of wave functions due to Bragg reflections,
are responsible for the localization of the electrons,
and consequently, for the electron transport in qua-
sicrystals. The Fermi surface of an atomically ordered
perfect icosahedral quasicrystal (such as i-Al-Pd-Re)
at zero temperature contains an infinite number of
electron—hole pockets where the electrons are local-
ized. In this case, the VRH mechanism of conductivity
should be operative, because the intervalley scattering
processes with small momentum transfer are available.
The Mott law is obtained for the low-temperature
region taking the intervalley tunneling transitions into
account. We note that the importance of interband
tunneling transitions was previously pointed out in
Ref. [26]; recently, Kraj¢i and Hafner [27] emphasized
the significance of these transitions for the electron
transport in QC. With increasing the temperature
and QC imperfections, the FS effectively contains a
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finite number of pockets due to smearing, and the
conductivity becomes power-law temperature depen-
dent. The estimate made in the framework of the
fractional FS model predicts that at high temperatures
(T > ©p), the conductivity should linearly depend on
the temperature. Finally, it is worth noting that we
have considered only the role of the band structure
effects and did not discuss either the influence of the
quantum interference effects, which can be important
for a material with a low value of the resistance ratio
R, or other possible mechanisms of the conductivity
in QC. In addition, we based our consideration only
on the experiments carried out for the i-Al-Pd-Re
quasicrystal. Although the scattering mechanisms in
different types of QC may be different, we believe that
our conclusions about the mechanism of conductivity
in QC in the framework of the fractional FS model are
quite general.
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