МАГНИТНЫЙ РЕЗОНАНС В РАЗБАВЛЕННОМ КВАЗИОДНОМЕРНОМ АНТИФЕРРОМАГНЕТИКЕ CsNi_{1-x}Mg_xBr₃

Л. А. Прозорова^{*}, Г. В. Пупков, С. С. Сосин, С. В. Петров

Институт физических проблем им. П. Л. Капицы Российской академии наук 117334, Москва, Россия

Поступила в редакцию 5 сентября 2001 г.

Экспериментально исследовано влияние легирования немагнитными ионами ${\rm Mg}^{2^+}$ на низкочастотную ветвь резонанса неколлинеарного квазиодномерного антиферромагнетика CsNiBr₃. Обнаружено, что слабое разбавление (x=2-4%) приводит к существенному понижению (до 15%) резонансной щели и поля спин-флопа. Результаты согласуются с теорией Коренблита и Шендера, в которой показано, что для квазиодномерных разбавленных антиферромагнетиков малым параметром возмущения исходной системы является не концентрация примеси x, а $x\sqrt{J/J'}$, т.е. существует квазиодномерный коэффициент усиления, который в данном случае примерно равен 6.

PACS: 76.50.+g, 75.45.+j

1. ВВЕДЕНИЕ

Введение немагнитных примесей в магнетик приводит к существенному изменению его свойств. Особенно ярко это проявляется в магнитных структурах пониженной размерности, в частности, в квазиодномерных антиферромагнетиках. Теоретически задача о свойствах разбавленных антиферромагнитных цепочек была рассмотрена Булаевским [1]. В этой работе было показано, что при разрыве антиферромагнитных цепочек немагнитными включениями возникают магнитные дефекты (дополнительные степени свободы), связанные с тем, что у половины отрезков цепочек будет нескомпенсированный спин. Возникшие дефекты ведут себя как парамагнитная примесь.

В реальных квазиодномерных антиферромагнетиках при $T < T_N \sim \sqrt{JJ'}$ (J — константа обменного взаимодействия вдоль цепочки, J' — константа межцепочечного взаимодействия) устанавливается трехмерный магнитный порядок. При низких температурах магнитные дефекты, вызванные легированием, перестают быть независимыми и становятся связанными с другими спинами. Это обстоятельство должно повлиять на процесс упорядочения и на все магнитные свойства системы. Теоретически влияние примеси на свойства квазиодномерного антиферромагнетика было рассмотрено в рамках классического приближения теории спиновых волн при T = 0в работе Коренблита и Шендера [2]. Вычисленные в первом порядке теории возмущений поправки к величинам восприимчивости χ_{\perp} и щели в спектре спиновых волн $\omega(q = 0)$ в зависимости от концентрации примеси x определяются выражениями

$$\chi = \chi(x=0) \left(1 + \alpha x \sqrt{\frac{J}{J'}}\right),$$

$$\omega = \omega(x=0) \left(1 - \frac{\alpha x}{2} \sqrt{\frac{J}{J'}}\right),$$
(1)

где α — численный коэффициент порядка единицы, зависящий от конфигурации спинов и числа ближайших соседей. Таким образом, малым параметром возмущения является не концентрация примеси x, а $x\sqrt{J/J'}$, т. е. существует «квазиодномерное усиление» влияния примеси.

Имеется ряд экспериментальных работ, в которых наблюдались существенные изменения температуры упорядочения T_N и магнитной восприимчивости при легировании (см., например, [3–5]). Было установлено также [6], что введение ионов Mg²⁺ в

^{*}E-mail: prozorov@kapitza.ras.ru

квазиодномерный антиферромагнетик с неколлинеарной («треугольной») структурой CsNiCl₃ уменьшает энергетическую щель в спектре $\nu_1 (H = 0)$ (при x = 0.07 частота антиферромагнитного резонанса в нулевом поле уменьшалась почти вдвое) в соответствии с теоретическими предсказаниями [2]. Однако введение 2-3% примеси Mg в монокристаллы RbNiCl₃, которые изоморфны CsNiCl₃, привело к качественно другим результатам [7]: незначительное увеличение щели $\nu_1(H = 0)$ сопровождалось появлением дополнительного резонансного поглощения в диапазоне 3-20 ГГц. Полевая зависимость частоты этой дополнительной линии напоминает акустическую ветвь резонанса $\nu_3(H)$, характерную для треугольных структур с сильной легкоосной анизотропией. Заметим, что для чистого RbNiCl₃ резонансное поглощение в этом диапазоне частот отсутствует, а оценка частоты $\nu_3(H = 0)$ составляет всего лишь 0.5 ГГц. Для объяснения этого странного явления было предположено, что введенные в RbNiCl₃ ионы Mg²⁺ не попадают в узлы решетки, что приводит к сильным искажениям и возникновению дополнительной анизотропии, увеличивающей частоты колебаний ν_1 и ν_3 . Это предположение подтверждается тем фактом, что не удается вырастить монокристаллы $RbNi_{1-x}Mg_xCl_3$ с концентрацией Mg более чем 3%. Поэтому представляло несомненный интерес исследовать влияние примеси замещения на резонансные частоты в других треугольных квазиодномерных антиферромагнетиках, у которых ветвь колебаний ν_3 заведомо лежит в СВЧ-диапазоне, и выяснить, как она изменяется при введении примеси.

В качестве объекта исследований был выбран CsNiBr₃, изучению магнитных свойств которого посвящен ряд экспериментальных работ (см., например, [8–10]). Согласно этим работам, при $T < T_N \sim 12$ К происходит трехмерное магнитное упорядочение и возникает, как в CsNiCl₃ и RbNiCl₃, плоская «треугольная» магнитная структура, причем спиновая плоскость перпендикулярна базисной плоскости кристалла. Акустические ветви колебаний при $H \parallel C_6, H < H_c$ описываются следующими формулами (см. работы [11, 12]):

$$\nu_{1}^{2} = \gamma^{2} (\eta H_{c}^{2} + H^{2}),$$

$$\nu_{2}^{2} = 0,$$

$$\nu_{3}^{2} = \eta \Delta_{3}^{2} \frac{H_{c}^{2} - H^{2}}{\eta H_{c}^{2} + H^{2}} \left[1 - \left(\frac{H}{H_{c}}\right)^{2} \right]^{3},$$
(2)

где

 H_c — поле спин-флопа, $H_c^2 = D/(\chi_{\parallel} - \chi_{\perp}), \, D$ — константа легкоосной анизотропии.

При $H \perp C_6$ первые две ветви являются корнями биквадратного уравнения

$$\begin{split} \nu^4 - \nu^2 (H^2 + \eta H_c^2 + \eta^2 H^2) + \\ &+ \gamma^2 \eta^2 H^2 (H_c^2 + H^2) = 0, \quad (3) \end{split}$$

а третья не зависит от поля.

2. МЕТОДИКА И ОБРАЗЦЫ

Исследования антиферромагнитного резонанса проводились на СВЧ-спектрометрах прямого усиления. Измерения проводились при гелиевых температурах в интервале частот 9–36 ГГц и в полях до 65 кЭ.

Монокристаллы CsNiBr₃ выращивались аналогично монокристаллам CsMnBr₃ [13]. Для получения монокристаллов твердых растворов CsNi_{1-x}Mg_xBr₃ применялся следующий метод. В кварцевую ампулу помещались монокристаллы CsNiBr₃ и металлический магний 1–2% (по весу) в виде стружки. Ампула откачивалась, запаивалась. Осторожным нагреванием ампулы горелкой инициировалась реакция CsNiBr₃+Mg=CsMgBr₃+Ni. Затем содержимое ампулы расплавлялось и перемешивалось. Ампула помещалась в печь для выращивания монокристалла. Согласно нашим наблюдениям, CsMgBr₃ плавится при более низкой температуре, нежели CsNiBr₃, и потому верхняя часть полученного монокристалла богаче магнием, чем нижняя. Примесь образовавшегося металлического никеля росту кристалла не мешает. Содержание Mg в отобранных для измерений образцах определялось при помощи у-активационного анализа [6].

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

На рис. 1 приведены примеры записей резонансных линий для чистого и легированного CsNiBr₃ при T = 1.3 К в поле, направленном параллельно оси C_6 . Отчетливо видно, что при легировании резонансная линия, соответствующая моде ν_3 , в несколько раз уширяется и сдвигается в сторону меньших полей. Поглощение в полях больших H_c в области ветви ν_2 не наблюдалось ни на одной из измерительных частот. Мы не приводим соответствующие записи при $H \perp C_6$, поскольку в этой ориентации ветвь

Рис.1. Линии поглощения СВЧ-сигнала в чистом (1) и разбавленном (2) CsNiBr $_3$ на различных частотах. Концентрация примеси в разбавленном веществе x = 0.04, T = 1.3 K

 ν_3 наблюдать невозможно из-за отсутствия дисперсии по полю, а влияние примеси на ветвь ν_2 практически отсутствовало. На рис. 2 приведены результаты наших измерений зависимостей $\nu_2(H)$ и $\nu_3(H)$ для чистых монокристаллов и монокристаллов с примесью ионов Mg^{2+} с концентрациями x = 0.02и 0.04 при направлениях поля $H \parallel C_6$ и $H \perp C_6$. Сплошными линиями приведены результаты расчетов по формулам (2), (3) с параметрами $\eta = 0.75$, $H_c = 75.3, 64.0, 53.4$ к
Ә, $\Delta_3 = 25.3, 23.9, 22.1$ ГГц соответственно при x = 0, 0.02, 0.04. На вставке приведены зависимости относительного изменения Δ_3 и Н_c от концентрации примеси, а также их линейные подгонки с коэффициентами 3 и 7, первый из которых определяет согласно формуле (1) величину квазиодномерного усиления влияния примеси. В данном случае этот параметр примерно равен 6:

$$Q = \frac{2}{x} \left(\frac{\Delta_3(0)}{\Delta_3(x)} - 1 \right) = \alpha \sqrt{\frac{J}{J'}} \approx 6.$$
 (4)

Отметим, что величины H_c , определяемые из наших подгонок для всех образцов, оказываются меньше реального поля опрокидывания спиновой плоскости H_{sf} . Например, поле спин-флопа, определенное по результатам магнитостатических измерений чистого CsNiBr₃ [8] составляет примерно 90 кЭ. Вероятно, это объясняется существованием в них двух последовательных спин-переориентационных переходов, как это наблюдалось в другом квазиодномерном легкоосном треугольном антиферромагне-

Рис.2. Зависимость резонансных частот $\nu_{2,3}$ от магнитного поля для $CsNi_{1-x}Mg_xBr_3$ при T = 1.3К: $\triangle - x = 0$; • - x = 0.02, $\Box - x = 0.04$, линии — расчет по формулам (2), (3) (штрихи — не наблюдается экспериментально). На вставке — относительное изменение параметров \triangle_3 и H_c от концентрации примеси с учетом линейных подгонок

тике CsMnJ₃ [14]. Полевая зависимость $\nu_3(H)$ при *H* < *H*_c в этом случае довольно слабо отличается от полученной из формулы (2), однако ветвь ν_3 смягчается в обеих точках. При этом в результате подгонки определяется поле первого перехода. На это также указывает отсутствие резонансного поглощения в полях $H > H_c$ в образце с x = 0.04, несмотря на то что расчетные значения резонансных полей, соответствующих ветвям ν_1 и ν_2 , лежат внутри доступного нам экспериментального диапазона. Как показывают наши результаты, влияние примеси на поле H_c оказывается в два раза сильнее, чем на величину щели Δ_3 , что, возможно, является следствием расширения промежуточной области $H_c < H < H_{sf}$ за счет легирования. Зависимости $\nu_3(H)$ при отклонении магнитного поля от рациональных направлений также хорошо описываются теоретическими формулами [12]. Таким образом, можно сделать заключение, что при слабом легировании тип магнитного упорядочения сохраняется и наблюдаемое уменьшение резонансной щели и критического поля с увеличением концентрации примеси качественно соответствует теории [2].

Для проведения количественного сравнения необходимо определить отношение J/J' из других экспериментов. Величина J может быть рассчитана из результатов магнитостатических измерений (со-

Рис. 3. Зависимость частоты резонансного поглощения от магнитного поля при T=1.3 К для $CsNi_{0.74}Mg_{0.26}Br_3$. Линии — теоретическая зависимость для спинового стекла, вычисленная по формуле (5)

гласно [8] J = 17 K) или из спектра возбуждений, полученного с помощью неупругого рассеяния нейтронов (из [9] следует, что J = 22 K). Расхождение в величинах J, полученных из разных экспериментов, составляет 20% (при расчетах мы принимали, что J = 20 K). Константу J' можно вычислить, используя экспериментальное значение $\nu_3(H)$. Из наших данных с учетом результатов работы [10] следует, что J' = 1.3 K.

Таким образом, экспериментально наблюденный квазиодномерный коэффициент усиления для CsNiBr₃ близок к оценке, которая может быть получена из приведенных выше данных для J и J'. Имеющееся расхождение может объясняться как за счет отличия коэффициента α от единицы, так и за счет ошибок при определении параметров J и J', неизбежных при описании квазиодномерных магнитных систем в рамках классического приближения теории спиновых волн. Следует отметить, что учет вклада нулевых колебаний в намагниченность и спектр спиновых волн явился бы превышением точности при сравнении с результатами теории [2].

При сильном разбавлении вид спектра изменяется. На рис. 3 приведены экспериментальные данные для CsNi_{0.74}Mg_{0.26}Br₃. Этот спектр близок к характерному для поперечно-поляризованных резонансных мод спинового стекла [15]:

$$\nu_{1,2} = \sqrt{\Delta^2 + \left(\frac{\gamma H}{2}\right)^2} \pm \frac{\gamma H}{2}.$$
 (5)

Теоретическая зависимость $\nu_{1,2}(H)$ для спинового стекла с $\Delta = 65$ ГГц и $\gamma = 3$ ГГц/кЭ изображена на этом же графике сплошными линиями. Однако для окончательного утверждения, что в данном случае образуется спиновое стекло, требуются дополнительные исследования.

Авторы пользуются случаем выразить благодарность Ю. М. Ципенюку за проведение γ -активационного анализа образцов. Работа выполнена при частичной поддержке РФФИ (проект 00-02-170317), а также INTAS (грант 99-0155) и CRDF (грант RP1-2097).

ЛИТЕРАТУРА

- 1. Л. Н. Булаевский, ФТТ 11, 1132 (1969).
- I. Ya. Korenblit and E. F. Schender, Phys. Rev. 48, 9478 (1993).
- C. Dupas and J. P. Renard, Phys. Rev. B 18, 401 (1978).
- D. Visser, A. Harrison, and D. J. McIntyre, J. de Phys. 49, Suppl. an № 121, c8-1255 (1988).
- J. Chadwick, D. H. Jones, J. A. Johnson et al., J. Phys.: Condens. Matter 1, 6731 (1989).
- С. С. Сосин, И. А. Зализняк, Л. А. Прозорова и др., ЖЭТФ 112, 209 (1997).
- М. Е. Житомирский, О. А. Петренко, С. В. Петров и др., ЖЭТФ 108, 343 (1995).
- R. Brenner, E. Ehrenfreund, H. Shechter et al., J. Phys. Chem. Sol. 38, 1023 (1977).
- 9. K. Kakurai, Physica B 180-181, 153 (1992).
- T. Kambe, H. Tanaka, Sh. Kimura et al., J. Phys. Soc. Jap. 65, 1799 (1996).
- И. А. Зализняк, В. И. Марченко, С. В. Петров и др., Письма в ЖЭТФ 47, 172 (1998).
- 12. С. И. Абаржи, М. Е. Житомирский, О. А. Петренко и др., ЖЭТФ 104, 3232 (1993).
- И. А. Зализняк, Л. А. Прозорова, С. В. Петров, ЖЭТФ 97, 359 (1990).
- **14**. В. И. Марченко, А. М. Тихонов, ЖЭТФ **68**, 844 (1998).
- **15**. А. Ф. Андреев, В. И. Марченко, УФН **130**, 39 (1980).