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DOUBLE POTTS CHAIN AND EXACT RESULTSFOR SOME TWO-DIMENSIONAL SPIN MODELSM. A. Yurishhev * **The Abdus Salam International Centre for Theoretial Physis34100, Trieste, ItalySubmitted 12 April 2001An exat analytial solution for the q-state Potts model on a 2 � 1 ladder with arbitrary two-, three-, andfour-site interations in a unit ell is presented in a losed form. This solution is used to show that the �nite-sizeinternal energy equation [6℄ yields an aurate value of the ritial temperature for the triangular Potts lattiewith three-site interations in alternate triangular faes. It is argued that the above equation is exat at leastfor self-dual models on isotropi strips.PACS: 05.50.+q, 05.70.Jk, 75.10.Hk1. INTRODUCTIONThe methods that allow extrating informationabout a multidimensional system from solutions of itslower-dimensional ounterparts play an important rolein statistial physis. One of the most well-knownexamples of this kind is the �nite-size saling ap-proah [1, 2℄.There are ases that evoke partiular interest whenthe ritial properties of a system experiening a phasetransition an be exatly determined from the data per-taining to its subsystems. For instane, for the Isingstrips, the intersetion point of the partition funtionzero lous in a omplex temperature plane with the realpositive axis yields the exat value of the ritial tem-perature for the two-dimensional Ising model [3℄. Ex-at ritial temperatures for the S = 1=2 Ising modelson square, triangular, honeyomb, and entered square(Union Jak) anisotropi latties are obtained by usingstrip lusters when an e�etive �eld is applied to oneside of the strip only [4℄. Another exoti way of estimat-ing the ritial point of the square-lattie Ising modelwas proposed in [5℄. The authors of this paper showedthat in the quasidiagonal form of a transfer matrix ofa �nite-width strip, all oe�ients of the harateristi*On leave from Vasilsursk Laboratory, Radiophysial Re-searh Institute, 606263 Vasilsursk, Nizhny Novgorod Region,Russia.**E-mail: yur�itp.a.ru

equation for the sub-blok ontaining the largest eigen-value have an extremum loated preisely at the exatvalue of the phase transition temperature of the in�nitelattie.In the present paper, we onentrate our attentionon the method to alulate the ritial temperature pro-posed by Wosiek [6℄ (see also [7�12℄). The author of [6℄introdued a maximum riterion for the ratio of mo-ments of the transfer matrix and obtained the followingequation for determining the ritial point position ina d-dimensional system:u1(K) = u2(K): (1)Here, u1 and u2 are the respetive internal energies of(d�1)-dimensional and two oupled (d�1)-dimensionalsubsystems and K is the ritial oupling (the normal-ized inverse ritial temperature) of the d-dimensionalsystem.It is remarkable that at d = 2, Eq. (1) (see [6℄) yieldsthe exat value of K for the isotropi square and tri-angular Ising latties, as well as for the three-site Pottsmodel on the square lattie with isotropi interations.Subsequently, several other models were added to thelist, whih now inludes another isotropi Baxter model(two square Ising latties oupled by four-partile in-terations), the Baxter�Wu model (triangular lattiewith three-site interations of Ising spins) [10℄, and theq-state Potts model on an isotropi square lattie withan arbitrary value of q [12℄. The physial nature of1282



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Double Potts hain and exat results : : :Eq. (1) an be eluidated when it either yields an ex-at solution or admits an approximate estimate or doesnot give any solution at all for a given model.For a two-dimensional system, Eq. (1) onnets theinternal energies of in�nitely long linear and doublehains. Therefore, in order to test Eq. (1) rigorously, itis neessary to have analytial solutions for suh sub-systems.In Se. 2, we give an exat analytial solution forthe two-hain Potts strip with a large number of inde-pendent parameters. As a speial ase, it ontains asolution for the linear Potts hain.Our solution for the double Potts hain enables usto over all the previously known ases where Eq. (1)exatly reprodues the ritial temperatures for thetwo-dimensional Ising, Baxter�Wu, and Potts models.In addition, we disover (Se. 3) a new model for whihEq. (1) yields the exat result. This is the q-state Pottsmodel on the triangular lattie with purely three-siteinterations in a half of the triangular faes [13℄.In Se. 4, we disuss the results. In partiular, weshow that duality is a su�ient ondition for the valid-ity of Eq. (1) for isotropi spin latties. In Se. 5, wesummarize the results obtained in the work.2. SOLUTION OF THE DOUBLE q-STATEPOTTS CHAIN WITH THE Sq SYMMETRYWe onsider a two-hain (ladder) lattie with spinvariables �il attahed to its sites (i = 1; 2 is the hainindex and l = 1; 2; 3; : : : labels the sites in the longi-tudinal diretion of the ladder); the spin variables takethe values 1; 2; : : : ; q.We write the Hamiltonian of the system asH = �Xl H(�1l ; �2l ;�1l+1; �2l+1): (2)The loality of interations in this Hamiltonian allowsus to introdue the transfer matrix V with the elementsh�1; �2jV j�01; �02i = exp H(�1; �2;�01; �02)kBT (3)(where T is the temperature and kB is the Boltzmannonstant) and redue the problem of alulating thefree energy density f of an in�nitely long strip to �nd-ing the largest eigenvalue �1 of the matrix V :f = 12 ln�1: (4)Transfer matrix (3) has the size q2 � q2. It is realand all its elements are positive, but the matrix is notsymmetri in general (Vij 6= Vji).

To solve the eigenvalue problem for the transfer ma-trix, we use the group-theoretial approah (see, e.g.,Ref. [14℄, where this approah was applied to a qua-sidiagonalization of the Ising model transfer matrix onparallelepipeds L� L�1). In order to obtain a solu-tion for the two-leg spin ladder (in whih we are parti-ularly interested) in the most general form, we proeein the reversed order. Namely, we �rst selet a sym-metry group in the spae j�1; �2i, whih enables us toquasidiagonalize the transfer matrix up to sub-blokseular equations that an be solved analytially; onlythen we expand the Hamiltonian densityH into a seriesin the invariants of the symmetry group.We take a model that is invariant, e.g., under trans-formations of the symmetri group Sq of the degree q.For the Potts model, this means that we are dealingwith a system in the zero external �eld. Fortunately,the �eld is not required to test Eq. (1).It is known (see, e.g., [15℄) that the largest eigen-value of the transfer matrix is loated in the sub-blokof the identity irreduible representation. In aor-dane with group theory, the basis vetors  i of theidentity irreduible representation an be obtained bysuessively ating with the permutation operators ofthe Sq group on the orths j1; 1i, j1; 2i, : : : , jq; qi. At-ing by elements of the symmetri group �rst on theorth j1; 1i and then on j1; 2i, we �nd that the two lin-ear ombinations obtained involve all the orths. Thenormalized basis vetors are given by 1 = 1pq qXi=1 ji; ii;  2 = 1pq(q � 1) qXi;j=10 ji; ji (5)(the prime at the seond sum indiates that the termswith i = j are omitted). Hene, the sub-blok of theidentity irreduible representation has the size 2 by 2,and therefore, its eigenvalues (one of whih is �1) anbe easily obtained by solving an algebrai equation ofonly the seond degree. We note that if we take thegroup Sq �Cs (where Cs is the group of mirror re�e-tions in the plane plaed between the hains of the two-leg ladder), the sub-blok orresponding to the iden-tity irreduible representation again has the size 2� 2,and therefore, this symmetry (whih only redues thenumber of independent parameters in the Hamiltonian)does not justify itself in the given ase.We now represent Hamiltonian (2) as a sum ofterms that are invariant under transformations of the1283 16*
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Fig. 1. Geometry of two-site ouplings in the doubleq-state Potts hain with the Sq symmetrygroup Sq :H = �Xl [J1Æ�1l �1l+1 + J2Æ�2l �2l+1 + J0Æ�1l �2l ++J 0Æ�1l �2l+1+J 00Æ�2l �1l+1+J3Æ�1l �2l �1l+1+J 03Æ�1l �1l+1�2l+1++ ~J3Æ�1l �2l �2l+1 + ~J 03Æ�2l �1l+1�2l+1 + J4Æ�1l �2l �1l+1�2l+1 ℄: (6)The Kroneker symbols entering here are de�ned asÆ�1����k = ( 1; if �1 = : : : = �k;0; otherwise. (7)The struture of the two-site ouplings in Hamilto-nian (6) is shown in Fig. 1. Matrix elements of theoriginal transfer matrix are written ash�1; �2jV j�01; �02i = exp �K1Æ�1�01 +K2Æ�2�02++ 12K0(Æ�1�2 + Æ�01�02) +K 0Æ�1�02 +K 00Æ�2�01 ++K3Æ�1�2Æ�1�01 +K30Æ�1�01Æ�1�02 + ~KÆ�1�2Æ�1�02 ++ ~K 0Æ�2�02Æ�2�01 +K4Æ�1�01Æ�1�2Æ�1�02� ; (8)whereK0 = J0=kBT; K1 = J1=kBT; K2 = J2=kBT;K 0 = J 0=kBT; K 00 = J 00=kBT; K3 = J3=kBT;K 03 = J 03=kBT; ~K3 = ~J3=kBT; ~K 03 = ~J 03=kBT;K4 = J4=kBT:Using Eqs. (5) and (8), we alulate the matrix el-ements Qij =  +i V  j

of the sub-blok orresponding to the identity irre-duible representation:Q11 = [q � 1 + exp(K1 +K2 +K 0 +K 00 +K3 ++K 03 + ~K3 + ~K 03 +K4)℄ expK0;Q12 = (q � 1)1=2[q � 2 + exp(K1 +K 00 +K3) ++ exp(K2 +K 0 + ~K3)℄ exp(K0=2);Q21 = (q � 1)1=2[q � 2 + exp(K1 +K 0 +K 03) ++ exp(K2 +K 00 + ~K 03)℄ exp(K0=2);Q22 = (q � 2)(q � 3 + eK1 + eK2 + eK0 + eK00) ++ exp(K1 +K2) + exp(K 0 +K 00): (9)
As a result, we �nd that the largest eigenvalue of thetransfer matrix of the double q-state Potts hain withHamiltonian (6) is given by�(2)1 = 12(Q11 +Q22) ++ �14(Q11 �Q22)2 + (q � 1)A expK0�1=2 ; (10)whereA = [q�2+exp(K1+K 00+K3)+ exp(K2+K 0+ ~K3)℄��[q�2+exp(K1+K 0+K 03)+ exp(K2+K 00+ ~K 03)℄: (11)The versions of the double Potts hains solved pre-viously [3; 12; 16�18℄ orrespond to a partiular hoieof the interation onstants. SettingJ0 = J 0(= J)with all the other interation onstants vanishing, wearrive at the solution for the linear Potts hain [19℄,�(1)1 (K) = eK + q � 1: (12)3. THE TRIANGULAR POTTS LATTICE WITHTHREE-SITE INTERACTIONS ONALTERNATE TRIANGLE FACESA large number of independent parameters in themodel solved in the previous setion enables us to testEq. (1) for a wide lass of two-dimensional spin sys-tems.In addition to the ases listed in the Introdution, inwhih Eq. (1) is satis�ed exatly, we onsider the Pottsmodel on a triangular lattie with three-site intera-tions in eah up-triangle (Fig. 2). The position of theritial point in this model was found with both three-and two-site interations [13℄. However, it is known [12℄1284
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Fig. 2. Fragment of the Potts lattie with three-siteinterations in alternate triangular faes (shaded)that for the triangle lattie with pair ouplings, Eq. (1)yields the exat result only for the Ising ase (q = 2).We therefore disuss the model with purely three-siteinterations. In this ase,K = ln(1 + q): (13)We now show that this value satis�es Eq. (1) by subsys-tems in the shape of strips with the periodi boundaryondition in the transverse diretion.The internal energy of the one-dimensional subsys-tem is u1(K) � �f1�K = [(q � 1)e�K + 1℄�1: (14)Substituting K3 = ~K3 with all the other interationonstants vanishing, we obtain from (4), (10), and (11)the free energy density of the double Potts hain:f2(K) = 12 ln"12(e2K + q2 � 1)++ �14(e2K � (q � 1)2)2 ++ q(q � 1)(2eK + q � 2)�1=2# : (15)The internal energy is given byu2(K) = �f2�K :Di�erentiating Eq. (15) with respet to K, we �nd theexpression for u2(K).The analysis shows that the dependenes u1(K) andu2(K) have a rossing point that lies exatly atK = K = ln(1 + q)both for integer and non-integer q. The internal energyof the system at the ritial point is given byu1(K) = u1(K) = u2(K) = 12(1 + q�1): (16)

Thus, using solutions for only the linear and doublePotts hains, Eq. (1) has enabled us to extrat the exatvalue of K for the bulk two-dimensional Potts modelon a triangular lattie with alternating faes that in-terat by three-site fores.4. DISCUSSIONIn Ref. [8℄, Eq. (1) was extended touL(K) = uL0(K); L; L0 = 1; 2; 3; : : : ; (17)where uL is the internal energy per site of L oupled(d�1)-dimensional subsystems. In the two-dimensionalase, L denotes the width of the strip.The validity of ondition (17) for arbitrary L and L0means the absene of a �singular� (i.e., L-dependent)part of the internal energy density at the ritial point,uL(K) = onst on L: (18)In other words, the amplitudes of all �nite-size or-retions to the ritial internal energy of the systemu1(K) are equal to zero.For the square isotropi Ising lattie, the derivativeof the inverse orrelation length �L(K) with respetto the temperature-like variable K has a similar prop-erty [20, 21℄, ��L�K �����K=K = ��L0�K �����K=K ; (19)i.e., ��L=�Kj does not depend on L. This propertyhas enabled us to exatly determine the value of thethermal ritial exponent yt (= 1) for this model usingonly the �nite-size data [20, 21℄.Equations (1) and (17) are valid for the ferromag-neti isotropi square Potts latties. These models areself-dual and their ritial oupling (in the anisotropiase) is determined from the ondition(expKx � 1)(expKy � 1) = q: (20)For the antiferromagneti square-lattie Potts model,the ritiality ondition is [22℄(expKx + 1)(expKy + 1) = 4� q; (21)where Kx < 0 and Ky < 0. We performed a veri�a-tion and found that in the antiferromagneti ase, theurves u1(K) and u2(K) do not have any self-rossingpoint, and therefore, Eq. (1) does not lead to the exatvalue that follows from Eq. (21), nor to any approxi-mate estimate for the ritial point.1285



M. A. Yurishhev ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001It is not di�ult to show that if the model is self-dual and the dual point therefore oinides with theoriginal one, Eqs. (1) and (17) are valid.Indeed, we onsider for instane the Ising model onthe isotropi square lattie L�N with toroidal bound-ary onditions. The partition funtion of this systemhas a fundamental property: it is invariant (up to amultipliative fator exponentially depending on L) un-der the duality transformation (see [23℄),ZL;N(K�) = (sh 2K)�LMZL;M (K); (22)where K and K� are related bythK� = exp(�2K): (23)(We here used another normalization of the exhangeonstant in the Ising model, namely JPotts = 2JIsing.)In the limit of an in�nitely long strip (N ! 1),Eq. (22) transforms to the duality ondition for thelargest eigenvalue,�(L)1 (K�) = (sh 2K)�L�(L)1 (K): (24)This implies that the values of the normalized inter-nal energy in dually onjugated points (K and K�) arerelated by uL(K�)�K��K = uL(K)� 2u0(K); (25)where the additive term u0 (= th 2K) does not dependon L. Another important feature related to the isotropyof the lattie is that the dually onjugated pointsK andK� merge into one point at ritiality,K� = K = K: (26)Using Eq. (23), we �nd that at the ritial pointK = 12 ln�1 +p2� ;the derivative �K��K ���� = �1:Consequently, uL(K) = u0(K) = p2: (27)Thus, the ritial internal energy per site uL(K) of anIsing ylinder with isotropi square ells satis�es on-dition (18) for all L = 1; 2; : : : This, in turn, leads tothe validity of Eqs. (1) and (17).Similarly, Eqs. (1) and (17) an be derived for otherisotropi spin model partition funtions that satisfy afuntional equation likeZL(K�) = [g(K)℄LZL(K): (28)

In the ases where the model is self-dual but the ritialmanifold is a line or a surfae (as, e.g., for anisotropilatties), Eqs. (1) and (17) no longer hold. This isnot di�ult to prove if we again onsider the two-dimensional Ising model. For the anisotropi squarelattie, the duality ondition beomes�(L)1 (K�x;K�y ) == [sh(2Kx) sh(2Ky)℄�L=2 �(L)1 (Kx;Ky) (29)withthK�x = exp(�2Ky) and thK�y = exp(�2Kx): (30)It then follows that on the ritial linesh(2Kx) sh(2Ky) = 1; (31)ondition (29) relates the values of the free energyat distint (dually onjugated) points (Kx;Ky) and(Ky;Kx),fL(Kx;Ky) = fL(Ky;Kx) ++ 12 ln [sh(2Kx) sh(2Ky)℄ : (32)This violates Eqs. (1) and (17), whih identify the in-ternal energies at the same point.The ritial internal energy density of the stripL�1 ut out from an anisotropi lattie depends onthe size L. This is easy to verify using the results ofSe. 2 if one alulates the values u1(K) and u2(K)for the anisotropi Ising and Potts latties.On the other hand, we an establish the same prop-erty if we take the Onsager solution [24℄ for the two-dimensional Ising model. The dominant eigenvalue ofthe transfer matrix of the ylinder L�1 with spatiallyanisotropi interations is given by�(L)1 (K;�) = [2 sh(2K)℄L=2 �� exp�1 + 3 + : : :+ 2L�12 � ; (33)where � = Jy=Jx is the lattie anisotropy parameterand r are positive solutions of the equationsh r = h(2�K) th(2K)�sh(2�K)sh(2K) os �rL !: (34)From this, we obtain the internal energy per siteuL(K;�) = th(2K) ++ 12L �1�K + �3�K + : : :+ �2L�1�K !: (35)1286



ÆÝÒÔ, òîì 120, âûï. 5 (11), 2001 Double Potts hain and exat results : : :The funtions r(K) have a smooth extremum (mini-mum) that in the isotropi ase (� = 1) lies exatly atK = K, and therefore,�r�K �����K=K = 0 (r 6= 0): (36)As a result, the seond term in Eq. (35) disappearsand the ritial internal energy eases to depend on L.When � 6= 1, Eq. (36) is not valid and uL(K;�) de-pends on the strip width in a ompliated way. Thisexplains the failure of the exat alulations of K fromEq. (1) in the anisotropi Ising lattie [10℄.In losing this setion, we note that in spite ofEqs. (1) and (17), Eq. (19) annot be dedued fromthe dual invariane of the system.5. CONCLUSIONSUsing the group-theoretial approah, we obtainedthe exat analytial solution for the double Potts hainwith Hamiltonian (6). The solution allows examin-ing Eq. (1) for a large number of models with Ising(q = 2) and arbitrary Potts spins (inluding non-integerq). The validity of Eq. (1) for the triangular Pottslattie with purely three-site interations in alternatetriangular faes was established.We have also shown that Eqs. (1) and (17) are a on-sequene of the duality symmetry of models for whihthe ritial point oinides with its dual image.As far as the author knows, the inverse theoremhas not been proved. Duality plus isotropy or, morepreisely, self-onjugation of the ritial point are notneessary onditions for Eq. (1). In general, therefore,there an exist systems that are not invariant underthe duality transformation or a ombination of thedual and star�triangle transformations, but for whihall amplitudes of �nite-size orretions to the ritialinternal energy (or to some other quantity) are equalto zero.The author thanks A. A. Belavin, A. A. Nerse-syan, and A. M. Sterlin for useful disussions and om-ments. I am also grateful to the Abdus Salam Inter-national Centre for Theoretial Physis (Trieste, Italy)for kind hospitality where this work was �nished. Theresearh presented in this paper is supported in partby the RFBR (grant � 99-02-16472) and CRDF (grant�RP1-2254).
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