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CHARACTERISTIC PREDICTIONS OF TOPOLOGICALSOLITON MODELSV. B. Kopeliovi
h *Institute for Nu
lear Resear
h, Russian A
ademy of S
ien
es117312, Mos
ow, RussiaSubmitted 20 Mar
h 2001Chara
teristi
 predi
tions of 
hiral soliton models (the Skyrme model and its extentions) are dis
ussed. The
hiral soliton model predi
tions of low-lying dibaryon states qualitatively agree with the re
ent eviden
e forthe existen
e of narrow dibaryons in rea
tions of the inelasti
 proton s
attering on deuterons and the doublephoton radiation pp ! pp

. The 
onne
tion between magneti
 moment operators and inertia tensors validfor arbitrary SU(2) skyrmion 
on�gurations allows us to estimate the ele
tromagneti
 de
ay width of somestates of interest. Predi
tions of a di�erent type are multibaryons with a nontrivial �avor (strangeness, 
harmor bottom), whi
h 
an be found, in parti
ular, in high-energy heavy ions 
ollisions. It is shown that the large-Bmultiskyrmions given by the rational map ansatze 
an be des
ribed within the domain-wall approximation or asa spheri
al bag with the energy and the baryon number density 
on
entrated at its boundary.PACS: 12.39.D
, 13.75.Cs, 14.65.-q1. INTRODUCTIONThe 
hiral soliton approa
h provides a very e
o-nomi
al method of des
ribing baryoni
 systems withdi�erent baryon numbers, starting with several basi

on
epts and ingredients in
orporated in the model La-grangian [1, 2℄. The latter is the trun
ated Lagrangianof e�e
tive �eld theories widely used in des
ribing thelow-energy meson and baryon intera
tions [3℄. Withinthis approa
h, baryons or baryoni
 systems appear asquantized solitoni
 solutions of the equations of mo-tion 
hara
terized by the so-
alled winding number ortopologi
al 
harge. If the 
on
ept of topologi
al soli-ton models is a

epted and the baryons are indeedskyrmions, it is 
lear why isospin exists in Nature: thenumber 3 of the SU(2) isospin group generators 
o-in
ides with the number of spa
e dimensions, therebyallowing a 
orrelation between SU(2) 
hiral �elds andspa
e 
oordinates resulting in the appearen
e of topo-logi
al solitons.It has been found numeri
ally that the lowest-energy 
hiral �eld 
on�gurations possess di�erent topo-logi
al properties � the shape of the mass and B-number distribution � for di�erent values of B. A*E-mail: kopelio�al20.inr.troitsk.ru

sphere o

urs for the B = 1 hedgehog [1℄, a torusfor B = 2 [4℄, a tetrahedron for B = 3, a 
ube forB = 4 [5℄, and higher polyhedrons for greater baryonnumbers [5�7℄. A paradoxi
al feature of the approa
h isthat the baryon/nu
leon individuality is absent in thelowest-energy stati
 
on�gurations (we note that any ofthe known lowest-energy 
on�gurations 
an be made ofa number of slightly deformed tori). It is believed thatthe standard pi
ture of nu
lei must emerge when themotion due to nonzero modes (vibration and breathing)is taken into a

ount. Finding the relative position ofstates with di�erent quantum numbers (spin, isospin,�avor, SU(3) representation, et
.) requires 
al
ulatingthe zero-mode quantum 
orre
tions to the energy ofa baryoni
 system. Corre
tions of this type were �rst
al
ulated for 
on�gurations of the �hedgehog� type [8℄and later, for axially symmetri
 
on�gurations [9, 10℄and for more general 
on�gurations for the SU(2) [11℄and SU(3) symmetry groups [12, 13℄.The 
hiral soliton approa
h provides the 
on
eptof nu
lear matter that is di�erent from the 
ommonlya

epted assumption that the nu
lear matter is 
on-stru
ted from separate nu
leons only. To �nd the�smoking gun� for this unusual 
on
ept, it is ne
essaryto �nd some states that 
annot be made of separatenu
leons, e.g., be
ause of the Pauli ex
lusion prin
i-499
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h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001ple. The simplest possibility is to 
onsider the B = 2system, where the Pauli prin
iple stri
tly and unam-biguosly forbids de�nite sets of quantum numbers forthe system 
onsisting of separate nu
leons.In this paper, we �rst dis
uss the SU(2) 
ase(Se
. 2), where supernarrow low-lying dibaryons werepredi
ted [14℄, and estimate their ele
tromagneti
 de-
ay width. We next 
onsider the SU(3) extentionof the 
hiral soliton model and extend the previousestimates of the spe
tra of multibaryons with �avor(strangeness, 
harm or bottom quantum number) tohigher baryon numbers, where the ne
essary theoreti-
al information on multiskyrmions is available [7℄. Asimpli�ed model for large-B multiskyrmions given byrational maps (RM) [15℄ is presented that allows us toestablish the relation to the domain-wall or bag ap-proximation (Se
. 4). The te
hni
al details requiredfor 
al
ulations are available in the literature; some ofthem are given in the Appendi
es, where several state-ments valid for any 
hiral soliton are proved and usefulexpressions for the SU(2) skyrmion inertia tensors (stillla
king in the literature) are presented.2. NARROW DIBARYONS BELOW THE NN�THRESHOLDThe topologi
al 
hiral solitons (skyrmions) are 
las-si
al 
on�gurations of 
hiral �elds in
orporated in aunitary matrix U 2 SU(2) or SU(3) and 
hara
terizedby the topologi
al, or winding number identi�ed withthe baryon number B. The 
lassi
al energy (mass) ofthese 
on�gurations M
l is usually found by minimiz-ing the energy fun
tional that depends on 
hiral �elds.As any extended obje
t, skyrmions also possess other
hara
teristi
s, e.g., inertia moments � (inertia ten-sors in the general 
ase, see Appendix A), mean squareradii of the mass and baryon number distribution, et
.The quantization of the zero modes of 
hiral solitonsallows obtaining the spe
trum of states with di�erentvalues of quantum numbers: spin, isospin, strangeness,et
. [8�13℄. Be
ause this approa
h leads to a reasonabledes
ription of various properties of baryons, nu
leons,and hyperons, it is interesting to 
onsider predi
tionsof the models of this type for baryoni
 systems withB � 2. The energy of SU(2) quantized states with theaxial symmetry 
an be written as [9, 10℄E =M
l + I(I + 1)2�I + J(J + 1)2�J ++ (Jbf3 )22B2�3�1� �3�I �B2�3�J �; (1)

where I and J are the isospin and the spin of the sys-tem, J3 is the body-�xed third (or z) 
omponent of theangular momentum, whi
h 
an be 
onsidered as an ad-ditional internal quantum number of the system, andB = n is the azimuthal winding number for the lowest-energy axially symmetri
 
on�gurations. This formula,rigorously obtained from a model Lagrangian [9, 10℄,has a very transparent physi
al interpretation. Thete
hni
al details involving the known Lagrangian of theSkyrme model, expressions forM
l, inertia tensors, andsome other formulas 
an be found in Appendix A.The (generalized) axial symmetry of the 
on�gura-tion with B = 2 leads to a 
ertain 
onstraint on thebody-�xed third 
omponents of the isospin and the an-gular momentum:Jbf3 = �nIbf3 = �nL(see [9, 10℄). For the states with I = 1 and J = 0, orI = 0 and J = 1, and also I = J = 1, it then followsthat Ibf3 = Jbf3 = L = 0:Therefore, the last term in (1), whi
h is proportionalto Jbf 23 , is absent in these 
ases. Be
ause the parityof the 
on�guration is equal to P = (�1)L [10℄, all theabove states have a positive parity. For the state withI = 0 and J = 2, we 
an also haveIbf3 = Jbf3 = 0;as well as Ibf3 = L = 1; Jbf3 = �2:At large B, it 
an also be shown (see Appendix A)that only the �rst two terms in (1), those proportionalto I(I+1) and J(J+1), are important in the quantum
orre
tion to the energy.It was noted a long time ago [9℄ that the quan-tum 
orre
tion for the deuteron-like state with I = 0,J = 1, given by Erotd = 1=�J(B = 2) is by approx-imately 30 MeV smaller than the 
orre
tion for the�quasi-deuteron� state with I = 1, J = 0 given byErotd0 = 1=�I(B = 2). This o

urs for all the knownversions of the model, without any tuning of the pa-rameters, and 
an therefore be 
onsidered as an in-trinsi
 property of the 
hiral soliton models originat-ing from e�e
tive �eld theories. Further investiga-tions of nonzero modes of the two-nu
leon system haveshown that with many (albeit not all) of them takeninto a

ount, the binding energy of the deuteron 
anbe redu
ed to � 6 MeV [16℄ if it is 
onsidered as adi�eren
e between states with the deuteron and thequasideuteron quantum numbers. As previously, we500



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :here 
onsider the di�eren
es of the quantized state en-ergies be
ause they are free of many un
ertainties, e.g.,those due to unknown loop 
orre
tions to the massesof skyrmions (see [17, 18℄ and dis
ussions below).In a

ordan
e with Eq. (1), some dibaryons are pre-di
ted to be de
oupled from the 2-nu
leon 
hannel asa 
onsequen
e of the Pauli prin
iple [14℄. For exam-ple, there is a predi
tion for the state with the isospinI = J = 1, positive parity, and the energy below thethreshold for the de
ay into NN� withErotD = 1=�J(B = 2) + 1=�I(B = 2):This dibaryon 
annot be seen in nu
leon�nu
leon in-tera
tions dire
tly, but 
an be observed in the rea
tionNN ! NN

, where one photon is required to pro-du
e D and the se
ond appears from the de
ay of D,e.g., pp! D++
 ! pp

:The 
hiral soliton models predi
t the state D with theisospin I = J = 1 at the energy about 50�60 MeVabove the NN threshold [14℄.In [10℄, it was shown that the states for whi
h thesum I + J is even (0; 2; et
.) and the parity is po-sitive are forbidden by 
onstraints of the Finkelstein�Rubinstein type arising as a 
onsequen
e of the require-ment that the 
on�guration 
an be presented as a sys-tem of two unit hedgehogs at large relative distan
essu
h that these unit skyrmions possess fermioni
 prop-erties. This implies that the 
on�gurations that 
an-not be 
onsidered as 
onsisting of two nu
leons wereignored in [10℄. In [14℄, on the 
ontrary, we abandonedthis requirement. We also note that the state withI = 0, J = 2, whi
h was forbidden in [10℄, 
an in fa
tbe the 3D2 state of two nu
leons and should not beforbidden by the FR 
onstraint. This parti
ular 
asemust therefore be analyzed more 
arefully.It is possible to estimate the width of the radia-tive de
ay D ! NN
. Ele
tromagneti
 nu
leon form-fa
tors 
an be des
ribed su�
iently well within theSkyrme soliton model in a wide interval of momen-tum transfers [19℄. A reasonable agreement with thedata takes pla
e for the deuteron and 2N systems [10℄,and therefore, one 
an expe
t reasonable predi
tions forsystems with greater baryon numbers or with unusualproperties. The dimensional estimate of the narrowdibaryon de
ay width was made in [14℄ providing thelower bound for the de
ay width given by several eV.To make a more realisti
 estimate, one 
an 
onsider atransition of the magneti
 type, D ! NN
 or d
. The

amplitude of the dire
t pro
ess due to the magneti
dipole transition 
an be written asMD!NN
 = ie ~�D!NN �iklFik	Dl �y1�2; (2)where ~� is the value of the transition magneti
 momentassumed to be of the same order as �p, Fik = eiqk�ekqiis the ele
tromagneti
 �eld strength, and 	Dl ; �1, and�2 are the respe
tive wave fun
tions of the dibaryonand the nu
leons. For the width of this dire
t de
ay,we then obtain�D!NN
 = ��M2 ~�2D!NN945�2 (�=M)7=2 (3)whi
h is numeri
ally less than 0.1 eV for� � �p � �n � 4:7=2MN ;here, � =MD � 2M is the energy release, or the max-imum energy of the emitted photon. This estimateagrees with that made previously [14℄, but the �nalstate intera
tion 
ould in
rease it by several orders ofmagnitude.To roughly take it into a

ount, one must 
on-sider the transition D ! d0, where d0 is the spin-zeroquasideuteron, or D+ ! d. At this point, an impor-tant statement is that the isove
tor magneti
 transi-tion operator for any skyrmion is simply related to itsmixed, or interferen
e inertia tensor �intab . This state-ment, known in some parti
ular 
ases [8, 10℄ is provedin Appendix B for arbitrary skyrmions and for any typeof 
hiral soliton models: we show that~�ai = �12Raj(A)�intjk Oki (A0); (4)where Raj = D1aj = Tr(Ay�aA� j)=2, Oki are the �-nal rotation matri
es, and a is the isotopi
al (o
tet inSU(3)) index (for the ele
tromagneti
 intera
tion, wemust set a = 3). �intjk is given in Appendix A.For 
on�gurations with the generalized axial sym-metry and for several known multiskyrmions, only thediagonal elements of �int are di�erent from zero, andmoreover, only the 33-
omponent remains in the axiallysymmetri
 
ase; we then have~�3i = �12R33(A)�int33 O3i (A0); (5)where �int33 = 2�I33 = 14:8 GeV�1 for B = 2 and thea

epted values of model parameters, see also Table 1below. To obtain numeri
al values of the transitionmagneti
 moments, we must 
al
ulate the rotation ma-trix elements between the wave fun
tions of the initial501
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h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001and �nal states. In terms of the �nal rotation matri
esDII3;L, these are given by (see, e.g., [20℄)	DI;I3;J;J3 =r2I + 18�2 DII3Lr2J + 18�2 DJJ3;�2L: (6)For the D state, we have I = J = 1 and L = 0, and forthe �nal d0 state, I = 1 and J = 0. Be
ause R33 = D100,the isotopi
al part of the matrix element for theD ! d0transition is proportional tohD1I30D100D1I30i = Z D1I30D100D1I30d� == C1;I31;0;1;I3C1;01;0;1;0=3: (7)One of the Clebs
h�Gordan 
oe�
ients vanishes,C1;01;0;1;0 = 0, and therefore, the D ! d0 transitionmagneti
 moment is equal to zero for all states in
lud-ing D++ and D0, not only for D+ ! d0+ (whi
h istrivial); this is a 
onsequen
e of symmetry propertiesof the rotator wave fun
tion with L = 0.For the transition D+ ! d
, the isotopi
al part ofthe matrix element di�ers from zero, hD10;0D100D000i == 1=3, but the angular momentum part proportionalto hD1J30D100D1J30i is again equal to zero. However, thede
ay D+ ! np is possible as a result of the se
ond-order isospin violation in the ele
tromagneti
 intera
-tion, due to a virtual emission and reabsorption of thephoton and due to the isospin violation by the massdi�eren
e of the u and d quarks. The order of mag-nitude estimate of the width of this de
ay due to thevirtual ele
tromagneti
 pro
ess is�D!pn � �2M4�r�M ; (8)whi
h is about � 1 keV. We note that for the 
ompo-nents of D with the 
harge +2 or 0, the de
ay into thepp or nn �nal states is stri
tly forbidden by the rigor-ous 
onservation of the angular momentum and by thePauli prin
iple.For the transitionsD++ ! pp
; D0 ! nn
;and D+ ! (pn)I=1
;the isos
alar magneti
 moment operator gives anonzero 
ontribution. The 
orresponding matrixelement isMD!d0
 = ie ~�0D!d0 �iklFik	Dl 	d0y: (9)

For the rational map parameterization, we have the ap-proximate relation ~�03 � J3Bhr20i3�J ; (10)where hr20i is the mean square radius of the B-numberdistribution. Equation (10) 
oin
ides with the resultin [8℄ for B = 1 and is 
lose to the result in [10℄ forB = 2. The derivation of (10) that is valid for the ra-tional map parameterization of skyrmions will be givenelsewhere. The 
oe�
ient after J3 in (10) has a remark-ably weak dependen
e on the baryon number, as 
anbe seen from Table 1. However, numeri
ally, Eq. (10)gives about half the result for B = 1 in [8℄ for theparameters taken here. We thus have~�0D!d0 � 2hr20i3�J : (11)For the de
ay width, we then obtain�D!d0
 = �4~�2D!d0�33 : (12)Numeri
ally, ~�D!d0 � 0:35 GeV�1, and it follows from(12) that �D!d0
 � 0:3 keV (�=60 MeV)3. The sameestimate is valid for the de
ay rate of D+ ! np
 withthe np-system in the I = 1 isospin state.The experimental eviden
e for the existen
e of thenarrow dibaryon D in the rea
tion pp! pp

 has beenobtained in Dubna [21℄, although these data have notbeen 
on�rmed in the Uppsala bremsstrahlung exper-iment [22℄. Even more 
lear indi
ations for the exis-ten
e of low-lying dibaryons were obtained in the ex-periment at the Mos
ow meson fa
tory in the rea
tionpd! pX [23℄. As regards its importan
e, the 
on�rma-tion of these results is 
omparable to the dis
overy ofa new elementary parti
le. The absen
e of su
h stateswould provide de�nite restri
tions on the appli
abilityof the 
hiral soliton approa
h and e�e
tive �eld theo-ries.It should be noted that the model involves a prob-lem with the lowest state with I = J = 0, whi
h shouldbe lower than the deuteron-like state. The deuteronmust therefore de
ay into this (0; 0) state and a pho-ton, but a two-nu
leon system in the singlet 1S0 state
annot de
ay be
ause the 0! 0 transition is forbiddenfor the ele
tromagneti
 intera
tion. The loop 
orre
-tions to the energy of states, or the Casimir energy [16℄,are di�erent for states that 
an go over into two nu
le-ons, and for states that 
annot. Their 
ontribution 
an
hange the relative position of these states and shift the(0; 0) state above the deuteron, but a highly nontrivial
al
ulation must be done to verify this.502



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :Some low-lying states with strangeness are also pre-di
ted that 
annot de
ay strongly due to the parity andisospin 
onservation in strong intera
tions [14℄. Forexample, the dibaryon with the strangeness S = �2,I = 0, and J = 1 and with the positive parity has theenergy by � 0:17 GeV above the �� threshold [24℄,and it 
annot de
ay into two �-hyperons be
ause ofthe Pauli prin
iple, and into the ��� �nal state by theisospin 
onservation. Therefore, the width of the ele
-tromagneti
 de
ay of this state must not ex
eed severaltenths of keV. It is, of 
ourse, a spe
ial 
ase. Other pos-sible states with the �avor s; 
 or b are dis
ussed in thenext se
tion.The masses of neutron-ri
h light nu
lides, su
h asthe tetra-neutron, sexta-neutron, et
., 
an be esti-mated using Eq. (1). For the multineutron state withI = B=2, the isorotation energy isErot = B(B + 2)8�I ;and these nu
lides are predi
ted well above the thresh-old for the strong de
ay into �nal nu
leons. With in-
reasing the baryon numbers, the energies of neutron-ri
h states with a �xed di�eren
e N �Z de
rease, andtheir widths 
an therefore be very small. The massdi�eren
e of states with the isospin I and the groundstates with I = 0 (for even B) is equal to�E(B; I) = I(I + 1)2�I;B :For the pairs of nu
lei su
h as 8Li�8Be, 12B�12C and16N�16O, it is equal to�E(B; 1) = 1�I;Band de
reases with in
reasing B (i.e., the atomi
 num-ber), both theoreti
ally (see Table 1 below) and a

ord-ing to data. For B = 16, this di�eren
e is 10.9 MeV;this is to be 
ompared with the theoreti
al value of15.8 MeV, whi
h is not bad for su
h a 
rude model.3. FLAVORED MULTIBARYONSAnother 
hara
teristi
 predi
tion is that of multi-baryons with di�erent values of �avors, su
h as thestrangeness, 
harm, or bottom quantum numbers. Thebound-state approa
h of multiskyrmions with di�erent�avors is an adequate method to 
al
ulate the bindingenergies of states with quantum numbers s; 
 or b. Theso-
alled rigid os
illator model is the most transparent

and 
ontrollable version of this method [25℄. The refer-en
es to the pioneering papers 
an also be found in [26℄.For the strangeness quantum numbers, the predi
tedbinding energies of �avored states are smaller than thebinding energies of the ordinary nu
lei. For the 
harmor bottom quantum numbers, the relation is reversed.We now present the main results for �avored multi-baryons following [26℄ and extending them to highervalues of the baryon numbers.To quantize solitons in the SU(3) 
on�gurationspa
e in the spirit of the bound-state approa
h to thedes
ription of strangeness, we 
onsider the 
olle
tive 
o-ordinate motion of the meson �elds in
orporated intoa matrix U 2 SU(3) (see Appendix A),U(r; t) = R(t)U0(O(t)r)Ry(t);R(t) = A(t)S(t); (13)where U0 is the SU(2) soliton embedded into SU(3)in the standard way (into the upper-left 
orner),A(t) 2 SU(2) des
ribes SU(2) rotations, S(t) 2 SU(3)des
ribes rotations in the �strange�, �
harm� or �bot-tom� dire
tions, and O(t) des
ribes rigid rotations inreal spa
e. We haveS(t) = exp(iD(t)); D(t) = Xa=4;::: ;7Da(t)�a; (14)where �a are the Gell-Mann matri
es of the (u; d; s),(u; d; 
) or (u; d; b) SU(3) groups. The (u; d; 
) and(u; d; b) SU(3) groups are totally similar to the (u; d; s)one. For the (u; d; 
) group, a simple rede�niton of thehyper
harge must be made. For the (u; d; s) group,D4 = K+ +K�p2 ; D5 = iK+ �K�p2 ;et
., and for the (u; d; 
) group,D4 = D0 + �D0p2 ;et
.The angular velo
ities of the isospin rotations arede�ned in the standard way asAy _A = �i! � �=2:We do not 
onsider the usual spa
e rotations expli
itlybe
ause the 
orresponding inertia moments for bary-oni
 systems are mu
h greater than the isospin inertiamoments, see Table 1, and for the lowest possible valuesof the angular momentum J , the 
orresponding quan-tum 
orre
tion is either exa
tly zero (for even B) orsmall.503



V. B. Kopeliovi
h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001The magnitude of the D �eld is small, at least of theorder 1=pN
, where N
 is the number of QCD 
olors.We 
an therefore safely expand the matrix S in D. Tothe lowest order in D, the Lagrangian of the model inEq. (A.1) 
an be written asL = �M
l;B + 4�F;B _Dy _D �� ��B �m2D + ~�B(F 2D � F 2� )�DyD �� iN
B2 (Dy _D � _DyD); (15)where �m2D = (F 2D=F 2� )m2D �m2�:Here and below, D is the doublet K+; K0 (D0; D� orB+; B0) and �F is the inertia moment for the rotationinto the ��avor� dire
tion (with F = s; 
 or b and theindex 
 denoting the 
harm quantum number, ex
eptin N
),�F;B = 18 Z (1� 
f )�� �F 2D + 1e2�(rf)2 + s2f (rni)2��d3r; (16)where f is the pro�le fun
tion of the skyrmion, FD isthe �avor de
ay 
onstant, i.e., kaon, D meson, or Bmeson de
ay 
onstant, and�B = F 2�2 Z (1� 
f )d3r: (17)The mass term 
ontribution to the stati
 soliton energyis related to � by M:t: = m2��=2:The quantity ~�B arises when the �avor symmetrybreaking is taken into a

ount in �avor de
ay 
onstants:~�B = 14 Z 
f �(rf)2 + s2f (rni)2�d3r: (18)It is related to other 
al
ulated quantities by~� = 2(M (2)
l =F 2� � e2�SkF );where M (2)
l is the se
ond-order 
ontribution to stati
mass of the soliton and �SkF is the Skyrme term 
ontri-bution to the �avor inertia moment. The 
ontributionproportional to ~�B is suppressed in (15) 
ompared tothe term � � by the small fa
tor � F 2D=m2D, and ismore important for strangeness. The term proportionalto N
B arises in (15) from the Wess�Zumino term inthe a
tion and is responsible for the di�eren
e of the

strangeness and antistrangeness (in the general 
ase,�avor and anti�avor) ex
itation energies [25, 26℄.Following the 
anoni
al quantization pro
edure, wewrite the Hamiltonian of the system in
luding theterms of the order N0
 as [25℄HB =M
l;B + 14�F;B�y�++��B �m2D + ~�B(F 2D � F 2� ) + N2
B216�F;B�DyD ++ i N
B8�F;B (Dy���yD); (19)where � is the 
anoni
ally 
onjugate momentum tothe variable D that des
ribes the os
illator-type mo-tion of the (u; d) SU(2) soliton in the SU(3) 
on�gura-tion spa
e. After the diagonalization that 
an be doneexpli
itly [25℄, the normal-ordered Hamiltonian 
an bewritten asHB =M
l;B + !F;Baya+ �!F;Bbyb+O(1=N
); (20)where ay and by are the 
reation operators of thestrangeness (i.e., of antikaons) and antistrangeness (�a-vor and anti�avor) quantum numbers, and !F;B and�!F;B are the frequen
es of �avor (anti�avor) ex
ita-tions. D and � are related to a and b by [25℄Di = bi + ayipN
B�F;B ; �i = pN
B�F;B(bi � ayi)2i (21)with�F;B =s1 + 16( �m2D�B + (F 2D � F 2� )~�B�F;B)(N
B)2 :For the lowest states, the values of D are small:D � �16�B�F;B �m2D +N2
B2��1=4;they in
rease as (2jF j+1)1=2 with in
reasing the �avornumber jF j. As noted in [25℄, deviations of the �eldD from the va
uum de
rease with in
reasing the massmD, as well as with in
reasing the number of 
olorsN
,and the method works for any mD (and also for 
harmand bottom quantum numbers). We have!F;B = N
B(�F;B � 1)8�F;B ;�!F;B = N
B(�F;B + 1)8�F;B : (22)It was observed in [26℄ that to the leading order in N
,the di�eren
e �!F;B � !F;B = N
B4�F;B504



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :Table 1. Chara
teristi
s of the bound states of skyrmions with the baryon numbers up to B = 22B M
l �(0)F �I �I;3 ��J � ~� hr0 i !s !
 !b1 1:702 2:05 5:55 5:55 5:55 4:80 15 2:51 0:309 1:542 4:822 3:26 4:18 11:5 7:38 23 9:35 22 3:46 0:293 1:511 4:763 4:80 6:34 14:4 14:4 49 14:0 27 4:10 0:289 1:504 4:754 6:20 8:27 16:8 20:3 78 18:0 31 4:53 0:283 1:493 4:745 7:78 10:8 23:5 19:5 126 23:8 35 5:10 0:287 1:505 4:756 9:24 13:1 25:4 27:7 178 29:0 38 5:48 0:287 1:504 4:757 10:6 14:7 28:9 28:9 220 32:3 43 5:72 0:282 1:497 4:758 12:2 17:4 33:4 31:4 298 38:9 46 6:15 0:288 1:510 4:799 13:9 20:5 37:7 37:7 375 46 47 6:49 0:291 1:517 4:7712 18:4 28:0 48:5 48:5 636 64 54 7:31 0:294 1:526 4:7916 24:5 38:9 63:1 63:1 1107 91 63 8:31 0:301 1:543 4:8117 25:9 41:2 66:1 66:1 1219 96 65 8:48 0:300 1:542 4:8122 33:7 56:0 84:2 84:2 2027 135 73 9:55 0:308 1:560 4:8432� 49:1 86:7 118 118 4154 218 87 11:3 0:319 1:585 4:84The 
lassi
al mass of solitons M
l is expressed in GeV, the moments of inertia �F ; �I and �I;3, �J , hr0i, �, and~� in GeV�1, and the ex
itation frequen
ies for �avor F , !s;
;b in GeV; hr0i = pr2B, �J de�nes the value of themultiskyrmion isos
alar magneti
 moment. For higher baryon numbers, beginning with B = 9, 
al
ulations aremade using the RM ansatz. For B = 32, it was assumed that the ratio I=B2 = 1:28 as for the RM B = 22skyrmion. The external parameters of the model are F� = 186 MeV and e = 4:12. The a

ura
y of 
al
ulations isbetter than 1% for the masses and several per 
ent for other quantities.
oin
ides with the expression obtained in the 
olle
tive
oordinate approa
h [24℄.The �avor symmetry breaking (FSB) in the �avorde
ay 
onstants, i.e., the fa
t that FK=F� � 1:22 andFD=F� = 1:7 � 0:2 (where we take FD=F� = 1:5 andFB=F� = 2) leads to the in
rease of the �avor ex
ita-tion frequen
es, in better agreement with the data for
harm and bottom. It also leads to some in
rease ofthe binding energies of baryon system [26℄.The values of ��J shown in Table 1 are 1=3 ofthe tra
e of the 
orresponding inertia tensor, see Ap-pendix A. As 
an be seen from Table 1, the �avor ex-
itation energies in
rease again for the largest valueB = 22, and the important property of binding be-
omes weaker for higher B. However, this 
an be anartefa
t of the RM approximation dis
ussed in the nextse
tion. In parti
ular, for B � 9, the inertia moments�I and �3 are 1=3 of the tra
e of the 
orrespondinginertia tensors, see Appendix A.

For large values of FD=F� = �D and the mass mD,the following approximate formula for the �avor ex
i-tation frequen
es 
an be obtained:!F;B � ~mD�1� 2 �SkF;B�2D�B�� N
B2�2D�B (23)with ~m2D = m2D + F 2� ~�B=�B. It is 
lear from (23)that !'s are smaller than the meson masses mD, andtherefore, the binding always o

urs and is to a largedegree due to the 
ontribution of the Skyrme term tothe �avor inertia �SkF . As �D ! 1, it follows that!F ! mD. Be
ause the ratio ~�B=�B de
reases with in-
reasing B and �F;B=�B in
reases as B in
reases from1 to 4�7, the energies !F;B de
rease for these B num-bers, thereby leading to the in
rease of the binding of�avored mesons by SU(2) solitons with in
reasing B upto 4�7. However, for B = 22 and 32, the ratio�F;B=�Bis smaller than for B = 1, and indeed, !'s are the sameand even larger than for B = 1.505



V. B. Kopeliovi
h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001Table 2. The binding energy di�eren
es ��s;
;b for the states with the isospin I = Tr + jF j=2B ��s=�1 ��
=1 ��b=�1 ��s=�2 ��
=2 ��b=�22 �0:047 �0:03 0:02 �0:053 �0:07 0:023 �0:042 �0:01 0:04 �0:036 �0:03 0:064 �0:020 0:019 0:06 �0:051 0:022 0:105 �0:027 0:006 0:05 �0:063 0:001 0:086 �0:019 0:016 0:05 �0:045 0:023 0:107 �0:016 0:021 0:06 �0:041 0:033 0:118 �0:017 0:014 0:02 �0:040 0:021 0:039 �0:023 0:005 0:03 �0:10 �0:003 0:0612 �0:021 0:003 0:02 �0:09 �0:004 0:0417 �0:027 �0:013 0:00 �0:11 �0:03 �0:0022 �0:034 �0:028 �0:03 �0:14 �0:06 �0:03The binding energy di�eren
es ��s;
;b are the 
hanges of binding energies of the lowest baryon system withthe �avor s; 
 or b and the isospin I = Tr + jF j=2 
ompared to the usual u; d nu
lei, for the �avor numbersS = �1; �2, 
 = 1; 2, b = �1 and �2 (see Eq. (24)). The SU(3) multiplets are (p; q) = (0; 3B=2) for even B and(p; q) = (1; (3B � 1)=2) for odd B.Table 3. The binding energy di�eren
es for the states with the isospin I = 0B ��s=�1 ��
=1 ��b=�1 ��s=�2 ��
=2 ��b=�2 ��s=�3 ��
=3 ��b=�3 ��s=�B2 � � � �0:075 �0:03 0:02 � � � �0:073 0:000 0:034 0:07 � � � �0:08 0:002 0:09 �0:084 � � � �0:047 0:030 0:09 � � � �0:135 �0:003 0:032 0:06 � � � �0:06 0:035 0:12 �0:156 � � � �0:044 0:025 0:09 � � � �0:217 0:000 0:040 0:07 � � � �0:04 0:068 0:15 �0:208 � � � �0:039 0:023 0:03 � � � �0:2812 � � � �0:046 0:00 0:03 � � � �0:5017 �0:020 �0:01 �0:00 � � � �0:08 �0:04 �0:01 �0:8222 � � � �0:073 �0:06 �0:06 � � � �1:332� � � � �0:088 �0:11 �0:13 � � � ��The binding energy di�eren
es between the lowest �avored baryon system with the isospin I = 0 and the ground statewith the same value of B and I = 0 or I = 1=2. The �rst three 
olumns are for jF j = 1, the next three 
olumnsfor jF j = 2, and the next three for jF j = 3. The state with the �avor value jF j belongs to the SU(3) multiplet withTr = jF j=2. In the last 
olumn, the binding energy di�eren
es are shown for the isos
alar ele
tri
ally neutral stateswith S = �B. For jF j � 3, all estimates are very approximate.506



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :The binding energy di�eren
es between �avoredmultibaryons and the ordinary nu
lei in the rigid os-
illator approximation are given by��B;F = jF j�!F;1 � !F;B � 3(�F;1 � 1)8�2F;1�F;1 �� Tr(�F;B � 1)4�F;B�F;B � (jF j+ 2)(�F;B � 1)28�2F;B�F;B �; (24)and the lowest SU(3) multiplets are 
onsidered withthe isospin of the �avorless 
omponent Tr = 0 for evenB and Tr = 1=2 for odd B. This formula is 
orre
tfor jF j = 1 and for any jF j if the baryon number issu�
iently large to ensure the isospin balan
e.The values of �� shown in Table 2 must be 
on-sidered as an estimate. They illustrate the restri
tedpossibilities of the RM approximation for large-B mul-tiskyrmions.The isosinglet baryon systems, in parti
ular thosewith jF j = B, are of spe
ial interest. As argued in [26℄,these states do not belong to the lowest possible SU(3)irredu
ible representations, they must have Tr = jF j=2.It makes sense to 
al
ulate the di�eren
e between thebinding energy of this state and the minimal state(pmin; qmin) with zero �avor, whi
h we identify withthe standard nu
leus (the ground state). We have��B;F = jF j�!F;1 � !F;B � 3(�F;1 � 1)8�2F;1�F;1 ++ (jF j+ 2)(�F;B � 1)8�2F;B�F;B ��� 12�T;B � jF j(jF j+ 2)4 � Tminr (Tminr + 1)� ; (25)where Tminr = 0, or 1=2 as above.A

ording to Table 3, the total binding energy, e.g.,of the state with B = 22 and S = �2 is smaller thanthat of the nu
leus with A = 22 by 73 MeV, and thisstate must therefore be well bound. The model usedhere is too 
rude for large �avor values, and the resultsobtained 
an be used only as an illustration and as astarting point for further investigations. Similar resultsare also obtained in other versions of the model [27℄, inparti
ular in the quark�meson soliton model [28℄. Forthe baryon numbers B = 3; 4, estimates of the spe
traof baryoni
 systems with the 
harm quantum numberwere made in [29℄ within the 
onventional quark model.They are in a relatively good agreement with ours.In the 
hannel with B = 2, the near-threshold statewith the strangeness S = �1 was observed a longtime ago in the rea
tion pp! p�K+ [30℄ and re
ently


on�rmed in COSY experiment [31℄. A similar near-threshold �� state was observed by the KEK PS E224
ollaboration [32℄. The Skyrme model explains thesenear-threshold states with B = 2 and predi
ts sim-ilar states for higher values of B. For some valuesof B beginning with B � 5; 6, su
h states with sev-eral units of strangeness 
an be stable with respe
t tostrong intera
tions. Be
ause of the well-known relationQ = I3+(B+S)=2 between the 
harge, the isospin, andthe hyper
harge of hadrons, the baryon system withseveral units of strangeness 
an appear as negatively
harged nu
lear fragments. For even B and the min-imal multiplets (p; q) = (0; 3B=2), the strangeness isS = �2I , and the 
ondition for the Q = �1 fragmentto appear is �1 = S + B=2, or �S = B=2 + 1. ForB = 6, this gives S = �4, for B = 8, S = �5, et
. Forodd B, the Q = �1 state must have the strangenessjSj = (B � 1)=2 + 1;i.e., �3; �4, and �5 for B = 5; 7, and 9, et
.The negatively 
harged long-lived nu
lear fragmentwith the mass about 7.4 GeV observed in NA52 CERNexperiment in a Pb + Pb 
ollision at the energy158A GeV [33℄ 
an be, within the 
hiral soliton mod-els, a fragment with B = 7 or 6 and the strangenessS = �4 or �5;�6. The 
on�rmation of this resultand the sear
h for other negatively 
harged fragmentswould be of great importan
e. For the 
harm or bottomquantum numbers, the binding energies are greater, butobserving these states requires 
onsiderably higher in-
ident energies.4. LARGE-B MULTISKYRMIONS FROMRATIONAL MAPS IN THE DOMAIN-WALLAPPROXIMATIONThe treatment of multiskyrmions was 
onsiderablysimpli�ed by extensively using the rational map ansatzproposed in [15℄ (and also adopted in the present pa-per). At the same time, this ansatz leads to the pi
tureof the multibaryon system at large B that is prob-ably in
ompatible with the pi
ture for the ordinarynu
lei. To 
larify this point, we here 
onsider large-B multiskyrmions in some kind of a toy model � inthe domain-wall approximation; in spite of its simpli
-ity, this model gives relatively good numeri
al resultsfor the known RM multiskyrmions ex
ept those withB = 1; 2. Within the rational map ansatz [15℄, theenergy of the skyrmion is given byM = 13� Z �ANr2f 02+2Bs2f (f 02+1)+I s4fr2�dr (26)507



V. B. Kopeliovi
h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001in the universal units 3�2F�=e.The 
oe�
ient AN = 2(N � 1)=N 
orresponds tothe symmetry group SU(N) [34℄. For SU(2), the quan-tity I is given in Appendix A. There is the inequalityI � B2. Dire
t numeri
al 
al
ulations have shown andour analyti
al treatment supports that at large B, andhen
e, large I, the multiskyrmion looks like a spheri
alball with the pro�le given by f = � inside and f = 0outside the ball. The energy and the B-number densityof this 
on�guration is 
on
entrated at its boundary,similarly to the domain wall system 
onsidered in [35℄in 
onne
tion with 
osmologi
al problems.We 
onsider su
h a large-B skyrmion within the�in
lined step� approximation. If W is the width ofthe step and r0 is the radius of the skyrmion (wherethe pro�le is given by f = �=2), we havef = �=2�(r�r0)�=W for r0�W=2 � r � r0+W=2:We note that this approximation des
ribes the usualdomain wall energy [35℄ with the a

ura
y � 9%.We write the energy in terms of W and r0 and thenminimize it with respe
t to both these parameters and�nd the minimum energy value. WithM(W; r0) == 13� ��2W (B +ANr20) +W�B + 3I8r20�� ; (27)this gives Wmin = �� B +ANr20B + 3I=8r20 �1=2 (28)and after the minimization,r20min =r 3I8AN :In dimensional units, we then haver0 = (6I=AN )1=4F�e :Be
ause I � B2, the radius of the minimized 
on�gu-ration grows at least as pB. It follows that Wmin = �,whi
h is therefore independent of B for any SU(N).The energy is given byMmin � 2B +p3ANI=23 : (29)For the SU(2) model, AN = 1 and the energyMmin = (2B+p3I=2)=3 should be 
ompared with thelower bound MLB = (2B +pI)=3. The formula gives

the numbers for B = 3; : : : ; 22 in a remarkably goodagreement (within 2�3%) with the 
al
ulation withinthe RM approximation [7℄.It is not di�
ult to 
al
ulate the 
orre
tions to theseexpressions, of the relative order 1=B; 1=B2; : : : :M(W; r0) � 13� ��2W (B +ANr20)++ W�B(1 + �) + 3I8r20 (1 + 
)�� ; (30)where � = �212B ; 
 = 2�2 + 17p24I :It follows thatMmin � [2B(1 + �=2) +p3I=2(1 + 
=2)℄=3: (31)However, the �rst-order 
orre
tion in W does not im-prove the des
ription of masses, and the summation ofall terms seems to be required1).We thus see that a very simple approximation 
on-�rms the pi
ture emerging from the numeri
al 
al
u-lation of the RM skyrmion as a two-phase obje
t, aspheri
al ball with the pro�le f = � inside and f = 0outside the ball, and a �xed-width envelope with the�xed surfa
e energy density,�M � 2B +p3I=212�r20 :We also 
onsider the e�e
t of the mass term. Itgives the 
ontributionM:t: = ~m Z r2(1� 
os f)dr; (32)where ~m = 8m2�3�F 2�e2 :For the strangeness, 
harm or bottom, the masses mK ,mD or mB must be inserted instead of m�. In the�in
lined step� approximation, we then obtainM:t: � ~m�23r30 +O(W 2)�: (33)In view of this stru
ture of the mass term, it does nota�e
t the width of the step W in the lowest order, butthe dimension of the soliton r0 be
omes smaller:r0 ! r0 � ~mr20(B +ANr20)4�B : (34)1) Detailed analyti
al treament of multiskyrmions performedby the author in Pis'ma v ZhETF 73, 667 (2001) 
on�rms theresults and 
on
lusions of this se
tion.508



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :
1 2 3 4 5 6 7 8 901

2 
 b a
�M

r; 1=F�eThe mass density distribution of the rational map mul-tiskyrmion with B = 22 as a fun
tion of the distan
efrom the 
enter of the skyrmion for di�erent values ofmass in the 
hiral symmetry breaking term; a � pionmass in the mass term, b � kaon mass, 
 � D-mesonmass, the mass density is devided by 10As was expe
ted from general grounds, dimensionsof the soliton de
rease with in
reasing ~m. However,even for large values of ~m, the stru
ture of the mul-tiskyrmion remains the same at large B: it is givenby the phase with the broken 
hiral symmetry insidethe spheri
al wall where the main 
ontribution to themass and topologi
al 
harge is 
on
entrated. The be-havior of the energy density for B = 22 at di�erentvalues of � is shown in the Figure. The value of themass density inside the ball is 
ompletely determinedby the mass term with 1 � 
f = 2. The baryon num-ber density distribution is quite similar, with the onlydi�eren
e that it is equal to zero inside the bag. Itfollows from these results that the RM-approximatedmultiskyrmions 
annot model real nu
lei at large B,probably for B > 12 � 20, and 
on�gurations of theskyrmion 
rystal type may be more appropriate for thispurpose.In addition to the simple one-shell 
on�gurations
onsidered in [7, 15℄ and here, multishell 
on�gurations
an also be interesting. Some examples of two-shell
on�gurations with B = 12; 13; 14 were 
onsidered re-
ently [36℄. For these 
on�gurations, the pro�le is givenby f = 2� at r = 0 and de
reases to f = 0 as r ! 1.We 
an also model this two-shell 
on�guration in thedomain-wall, or spheri
al bag approximation with theresultM � 2B1 +p3I1=23 + 2B2 +p3I2=23 ; (35)with the total baryon number B = B1+B2. The pro�lef de
reases from 2� to � in the �rst shell, and from �to 0 in the se
ond. The radii of both shells must satisfythe 
ondition

r(2)0 � r(1)0 +W;and the external shell must therefore be su�
ientlylarge, with the baryon number B2 given by several tensat least. Be
ause the ratio I=B2 is larger for smallerB, the energy in Eq. (35) is greater than the energyof the one-shell 
on�guration 
onsidered before. Cal-
ulations performed in [36℄ also did not improve theresults obtained for the one-shell 
on�guration. How-ever, a more re�ned analysis would be of interest. Theobservation 
on
erning the stru
ture of large-B multi-skyrmions made above 
an be useful in view of possible
osmologi
al appli
ations of Skyrme-type models.5. CONCLUDING REMARKSWe have restri
ted ourselves to the Skyrme modeland its straightforward extentions. However, many ofthe result are valid in other versions of the model, e.g.,in the model with solitons stabilized by the expli
itve
tor (!) meson or by the baryon number densitysquared, in the 
hiral perturbation theory, et
., see thedis
ussion in the se
ond paper in Ref. [14℄. The B = 2torus-like 
on�guration has been obtained within thesemodels and in the 
hiral quark�meson model [28℄, andit would be interesting to 
he
k if there also exist mul-tiskyrmions with B � 3.We did not dis
uss a spe
ial 
lass of SU(3)skyrmions, the SO(3) solitons and the problem of theirobservation. The relevant dis
ussion 
an be foundin [12, 13℄.To 
on
lude, the study of some pro
esses, in
ludingthose at intermediate energies, whi
h to some extentare out of fashion now, 
an provide a very important
he
k of fundamental prin
iples and 
on
epts of the el-ementary parti
le theory in
luding the 
on�nement ofquarks and gluons. Con�rming the predi
tions of the
hiral soliton approa
h would give a qualitatively newunderstanding of the origin of nu
lear for
es. If theexisten
e of low-energy radiatively de
aying dibaryonsis reliably established, it will 
hange the long-standingbelief that nu
lear matter fragments ne
essarily 
onsistof separate nu
leons bound by their intera
tions. It istherefore extremely important to 
on�rm and 
he
k theresults of experiments on the dibaryon produ
tion andon the produ
tion of fragments of �avored matter. Thiswould be possible at a

elerators of moderate energies,like COSY (Jueli
h, FRG), KEK (Japan), Mos
ow me-son fa
tory (Troitsk, Russia), ITEP (Mos
ow), and sev-eral others. The produ
tion of multistrange states andthe states with 
harm or bottom quantum numbers is509
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h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001possible in heavy ion 
ollisions and also on the a

eler-ators like Japan Hadron Fa
ility to be built in the nearfuture.The multiple �avor produ
tion realized in the pro-du
tion of �avored multibaryons that is possible, e.g.,in heavy ion 
ollisions, 
ertainly requires higher en-ergy, but multiple intera
tion pro
esses and the nor-mal Fermi motion of nu
leons inside the nu
lei makethe e�e
tive thresholds mu
h lower [37℄. It would allowmore 
omplete and reliable veri�
ation of the modelpredi
tions.We �nally note that the low-energy dibaryonswere re
ently obtained in [38℄ using a quantizationpro
edure di�erent from ours.This work is supported by the Russian Founda-tion for Basi
 Resear
hes (grant � 01-02-16615), UKPPARC (grant PPA/V/S/1999/00004) and was pre-sented in part at the International seminar Quarks-2000, Pushkin, Russia, May 2000.APPENDIX AInertia tensors of multiskyrmionsThe Lagrangian density of the SU(2) Skyrme modelis given byL = �F 2�16 Tr(L�L�) + 132e2 TrG2�� ++ F 2�m2�16 Tr(U + U y � 2); (A.1)where L� = ��UU y is the left 
hiral derivative, L� == iL�;k�k, �k are the Pauli matri
es, and G�� == ��L� � ��L� is the 
hiral �eld strengh. The Wess�Zumino term present in the a
tion was dis
ussed indetail in [13℄, and we omit this dis
ussion here.We �rst give the expression for the energy of theSU(2) skyrmion as a fun
tion of the pro�le f and theunit ve
tor n, whi
h is espe
ially useful in some 
ases.Using the de�nition U = 
f + isfn � � and the relationL�;kL�;k = ��f��f + s2f��n��n; (A.2)we obtainMstat = Z (F 2�8 [(rf)2 + s2f (rni)2℄ + s2f4e2 ���2[rf�rni℄2+s2f [rni�rnk℄2�+�M:t:)d3r: (A.3)

For the ansatz based on rational maps, the pro�lef depends on only the variable r, and 
omponents of ndepend only on the angular variables �; �. We havenx = 2ReR1 + jRj2 ; ny = 2 ImR1 + jRj2 ; nz = 1� jRj21 + jRj2 ;where R is a rational fun
tion of the variablez = tg(�=2) exp(i�) de�ning a map S2 ! S2. Inthis 
ase, the gradients of f and n are orthogonal(re
all that rr = nr�r + n���=r + n���=(rs�),nr = r=r = (s�
�; s�s�; 
�), n� = (�
�
�, �
�s�; s�),and n� = (s�; �
�; 0)) and [rf �rn1℄2 = f 02(rn1)2,et
. Using the relationsn23[rn2 �rn3℄2 = n21[rn1 �rn2℄2;n23[rn1 �rn3℄2 = n22[rn1 �rn2℄2; (A.4)we 
an rewrite (A.3) asMstat = Z (F 2�8 [f 02 + s2f (rni)2℄ + s2f2e2 ���f 02(rni)2+s2f [rn1�rn2℄2n23 �+�M:t:)d3r: (A.5)Introdu
ing the notationI = 14� Z r4 [rn1 �rn2℄2n23 d
 == 14� Z  (1 + jzj2)(1 + jRj2) jdRjjdzj !4 2idzd�z(1 + jzj2)2 (A.6)and using the equationZ r2(rnk)2d
 = 2 Z r2 j[rn1 �rn2℄jjn3j d
 == 2 Z 2idRd �R(1 + jRj2)2 = 8�N ; (A.7)we �nally obtainMstat = 4� Z (F 2�8 (f 02r2 + 2s2fN ) + s2f2e2 �� �2f 02N + s2fIr2 �+ r2�M:t:)dr: (A.8)To �nd the minimum energy 
on�guration at �xedN = B, one minimizes I and then �nds the pro�lef(r) by minimizing energy (A.8).To quantize zero modes, we use the ansatzU(t; r) = A(t)U(Oik(t)rk)Ay(t)510



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :and the evident relation�tU = _U = _AU(r(t))Ay +AU(r(t)) _Ay ++ _ri(t)A�iU(r(t))Ay; (A.9)where ri(t) = Oik(t)rk are body-�xed 
oordinates.The angular velo
ities of spatial (or orbital) rota-tions are introdu
ed as_ri = _Oikr0k = _OikO�1kl rl(t) = ��ilm
mrl(t)and the integration is performed in the 
oordinate sys-tem bound to the soliton (body-�xed).The rotation, or the zero-mode energy of SU(2)skyrmions as a fun
tion of the angular velo
ities isErot = 12�Iab!a!b +�intab !a
b + 12�Jab
a
b: (A.10)The isotopi
al inertia tensor for an arbitrary SU(2)skyrmion is given by�Iab = Z s2f((Æab � nanb)�� F 2�4 + (rf)2e2 !+ s2fe2 �lna�lnb)d3r: (A.11)For the RM ansatz, the tra
e of this inertia tensor is�Iaa(RM) = 4� Z s2f ��(F 2�2 + 2e2 f 02 +N s2fr2!)r2dr: (A.12)The orbital inertia tensor gives the 
ontribution tothe energy �Jab
a
b=2; using the same notation for anarbitrary 
on�guration, we have�Jab = Z (F 2�4 (�if�kf ++ s2f�in�kn) + s2fe2 ��if�kf(rnl)2 + (rf)2�in�kn�� �if�lf�ln�kn� �kf�lf�ln�in++ s2f [(rnl)2�in�kn� (�in�ln)(�kn�ln)℄�)�� �i�a�k�br�r�d3r: (A.13)

For the RM ansatz, this expression 
an be simpli�ed as�Jab = Z s2f("F 2�4 + f 02e2 + s2fe2 (rnl)2#�� �(rnl)2(r2Æab � rarb)� �an�bnr2��� s2fe2 �(�in�kn)(�in�kn)(r2Æab � rarb)�� r2(�an�ln)(�bn�ln)�)d3r: (A.14)This allows us to obtain the tra
e of the inertia tensor�Jaa(RM) = 4� Z s2f ��(F 2�2 N + 2e2 f 02N + I s2fr2!)r2dr: (A.15)It is easy to establish inequality for the the tra
esof isotopi
al and orbital inertia tensors�Jaa �B�Iaa = 8�e2 (I �B2) Z s4fdr � 0; (A.16)be
ause I � B2. The interferen
e (mixed) inertia ten-sor, whi
h also de�nes the isove
tor part of the mag-neti
 transition operator, is equal to�intab = Z s2f("F 2�4 + 1e2 �(��f)2 + s2f (��n)2�#�� �inl � 1e2 (�if��f + s2f�in��n)��nl)�� nk�kla�i�br�d3r: (A.17)The 
omponents of the spatial angular velo
ities inter-fere only with the 
omponents !1; !2; !3 of the angularrotation velo
ities in 
on�guration spa
e.Numeri
ally, the 
omponents of the mixed inertiatensor are mu
h smaller than those of isotopi
al or or-bital inertia tensor, ex
ept in spe
ial 
ases of �hedge-hogs�, where �int = �I = �J ;and the axially symmetri
 
on�gurations where thethree-dimensional 
omponents of inertia satisfy the re-lations �int33 = �n�I33 = ��J33=n:We �nally note that the most general formulas forinertia tensors are presented here for the �rst time. Forthe RM 
on�gurations, they di�er in some details fromthose given in the literature.511
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h ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001APPENDIX BEle
tromagneti
 transition operatorsFor 
ompleteness, we here prove some statements
on
erning the isove
tor (o
tet in the SU(3) 
ase) ve
-tor 
harge and the isove
tor magneti
 moment operatorin the general form.The isove
tor 
urrent and the isospin generator arerelated byV0;a = 12 Tr(Ay�aA�b)Ibfb = Rab(A)Ibfb ; (B.1)where in the body-�xed 
oordinate system (
onne
tedwith the soliton), the isospin generator isIbfb = �Lrot(!;
)�!b : (B.2)We have a; b = 1; 2; 3 for the SU(2) model anda; b = 1; : : : ; 8 for the SU(3) model. To prove this,we 
onsider the ansatzU = exp(�i�a�a=2)A(t)U0Ay(t) exp(i�a�a=2): (B.3)The Noether ve
tor 
urrent is the 
oe�
ient before thederivative of the probe fun
tion, ���. In the lowestorder in �, we obtain the 
hiral derivativeUy�0U = A �Uy0Ay �� � _A� i2 _�A�U0 �Ay � _A� i2 _�A��Ay: (B.4)Using the de�nition of the rotation angular velo
ities!a in 
on�guration spa
e, we obtainAy _A� i2Ay _�A = � i2�b(!b +Rab(A) _�a); (B.5)where Rab(A) = 12 Tr(Ay�aA�b) (B.6)is a real orthogonal matrix. Be
ause the dependen
eon _� redu
es to a simple addition to angular velo
ity ina

ordan
e with (B.5), Eq. (B.1) follows immediately.Be
ause of the well known relation,Q = B + I32 = B + V0;32 ; (B.7)the baryoni
 (topologi
al) 
harge and the third 
ompo-nent of the isospin generator 
ontribute to the 
hargeof the quantized skyrmion.We also prove that there is a simple relation be-tween the isove
tor (o
tet for the SU(3) model) mag-neti
 momentum operator of the skyrmion and the

mixed (interferen
e) inertia tensor. We �rst note thatbe
ause of the Lorentz invarian
e, the Lagrangian of anarbitrary 
hiral model, not only the Skyrme model, 
anbe presented as a linear 
ombination of 
ontributionsof the formLM;N == Tr�Uy _UMU y _UN � U y�kUMU y�kUN�; (B.8)where M and N are some matri
es. For example,M = N = 1 for the se
ond-order term. The 
ontribu-tion of the �rst term in (B.8) to the rotational energythat is proportional to 
 and ! and therefore de�nesthe mixed (interferen
e) inertia tensor is (see (A.9))�intab !a
b = Z Tr�Uy0Ay _AU0 �Ay _A��� ~MU y0�kU0 ~N _rkd3r +�M $ N�; (B.9)where ~M = AyMA and ~N = AyNA. Thus,�intab = � i2�bjk Z rj(t) Tr(U y0�aU0 � �a)�� ~MU y0�kU0 ~Nd3r +�M $ N�; (B.10)where rj(t) and �k are body-�xed. From the se
ondterm in (B.8), we obtain the spatial 
omponents of theve
tor 
urrent,V ak = i2 Tr�U y0Ay�aAU0 �Ay�aA��� ~MU y0�kU0 ~N +�M $ N�: (B.11)Re
alling thatAy�aA = Rab(A)�b; Rab = 12 TrAy�aA�b;�k = Olk�bfl ;we obtainV ak = i2RabOlk Tr�Uy0�bU0 � �b��� ~MU y0�lU0 ~N +�M $ N�: (B.12)By de�nition, �ai = 12�ijk Z rjV ak d3r; (B.13)512



ÆÝÒÔ, òîì 120, âûï. 3 (9), 2001 Chara
teristi
 predi
tions : : :or�ai = i4�ijkRab(A)OqkOpj Z rp(t) Tr(U y0�bU0��b)�� ~MU y0�qU0 ~N + �M $ N�: (B.14)Be
ause �ijkOpjOqk = �pqlOli;we obtain the sought relation between 
omponents ofthe magneti
 moment operator and the mixed inertiatensor in the body-�xed 
oordinate system:�ai = �12Rab(A)�intbl Oli: (B.15)In some parti
ular 
ases, this relation was used previ-ously [8, 10℄.To 
al
ulate the transition matrix elements, it isne
essary to average this expression over wave fun
-tions of some initial and �nal states, see Se
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