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Characteristic predictions of chiral soliton models (the Skyrme model and its extentions) are discussed. The
chiral soliton model predictions of low-lying dibaryon states qualitatively agree with the recent evidence for
the existence of narrow dibaryons in reactions of the inelastic proton scattering on deuterons and the double
photon radiation pp — ppy~y. The connection between magnetic moment operators and inertia tensors valid
for arbitrary SU(2) skyrmion configurations allows us to estimate the electromagnetic decay width of some
states of interest. Predictions of a different type are multibaryons with a nontrivial flavor (strangeness, charm
or bottom), which can be found, in particular, in high-energy heavy ions collisions. It is shown that the large-B
multiskyrmions given by the rational map ansatze can be described within the domain-wall approximation or as
a spherical bag with the energy and the baryon number density concentrated at its boundary.

PACS: 12.39.Dc, 13.75.Cs, 14.65.-q

1. INTRODUCTION

The chiral soliton approach provides a very eco-
nomical method of describing baryonic systems with
different baryon numbers, starting with several basic
concepts and ingredients incorporated in the model La-
grangian [1, 2]. The latter is the truncated Lagrangian
of effective field theories widely used in describing the
low-energy meson and baryon interactions [3]. Within
this approach, baryons or baryonic systems appear as
quantized solitonic solutions of the equations of mo-
tion characterized by the so-called winding number or
topological charge. If the concept of topological soli-
ton models is accepted and the baryons are indeed
skyrmions, it is clear why isospin exists in Nature: the
number 3 of the SU(2) isospin group generators co-
incides with the number of space dimensions, thereby
allowing a correlation between SU(2) chiral fields and
space coordinates resulting in the appearence of topo-
logical solitons.

It has been found numerically that the lowest-
energy chiral field configurations possess different topo-
logical properties — the shape of the mass and B-
number distribution — for different values of B. A
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sphere occurs for the B 1 hedgehog [1], a torus
for B = 2 [4], a tetrahedron for B = 3, a cube for
B = 4 [5], and higher polyhedrons for greater baryon
numbers [5-7]. A paradoxical feature of the approach is
that the baryon/nucleon individuality is absent in the
lowest-energy static configurations (we note that any of
the known lowest-energy configurations can be made of
a number of slightly deformed tori). It is believed that
the standard picture of nuclei must emerge when the
motion due to nonzero modes (vibration and breathing)
is taken into account. Finding the relative position of
states with different quantum numbers (spin, isospin,
flavor, SU(3) representation, etc.) requires calculating
the zero-mode quantum corrections to the energy of
a baryonic system. Corrections of this type were first
calculated for configurations of the «hedgehog» type [8]
and later, for axially symmetric configurations [9, 10]
and for more general configurations for the SU(2) [11]
and SU(3) symmetry groups [12, 13].

The chiral soliton approach provides the concept
of nuclear matter that is different from the commonly
accepted assumption that the nuclear matter is con-
structed from separate nucleons only. To find the
«smoking gun» for this unusual concept, it is necessary
to find some states that cannot be made of separate
nucleons, e.g., because of the Pauli exclusion princi-
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ple. The simplest possibility is to consider the B = 2
system, where the Pauli principle strictly and unam-
biguosly forbids definite sets of quantum numbers for
the system consisting of separate nucleons.

In this paper, we first discuss the SU(2) case
(Sec. 2), where supernarrow low-lying dibaryons were
predicted [14], and estimate their electromagnetic de-
cay width. We next consider the SU(3) extention
of the chiral soliton model and extend the previous
estimates of the spectra of multibaryons with flavor
(strangeness, charm or bottom quantum number) to
higher baryon numbers, where the necessary theoreti-
cal information on multiskyrmions is available [7]. A
simplified model for large-B multiskyrmions given by
rational maps (RM) [15] is presented that allows us to
establish the relation to the domain-wall or bag ap-
proximation (Sec. 4). The technical details required
for calculations are available in the literature; some of
them are given in the Appendices, where several state-
ments valid for any chiral soliton are proved and useful
expressions for the SU(2) skyrmion inertia tensors (still
lacking in the literature) are presented.

2. NARROW DIBARYONS BELOW THE NN~
THRESHOLD

The topological chiral solitons (skyrmions) are clas-
sical configurations of chiral fields incorporated in a
unitary matrix U € SU(2) or SU(3) and characterized
by the topological, or winding number identified with
the baryon number B. The classical energy (mass) of
these configurations M,; is usually found by minimiz-
ing the energy functional that depends on chiral fields.
As any extended object, skyrmions also possess other
characteristics, e.g., inertia moments © (inertia ten-
sors in the general case, see Appendix A), mean square
radii of the mass and baryon number distribution, etc.
The quantization of the zero modes of chiral solitons
allows obtaining the spectrum of states with different
values of quantum numbers: spin, isospin, strangeness,
etc. [8-13]. Because this approach leads to a reasonable
description of various properties of baryons, nucleons,
and hyperons, it is interesting to consider predictions
of the models of this type for baryonic systems with
B > 2. The energy of SU(2) quantized states with the
axial symmetry can be written as [9, 10]

- II+1) JT+1)
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where I and J are the isospin and the spin of the sys-
tem, J3 is the body-fixed third (or z) component of the
angular momentum, which can be considered as an ad-
ditional internal quantum number of the system, and
B = n is the azimuthal winding number for the lowest-
energy axially symmetric configurations. This formula,
rigorously obtained from a model Lagrangian [9, 10],
has a very transparent physical interpretation. The
technical details involving the known Lagrangian of the
Skyrme model, expressions for M, inertia tensors, and
some other formulas can be found in Appendix A.

The (generalized) axial symmetry of the configura-
tion with B = 2 leads to a certain constraint on the
body-fixed third components of the isospin and the an-
gular momentum:

Jé’f = —nIé’f = —nL
(see [9, 10]). For the states with I = 1 and J = 0, or
I'=0and J =1, and also I = J = 1, it then follows
that

=yt =r=o

Therefore, the last term in (1), which is proportional
to J3bf2, is absent in these cases. Because the parity
of the configuration is equal to P = (—1)L [10], all the
above states have a positive parity. For the state with
I =0 and .J =2, we can also have

= Jb =o,

as well as

=r=1, Jf=-2

At large B, it can also be shown (see Appendix A)
that only the first two terms in (1), those proportional
to I(I+1) and J(J+1), are important in the quantum
correction to the energy.

It was noted a long time ago [9] that the quan-
tum correction for the deuteron-like state with I = 0,
J =1, given by E7° = 1/0,;(B = 2) is by approx-
imately 30 MeV smaller than the correction for the
«quasi-deuteron» state with I = 1, J = 0 given by
Ent = 1/0;(B = 2). This occurs for all the known
versions of the model, without any tuning of the pa-
rameters, and can therefore be considered as an in-
trinsic property of the chiral soliton models originat-
ing from effective field theories. Further investiga-
tions of nonzero modes of the two-nucleon system have
shown that with many (albeit not all) of them taken
into account, the binding energy of the deuteron can
be reduced to ~ 6 MeV [16] if it is considered as a
difference between states with the deuteron and the
quasideuteron quantum numbers.

As previously, we
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here consider the differences of the quantized state en-
ergies because they are free of many uncertainties, e.g.,
those due to unknown loop corrections to the masses
of skyrmions (see [17, 18] and discussions below).

In accordance with Eq. (1), some dibaryons are pre-
dicted to be decoupled from the 2-nucleon channel as
a consequence of the Pauli principle [14]. For exam-
ple, there is a prediction for the state with the isospin
I = J =1, positive parity, and the energy below the
threshold for the decay into NN« with

Ep' =1/0,(B=2)+1/0,(B=2).

This dibaryon cannot be seen in nucleon—nucleon in-
teractions directly, but can be observed in the reaction
NN — NN#~v, where one photon is required to pro-
duce D and the second appears from the decay of D,

e.g.,
pp = Dty = ppyy.

The chiral soliton models predict the state D with the
isospin I = J = 1 at the energy about 50-60 MeV
above the NN threshold [14].

In [10], it was shown that the states for which the
sum I + J is even (0, 2, etc.) and the parity is po-
sitive are forbidden by constraints of the Finkelstein—
Rubinstein type arising as a consequence of the require-
ment that the configuration can be presented as a sys-
tem of two unit hedgehogs at large relative distances
such that these unit skyrmions possess fermionic prop-
erties. This implies that the configurations that can-
not be considered as consisting of two nucleons were
ignored in [10]. In [14], on the contrary, we abandoned
this requirement. We also note that the state with
I =0, J =2, which was forbidden in [10], can in fact
be the ®D, state of two nucleons and should not be
forbidden by the FR constraint. This particular case
must therefore be analyzed more carefully.

It is possible to estimate the width of the radia-
tive decay D — N N~. Electromagnetic nucleon form-
factors can be described sufficiently well within the
Skyrme soliton model in a wide interval of momen-
tum transfers [19]. A reasonable agreement with the
data takes place for the deuteron and 2N systems [10],
and therefore, one can expect reasonable predictions for
systems with greater baryon numbers or with unusual
properties. The dimensional estimate of the narrow
dibaryon decay width was made in [14] providing the
lower bound for the decay width given by several eV.
To make a more realistic estimate, one can consider a
transition of the magnetic type, D — NN~ or dvy. The
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amplitude of the direct process due to the magnetic
dipole transition can be written as

(2)

where fi is the value of the transition magnetic moment
assumed to be of the same order as i, Fir, = e;qr —exqi
is the electromagnetic field strength, and \IllD, ¢1, and
¢y are the respective wave functions of the dibaryon
and the nucleons. For the width of this direct decay,
we then obtain

i~ D .t
Mp_NNy =t€ ipNN € Fin ¥ @) do,

— aAM2 l‘l2D—>NN

94572 (A/M)7/2

(3)

I'pnny
which is numerically less than 0.1 eV for
[~ pp = p & 4T/2M N

here, A = Mp — 2M is the energy release, or the max-
imum energy of the emitted photon. This estimate
agrees with that made previously [14], but the final
state interaction could increase it by several orders of
magnitude.

To roughly take it into account, one must con-
sider the transition D — d’, where d' is the spin-zero
quasideuteron, or DT — d. At this point, an impor-
tant statement is that the isovector magnetic transi-
tion operator for any skyrmion is simply related to its
mixed, or interference inertia tensor ©¢. This state-
ment, known in some particular cases [8, 10] is proved
in Appendix B for arbitrary skyrmions and for any type
of chiral soliton models: we show that

(4)

it = — SR (A)OROF (A,
where R = D}, = Tr(ATr®A7d)/2, Of are the fi-
nal rotation matrices, and a is the isotopical (octet in
SU(3)) index (for the electromagnetic interaction, we
must set a = 3). O is given in Appendix A.

For configurations with the generalized axial sym-
metry and for several known multiskyrmions, only the
diagonal elements of @™ are different from zero, and
moreover, only the 33-component remains in the axially
symmetric case; we then have

i} = 5 RO 04, @
where @1t = 20%, = 14.8 GeV ! for B = 2 and the
accepted values of model parameters, see also Table 1
below. To obtain numerical values of the transition
magnetic moments, we must calculate the rotation ma-
trix elements between the wave functions of the initial



V. B. Kopeliovich

MIT®, Tom 120, Bbim. 3(9), 2001

and final states. In terms of the final rotation matrices
Dj, 1. these are given by (see, e.g., [20])

2 +1 2J +1
UP1gds = \/ WngL\/ WDi,—QL- (6)

For the D state, we have [ = J =1 and L = 0, and for
the final d’ state, I = 1 and J = 0. Because R** = D/,
the isotopical part of the matrix element for the D — d’
transition is proportional to

<D}30D30D}30> = /D}gthl)oD}godV =
1,1 1,0
201,0;31,1301,0;1,0/3- (7)

One of the Clebsch—-Gordan coefficients vanishes,
Cll”g;l,o = 0, and therefore, the D — d' transition
magnetic moment is equal to zero for all states includ-
ing D** and D° not only for Dt — d't (which is
trivial); this is a consequence of symmetry properties
of the rotator wave function with L = 0.

For the transition D™ — dv, the isotopical part of
the matrix element differs from zero, (Df ,DgoDgy) =
= 1/3, but the angular momentum part proportional
to (D},0Dgo DY) is again equal to zero. However, the
decay Dt — np is possible as a result of the second-
order isospin violation in the electromagnetic interac-
tion, due to a virtual emission and reabsorption of the
photon and due to the isospin violation by the mass
difference of the u and d quarks. The order of mag-
nitude estimate of the width of this decay due to the
virtual electromagnetic process is

M A
FDA)pn ~ Q2E M’ (8)

which is about ~ 1 keV. We note that for the compo-
nents of D with the charge +2 or 0, the decay into the
pp or nn final states is strictly forbidden by the rigor-
ous conservation of the angular momentum and by the
Pauli principle.

For the transitions

DTt = PPy, D — nnvy,

and
Dt = (pn)1=17,

the isoscalar magnetic moment operator gives a
nonzero contribution. The corresponding matrix
element is

MDHd’fy = e ﬂ()D—>d’ Eileik \I/lD\I’d,T. (9)

For the rational map parameterization, we have the ap-
proximate relation

(10)

where (r2) is the mean square radius of the B-number
distribution. Equation (10) coincides with the result
in [8] for B = 1 and is close to the result in [10] for
B = 2. The derivation of (10) that is valid for the ra-
tional map parameterization of skyrmions will be given
elsewhere. The coefficient after J3 in (10) has a remark-
ably weak dependence on the baryon number, as can
be seen from Table 1. However, numerically, Eq. (10)
gives about half the result for B = 1 in [8] for the
parameters taken here. We thus have

~0 ~

AD sar ®

2(r)
39?] . (11)

For the decay width, we then obtain

4ﬂ%ad’A3 )

- (12

Ipoay =a
Numerically, ip_q =~ 0.35 GeV !, and it follows from
(12) that Tp_a4 ~ 0.3 keV (A/60 MeV)3. The same
estimate is valid for the decay rate of D™ — npy with
the np-system in the I = 1 isospin state.

The experimental evidence for the existence of the
narrow dibaryon D in the reaction pp — ppy~y has been
obtained in Dubna [21], although these data have not
been confirmed in the Uppsala bremsstrahlung exper-
iment [22]. Even more clear indications for the exis-
tence of low-lying dibaryons were obtained in the ex-
periment at the Moscow meson factory in the reaction
pd — pX [23]. Asregards its importance, the confirma-
tion of these results is comparable to the discovery of
a new elementary particle. The absence of such states
would provide definite restrictions on the applicability
of the chiral soliton approach and effective field theo-
ries.

It should be noted that the model involves a prob-
lem with the lowest state with I = .J = 0, which should
be lower than the deuteron-like state. The deuteron
must therefore decay into this (0,0) state and a pho-
ton, but a two-nucleon system in the singlet 'Sy state
cannot decay because the 0 — 0 transition is forbidden
for the electromagnetic interaction. The loop correc-
tions to the energy of states, or the Casimir energy [16],
are different for states that can go over into two nucle-
ons, and for states that cannot. Their contribution can
change the relative position of these states and shift the
(0,0) state above the deuteron, but a highly nontrivial
calculation must be done to verify this.
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Some low-lying states with strangeness are also pre-
dicted that cannot decay strongly due to the parity and
isospin conservation in strong interactions [14]. For
example, the dibaryon with the strangeness S = —2,
I =0, and J = 1 and with the positive parity has the
energy by &~ 0.17 GeV above the AA threshold [24],
and it cannot decay into two A-hyperons because of
the Pauli principle, and into the AA7 final state by the
isospin conservation. Therefore, the width of the elec-
tromagnetic decay of this state must not exceed several
tenths of keV. It is, of course, a special case. Other pos-
sible states with the flavor s, ¢ or b are discussed in the
next section.

The masses of neutron-rich light nuclides, such as
the tetra-neutron, sexta-neutron, etc., can be esti-
mated using Eq. (1). For the multineutron state with
I = B/2, the isorotation energy is

B(B +2)

Erot _ .
80;

and these nuclides are predicted well above the thresh-
old for the strong decay into final nucleons. With in-
creasing the baryon numbers, the energies of neutron-
rich states with a fixed difference N — Z decrease, and
their widths can therefore be very small. The mass
difference of states with the isospin I and the ground
states with I = 0 (for even B) is equal to

I(I+1)

For the pairs of nuclei such as 8Li-®Be, ?B-'2C and
6N-160Q), it is equal to

1
Or.B

AE(B,1) =

and decreases with increasing B (i.e., the atomic num-
ber), both theoretically (see Table 1 below) and accord-
ing to data. For B = 16, this difference is 10.9 MeV;
this is to be compared with the theoretical value of
15.8 MeV, which is not bad for such a crude model.

3. FLAVORED MULTIBARYONS

Another characteristic prediction is that of multi-
baryons with different values of flavors, such as the
strangeness, charm, or bottom quantum numbers. The
bound-state approach of multiskyrmions with different
flavors is an adequate method to calculate the binding
energies of states with quantum numbers s, ¢ or b. The
so-called rigid oscillator model is the most transparent
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and controllable version of this method [25]. The refer-
ences to the pioneering papers can also be found in [26].
For the strangeness quantum numbers, the predicted
binding energies of flavored states are smaller than the
binding energies of the ordinary nuclei. For the charm
or bottom quantum numbers, the relation is reversed.
We now present the main results for flavored multi-
baryons following [26] and extending them to higher
values of the baryon numbers.

To quantize solitons in the SU(3) configuration
space in the spirit of the bound-state approach to the
description of strangeness, we consider the collective co-
ordinate motion of the meson fields incorporated into
a matrix U € SU(3) (see Appendix A),

U(r,t) = R(H)U(O(t)r) R (¢),

(13)
R(t) = A)S(?),

where Uy is the SU(2) soliton embedded into SU(3)
in the standard way (into the upper-left corner),
A(t) € SU(2) describes SU(2) rotations, S(t) € SU(3)
describes rotations in the «strange», «charmy» or «bot-
tom» directions, and O(t) describes rigid rotations in
real space. We have

S5(t) = exp(iD(t)), D(1)

> Da(t)Aa,

a=4,...,7

(14)

where A\, are the Gell-Mann matrices of the (u,d,s),

(u,d,c) or (u,d,b) SU(3) groups. The (u,d,c) and

(u,d,b) SU(3) groups are totally similar to the (u,d, s)

one. For the (u,d, c) group, a simple redefiniton of the

hypercharge must be made. For the (u,d, s) group,
K+ — K-

= 27’

V2

KT+ K~

D, = ,
! V2

etc., and for the (u,d,c) group,

Ds

DO 4+ DO
D=2
N

etc.
The angular velocities of the isospin rotations are
defined in the standard way as

AtA = —iw - 7/2.

We do not consider the usual space rotations explicitly
because the corresponding inertia moments for bary-
onic systems are much greater than the isospin inertia
moments, see Table 1, and for the lowest possible values
of the angular momentum J, the corresponding quan-
tum correction is either exactly zero (for even B) or
small.
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The magnitude of the D field is small, at least of the
order 1/y/N,, where N, is the number of QCD colors.
We can therefore safely expand the matrix S in D. To
the lowest order in D, the Lagrangian of the model in
Eq. (A.1) can be written as

L=- C[,B+4@F’BDTD—
— |Tpin% +Tp(Fp — F2)|D'D —

N.B

—i (D'D — D'D), (15)

where
2

mp = (Fp/F7)mp — m3.
Here and below, D is the doublet K+, K° (D° D~ or
BT, B% and O is the inertia moment for the rotation
into the «flavory direction (with F' = s, ¢ or b and the
index ¢ denoting the charm quantum number, except
in N.),

s [a-enx

OrB = S

X {Fl% + e% ((Vf)2 + s?(Vni)2>}d3r, (16)

where f is the profile function of the skyrmion, Fp is
the flavor decay constant, i.e., kaon, D meson, or B
meson decay constant, and

F2

Tp=-1

5 (1 —cp)d®r.

(17)
The mass term contribution to the static soliton energy
is related to T by

M.t. = m2T/2.
The quantity T'p arises when the flavor symmetry
breaking is taken into account in flavor decay constants:

B= 7 (18)

i/cf [(Vf)z—}—S?c(Vni)z]d?’r.

It is related to other calculated quantities by

I =2(M7 |F; - 0F),
where Mc(f) is the second-order contribution to static
mass of the soliton and ©3F is the Skyrme term contri-
bution to the flavor inertia moment. The contribution
proportional to I'p is suppressed in (15) compared to
the term ~ T by the small factor ~ F%/m3%, and is
more important for strangeness. The term proportional
to N.B arises in (15) from the Wess-Zumino term in
the action and is responsible for the difference of the
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strangeness and antistrangeness (in the general case,
flavor and antiflavor) excitation energies [25, 26].

Following the canonical quantization procedure, we
write the Hamiltonian of the system including the
terms of the order N? as [25]

1
Hg =M i
B cl,B + 1055 +
_ N2pB?
+ (Tpm} +Tp(Fp — F2)+ —=—|D'D +
16@1773
N.B
+i——— (D' -1'D), (19)
8Or.B

where II is the canonically conjugate momentum to
the variable D that describes the oscillator-type mo-
tion of the (u,d) SU(2) soliton in the SU(3) configura-
tion space. After the diagonalization that can be done
explicitly [25], the normal-ordered Hamiltonian can be
written as

Hp = My +wrpa'a+orpbb+ O(1/N,), (20)

where af and b are the creation operators of the
strangeness (i.e., of antikaons) and antistrangeness (fla-
vor and antiflavor) quantum numbers, and wr g and
wp,p are the frequences of flavor (antiflavor) excita-
tions. D and II are related to a and b by [25]

Df = bt 4 ati i /N:Brp, (bt — al?) (21)
B \/]\/YCB,%F’B7 B 2
with

(F3 — F2)T50p5)
(N.B)?

16(m3T
KF,B:\/I-l- (mD B+

For the lowest states, the values of D are small:
D~ [16FB®F,B77_’L%) + NCQBQ] 71/4;

they increase as (2|F|+1)'/? with increasing the flavor
number |F|. As noted in [25], deviations of the field
D from the vacuum decrease with increasing the mass
mp, as well as with increasing the number of colors N,
and the method works for any mp (and also for charm
and bottom quantum numbers). We have

NCB(KF’B — ].)

WPB= — s,
805 (22)

N N.B(krp +1)

e

It was observed in [26] that to the leading order in N,
the difference

N.B

4@F,B

WF,B — WF,B =
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Table 1. Characteristics of the bound states of skyrmions with the baryon numbers up to B = 22
B M, @&9) 07 Or,3 Oy r r (ro) W We wh
1 1.702 2.05 5.55 5.55 5.55 4.80 15 2.51 0.309 1.542 4.82
2 3.26 4.18 11.5 7.38 23 9.35 22 3.46 0.293 1.511 4.76
3 4.80 6.34 14.4 14.4 49 14.0 27 4.10 0.289 1.504 4.75
4 6.20 8.27 16.8 20.3 78 18.0 31 4.53 0.283 1.493 4.74
5 7.78 10.8 23.5 19.5 126 23.8 35 5.10 0.287 1.505 4.75
6 9.24 13.1 25.4 27.7 178 29.0 38 5.48 0.287 1.504 4.75
7 10.6 14.7 28.9 28.9 220 32.3 43 5.72 0.282 1.497 4.75
8 12.2 17.4 33.4 314 298 38.9 46 6.15 0.288 1.510 4.79
9 13.9 20.5 37.7 37.7 375 46 47 6.49 0.291 1.517 4.77
12 18.4 28.0 48.5 48.5 636 64 54 7.31 0.294 1.526 4.79
16 24.5 38.9 63.1 63.1 1107 91 63 8.31 0.301 1.543 4.81
17 259 41.2 66.1 66.1 1219 96 65 8.48 0.300 1.542 4.81
22 33.7 56.0 84.2 84.2 2027 135 73 9.55 0.308 1.560 4.84
32* 49.1 86.7 118 118 4154 218 87 11.3 0.319 1.585 4.84

The classical mass of solitons M, is expressed in GeV, the moments of inertia O, O7 and O3, O, (ro), I, and
[ in GéV ™', and the excitation frequencies for flavor F, Ws,e,p 10 GeV; (rg) = \/%, O defines the value of the
multiskyrmion isoscalar magnetic moment. For higher baryon numbers, beginning with B = 9, calculations are
made using the RM ansatz. For B = 32, it was assumed that the ratio Z/B® = 1.28 as for the RM B = 22
skyrmion. The external parameters of the model are F, = 186 MeV and e = 4.12. The accuracy of calculations is
better than 1% for the masses and several per cent for other quantities.

coincides with the expression obtained in the collective
coordinate approach [24].

The flavor symmetry breaking (FSB) in the flavor
decay constants, i.e., the fact that Fr/F; ~ 1.22 and
Fp/F, = 1.7+ 0.2 (where we take Fp/F, = 1.5 and
Fg/F; = 2) leads to the increase of the flavor excita-
tion frequences, in better agreement with the data for
charm and bottom. It also leads to some increase of
the binding energies of baryon system [26].

The values of ©; shown in Table 1 are 1/3 of
the trace of the corresponding inertia tensor, see Ap-
pendix A. As can be seen from Table 1, the flavor ex-
citation energies increase again for the largest value
B = 22, and the important property of binding be-
comes weaker for higher B. However, this can be an
artefact of the RM approximation discussed in the next
section. In particular, for B > 9, the inertia moments
©; and O3 are 1/3 of the trace of the corresponding
inertia tensors, see Appendix A.

For large values of Fp/F; = pp and the mass mp,
the following approximate formula for the flavor exci-
tation frequences can be obtained:

03y )
pHTB

_ N.B
2ppln

wF’B%’rh[)(l—? (23)
with M2, = m% + F2T'p/Tp. Tt is clear from (23)
that w’s are smaller than the meson masses mp, and
therefore, the binding always occurs and is to a large
degree due to the contribution of the Skyrme term to
the flavor inertia ©3%. As pp — oo, it follows that
wr — mp. Because the ratio f‘B/FB decreases with in-
creasing B and O p/I'p increases as B increases from
1 to 4-7, the energies wp p decrease for these B num-
bers, thereby leading to the increase of the binding of
flavored mesons by SU(2) solitons with increasing B up
to 4-7. However, for B = 22 and 32, the ratio ©p 5/T'
is smaller than for B = 1, and indeed, w’s are the same
and even larger than for B = 1.
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Table 2.  The binding energy differences Ae; ., for the states with the isospin I =T, + |F|/2

B Ae€g—_q A AN AN A€o—s A€p—_»
2 —0.047 -0.03 0.02 —0.053 -0.07 0.02
3 —0.042 -0.01 0.04 —0.036 -0.03 0.06
4 —0.020 0.019 0.06 —0.051 0.022 0.10
5 —-0.027 0.006 0.05 —0.063 0.001 0.08
6 —0.019 0.016 0.05 —0.045 0.023 0.10
7 —0.016 0.021 0.06 —0.041 0.033 0.11
8 —0.017 0.014 0.02 —0.040 0.021 0.03
9 —0.023 0.005 0.03 —0.10 —0.003 0.06
12 —0.021 0.003 0.02 -0.09 —0.004 0.04
17 —-0.027 —0.013 0.00 -0.11 -0.03 —-0.00
22 —0.034 —0.028 -0.03 —0.14 —0.06 -0.03

The binding energy differences Ae; ., are the changes of binding energies of the lowest baryon system with
the flavor s, ¢ or b and the isospin I = T, + |F|/2 compared to the usual u,d nuclei, for the flavor numbers
S=-1,-2,¢=1,2,b=—1and -2 (see Eq. (24)). The SU(3) multiplets are (p,q) = (0,3B/2) for even B and

2001

(p,q) = (1,(3B —1)/2) for odd B.
Table 3. The binding energy differences for the states with the isospin I =0

B | Aes=—1 | Aec=1 | Aep=—1 || A€s=—2 | A€e=n | Aep=—3 || A€s=—3 | A€e=3 | Aep=—3 || Aes=—p

2 — — — —-0.075 | —0.03 | 0.02 — — — —-0.07

3 0.000 0.034 | 0.07 — — — —0.08 0.002 | 0.09 —0.08

4 — — — —0.047 | 0.030 | 0.09 — — — -0.13

) —0.003 | 0.032 | 0.06 — — — —0.06 0.035 | 0.12 —0.15

6 — — — —0.044 | 0.025 | 0.09 — — — —-0.21

7 0.000 0.040 | 0.07 — — — —0.04 0.068 | 0.15 —-0.20

8 — — — —0.039 | 0.023 | 0.03 — — — —-0.28

12 — - — —0.046 | 0.00 0.03 — — — —0.50

17 —-0.020 | —-0.01 | —0.00 — — — —0.08 —-0.04 | -0.01 —0.82

22 — — — —-0.073 | —0.06 | —0.06 — — — -1.3

32% | — — — —-0.088 | —-0.11 | —0.13 — — — ——
The binding energy differences between the lowest flavored baryon system with the isospin I = 0 and the ground state
with the same value of B and I = 0 or I = 1/2. The first three columns are for |F| = 1, the next three columns
for |F| = 2, and the next three for |F| = 3. The state with the flavor value |F| belongs to the SU(3) multiplet with
T, = |F|/2. In the last column, the binding energy differences are shown for the isoscalar electrically neutral states
with § = —B. For |F| > 3, all estimates are very approximate.
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Characteristic predictions ...

The binding energy differences between flavored
multibaryons and the ordinary nuclei in the rigid os-
cillator approximation are given by

3(I<.:F1 — 1)
Ae =|F||lwp1 —w sl
B,F = |F||wr1 F,B 85%’1@F’1
Tr(krp —1)  (IF|+2)(krp —1)?
- - 2 9 (24)
4"€F,B®F,B 8"€F’B®F,B

and the lowest SU(3) multiplets are considered with
the isospin of the flavorless component T, = 0 for even
B and T, = 1/2 for odd B. This formula is correct
for |F| = 1 and for any |F| if the baryon number is
sufficiently large to ensure the isospin balance.

The values of Ae shown in Table 2 must be con-
sidered as an estimate. They illustrate the restricted
possibilities of the RM approximation for large-B mul-
tiskyrmions.

The isosinglet baryon systems, in particular those
with |F| = B, are of special interest. As argued in [26],
these states do not belong to the lowest possible SU(3)
irreducible representations, they must have T, = |F|/2.
It makes sense to calculate the difference between the
binding energy of this state and the minimal state
(p™min g™i") with zero flavor, which we identify with
the standard nucleus (the ground state). We have

3(I<.:F’1 — 1)
8%%71@1?’1

}_

_ pmin(pmin 1>} . (25)

Aeg,p = |F| |:WF,1 —WpB — +

(IF|+2)(krB —1)
8%%7391:‘,3

[FI(IF| +2)
4

1
207,B

|

where T = (), or 1/2 as above.

According to Table 3, the total binding energy, e.g.,
of the state with B = 22 and S = —2 is smaller than
that of the nucleus with A = 22 by 73 MeV, and this
state must therefore be well bound. The model used
here is too crude for large flavor values, and the results
obtained can be used only as an illustration and as a
starting point for further investigations. Similar results
are also obtained in other versions of the model [27], in
particular in the quark—-meson soliton model [28]. For
the baryon numbers B = 3,4, estimates of the spectra
of baryonic systems with the charm quantum number
were made in [29] within the conventional quark model.
They are in a relatively good agreement with ours.

In the channel with B = 2, the near-threshold state
with the strangeness S = —1 was observed a long
time ago in the reaction pp — pAK™ [30] and recently
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confirmed in COSY experiment [31]. A similar near-
threshold AA state was observed by the KEK PS E224
collaboration [32]. The Skyrme model explains these
near-threshold states with B = 2 and predicts sim-
ilar states for higher values of B. For some values
of B beginning with B > 5,6, such states with sev-
eral units of strangeness can be stable with respect to
strong interactions. Because of the well-known relation
Q = I3+ (B+S)/2 between the charge, the isospin, and
the hypercharge of hadrons, the baryon system with
several units of strangeness can appear as negatively
charged nuclear fragments. For even B and the min-
imal multiplets (p, q) (0,3B/2), the strangeness is
S = —2I, and the condition for the ) = —1 fragment
to appear is —1 = S + B/2, or =S = B/2+ 1. For
B =6, this gives S = —4, for B =8, S = -5, etc. For
odd B, the ) = —1 state must have the strangeness

S| = (B-1)/2+1,

ie,, =3, —4, and =5 for B =5, 7, and 9, etc.

The negatively charged long-lived nuclear fragment
with the mass about 7.4 GeV observed in NA52 CERN
experiment in a Pb + Pb collision at the energy
1584 GeV [33] can be, within the chiral soliton mod-
els, a fragment with B = 7 or 6 and the strangeness
S = —4 or —5,—6. The confirmation of this result
and the search for other negatively charged fragments
would be of great importance. For the charm or bottom
quantum numbers, the binding energies are greater, but
observing these states requires considerably higher in-
cident energies.

4. LARGE-B MULTISKYRMIONS FROM
RATIONAL MAPS IN THE DOMAIN-WALL
APPROXIMATION

The treatment of multiskyrmions was considerably
simplified by extensively using the rational map ansatz
proposed in [15] (and also adopted in the present pa-
per). At the same time, this ansatz leads to the picture
of the multibaryon system at large B that is prob-
ably incompatible with the picture for the ordinary
nuclei. To clarify this point, we here consider large-
B multiskyrmions in some kind of a toy model — in
the domain-wall approximation; in spite of its simplic-
ity, this model gives relatively good numerical results
for the known RM multiskyrmions except those with
B = 1,2. Within the rational map ansatz [15], the
energy of the skyrmion is given by

1
M=—

84
/ Anr f2 4 2B (f2 + 1)+ 7oL Lar (26)
37 r2
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in the universal units 372 F; /e.

The coefficient Ay = 2(N — 1)/N corresponds to
the symmetry group SU(N) [34]. For SU(2), the quan-
tity Z is given in Appendix A. There is the inequality
T > B?. Direct numerical calculations have shown and
our analytical treatment supports that at large B, and
hence, large 7, the multiskyrmion looks like a spherical
ball with the profile given by f = 7 inside and f =0
outside the ball. The energy and the B-number density
of this configuration is concentrated at its boundary,
similarly to the domain wall system considered in [35]
in connection with cosmological problems.

We consider such a large-B skyrmion within the
«inclined step» approximation. If W is the width of
the step and rg is the radius of the skyrmion (where
the profile is given by f = 7/2), we have
f=r/2=(r—ro)m/W for ro—W/2<r <ro+W/2.
We note that this approximation describes the usual
domain wall energy [35] with the accuracy ~ 9%.

We write the energy in terms of W and ro and then
minimize it with respect to both these parameters and
find the minimum energy value. With

MW, rqg) =
1 [x2 37
= — |—(B+ Anr? B+ — 2
a3 {W( + NT0)+W< +8T%>], (27)
this gives
B+AN7"8 1/2
W W{B+3Z/8r§ (28)

and after the minimization,

37
SAN'

2 _
o min =

In dimensional units, we then have

(6Z/An)"*

ro =
Fre

Because Z > B2, the radius of the minimized configu-
ration grows at least as V/B. Tt follows that Wnin = T,
which is therefore independent of B for any SU(N).
The energy is given by

P~
in ~

My, (29)

2B + /3ANTZ/2

3 .
For the SU(2) model, Ay 1 and the energy
M min = (2B+4/3Z/2)/3 should be compared with the
lower bound Mrp = (2B + V/Z)/3. The formula gives
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the numbers for B = 3,...,22 in a remarkably good
agreement (within 2-3%) with the calculation within
the RM approximation [7].

It is not difficult to calculate the corrections to these
expressions, of the relative order 1/B, 1/B?,...:

1 (n?
M ~—<{ —(B+ Anr2

(W, o) 37T{W( + Anrg)+

3Z

0

where

ﬂ_ﬂ'_2 _27r2-|-17
- 12B7 1 24T

It follows that

Mopin = 2B(1 + 3/2) + /3Z/2(1 +~/2)]/3.  (31)

However, the first-order correction in W does not im-
prove the description of masses, and the summation of
all terms seems to be required").

We thus see that a very simple approximation con-
firms the picture emerging from the numerical calcu-
lation of the RM skyrmion as a two-phase object, a
spherical ball with the profile f = 7 inside and f =0
outside the ball, and a fixed-width envelope with the
fixed surface energy density,

_2B+./31)2

M

12772
We also consider the effect of the mass term. It
gives the contribution
Mt = ﬁ1/r2(1 — cos f)dr, (32)
where
- 8m?2
m= )
3nF2e?
For the strangeness, charm or bottom, the masses my,
mp or mp must be inserted instead of m,. In the
«inclined step» approximation, we then obtain
123 2
Mt . ~m 370 +O(W*)|. (33)

In view of this structure of the mass term, it does not

affect the width of the step W in the lowest order, but

the dimension of the soliton rqg becomes smaller:
_r3(B+ Anrd)

rog — rg — m—B2——=,
4B

1) Detailed analytical treament of multiskyrmions performed
by the author in Pis'ma v ZhETF 73, 667 (2001) confirms the
results and conclusions of this section.

(34)
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r, 1/Fre

The mass density distribution of the rational map mul-

tiskyrmion with B = 22 as a function of the distance

from the center of the skyrmion for different values of

mass in the chiral symmetry breaking term; a — pion

mass in the mass term, b — kaon mass, ¢ — D-meson
mass, the mass density is devided by 10

As was expected from general grounds, dimensions
of the soliton decrease with increasing m. However,
even for large values of m, the structure of the mul-
tiskyrmion remains the same at large B: it is given
by the phase with the broken chiral symmetry inside
the spherical wall where the main contribution to the
mass and topological charge is concentrated. The be-
havior of the energy density for B = 22 at different
values of p is shown in the Figure. The value of the
mass density inside the ball is completely determined
by the mass term with 1 — ¢y = 2. The baryon num-
ber density distribution is quite similar, with the only
difference that it is equal to zero inside the bag. It
follows from these results that the RM-approximated
multiskyrmions cannot model real nuclei at large B,
probably for B > 12 — 20, and configurations of the
skyrmion crystal type may be more appropriate for this
purpose.

In addition to the simple one-shell configurations
considered in [7, 15] and here, multishell configurations
can also be interesting. Some examples of two-shell
configurations with B = 12, 13, 14 were considered re-
cently [36]. For these configurations, the profile is given
by f = 2m at r = 0 and decreases to f = 0 as r — oo.
We can also model this two-shell configuration in the
domain-wall, or spherical bag approximation with the
result

o~ 2B, + /37,/2 . 2By + /31, /2
- 3 3 "

with the total baryon number B = By + Bs. The profile
f decreases from 27 to 7 in the first shell, and from 7
to 0 in the second. The radii of both shells must satisfy
the condition

(35)
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(2)

r® > D)

>ry’ + W,

and the external shell must therefore be sufficiently
large, with the baryon number B, given by several tens
at least. Because the ratio Z/B? is larger for smaller
B, the energy in Eq. (35) is greater than the energy
of the one-shell configuration considered before. Cal-
culations performed in [36] also did not improve the
results obtained for the one-shell configuration. How-
ever, a more refined analysis would be of interest. The
observation concerning the structure of large- B multi-
skyrmions made above can be useful in view of possible
cosmological applications of Skyrme-type models.

5. CONCLUDING REMARKS

We have restricted ourselves to the Skyrme model
and its straightforward extentions. However, many of
the result are valid in other versions of the model, e.g.,
in the model with solitons stabilized by the explicit
vector (w) meson or by the baryon number density
squared, in the chiral perturbation theory, etc., see the
discussion in the second paper in Ref. [14]. The B = 2
torus-like configuration has been obtained within these
models and in the chiral quark—meson model [28], and
it would be interesting to check if there also exist mul-
tiskyrmions with B > 3.

We did not discuss a special class of SU(3)
skyrmions, the SO(3) solitons and the problem of their
observation. The relevant discussion can be found
in [12, 13].

To conclude, the study of some processes, including
those at intermediate energies, which to some extent
are out of fashion now, can provide a very important
check of fundamental principles and concepts of the el-
ementary particle theory including the confinement of
quarks and gluons. Confirming the predictions of the
chiral soliton approach would give a qualitatively new
understanding of the origin of nuclear forces. If the
existence of low-energy radiatively decaying dibaryons
is reliably established, it will change the long-standing
belief that nuclear matter fragments necessarily consist
of separate nucleons bound by their interactions. It is
therefore extremely important to confirm and check the
results of experiments on the dibaryon production and
on the production of fragments of flavored matter. This
would be possible at accelerators of moderate energies,
like COSY (Juelich, FRG), KEK (Japan), Moscow me-
son factory (Troitsk, Russia), ITEP (Moscow), and sev-
eral others. The production of multistrange states and
the states with charm or bottom quantum numbers is
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possible in heavy ion collisions and also on the acceler-
ators like Japan Hadron Facility to be built in the near
future.

The multiple flavor production realized in the pro-
duction of flavored multibaryons that is possible, e.g.,
in heavy ion collisions, certainly requires higher en-
ergy, but multiple interaction processes and the nor-
mal Fermi motion of nucleons inside the nuclei make
the effective thresholds much lower [37]. It would allow
more complete and reliable verification of the model
predictions.

We finally note that the low-energy dibaryons
were recently obtained in [38] using a quantization
procedure different from ours.

This work is supported by the Russian Founda-
tion for Basic Researches (grant Ne01-02-16615), UK
PPARC (grant PPA/V/S/1999/00004) and was pre-
sented in part at the International seminar Quarks-
2000, Pushkin, Russia, May 2000.

APPENDIX A

Inertia tensors of multiskyrmions

The Lagrangian density of the SU(2) Skyrme model
is given by

2

F7T 1 2
L= T(LuLly) + 555 TG, +
2,2

F
+ I g ot - 9),

= (A.1)

where L, = 6HUUJr is the left chiral derivative, L, =
= iL, 7k, T are the Pauli matrices, and G,, =
= 0yL, — 0,L, is the chiral field strengh. The Wess—
Zumino term present in the action was discussed in
detail in [13], and we omit this discussion here.

We first give the expression for the energy of the
SU(2) skyrmion as a function of the profile f and the
unit vector n, which is especially useful in some cases.
Using the definition U = ¢y 4 isyn - 7 and the relation

LywLyy =08,f0,f + s30,n0,n, (A.2)
we obtain
F? 2 2 2, 5
Mistar = [ § 5 (V)" +53(Vni)"] + 5 x
X [Q[foVni]Q-l-s?c[Vniank]ﬂ +pM.t. }d31“. (A.3)

For the ansatz based on rational maps, the profile
f depends on only the variable r, and components of n
depend only on the angular variables 6, ¢. We have

_ 2ReR
1+ |R]?’

2ImR

1-|RP
ny = =
Y1+ R

IR

Ny

where R is a rational function of the variable
z = tg(0/2)exp(i¢) defining a map S — S2. In
this case, the gradients of f and n are orthogonal
(recall that V, = mn,0, + ngdy/r + nz0s/(rse),
n, =r/r = (sgcy, 5654, Cg), Ng = (—cocy, —CoSy, S0),
and ng = (84, —¢g, 0)) and [Vf x Vnq]? = f2(Vnq)?,
etc. Using the relations

(A4)

n3[Vny x Vns]* =
2
3

n2[Vn; x Vng]* =

we can rewrite (A.3) as

2e2

$2[Vni xVnsy)?
X {f”(vm)%—f[ ;2 2 }+pM,t_}d3r.
3

F2 s
Mstar = /{?ﬁ[f,2 + S?(VnZ)Q] + L x

Introducing the notation

2
7 1 /’I“4 [an X V’I’LQ] a0 =

= 1- 2
4 ng

1 ((1+22) dR>4 2idzdz
(

“w/\arEp @) e @Y

and using the equation

/ﬁ(vnk)%m - Q/Tzwdﬂ -

n3|

:2/%:871/\/,

T+ R (A7)

we finally obtain

Fg 2.2 2 8%
Mstat:47r/{§(fl r +28f'/\/’)+@ X

2 S?Z 2
X {Qf N + 7'—2:| +r%ppg. pdr. (A8)
To find the minimum energy configuration at fixed
N = B, one minimizes 7 and then finds the profile
f(r) by minimizing energy (A.8).
To quantize zero modes, we use the ansatz

Ult,r) = AU (O (t)ri) AT(2)
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and the evident relation

U =U = AU (e (t)) At + AU (x (1)) AT +

+ () AJ;U (r(t) AT, (A.9)

where 7;(t) = O; (t)r), are body-fixed coordinates.

The angular velocities of spatial (or orbital) rota-
tions are introduced as

ri = O.ikT;g = O'ikO,;llrl(t) = —€umQmri(t)
and the integration is performed in the coordinate sys-

tem bound to the soliton (body-fixed).

The rotation, or the zero-mode energy of SU(2)
skyrmions as a function of the angular velocities is

1 : 1
Erot = §®£bwawb + O, Qp + EGianQb. (A.10)

The isotopical inertia tensor for an arbitrary SU(2)
skyrmion is given by

@ib = /S?{((sab — nanb) X

F2 (V2N | 8}
X (T + 6—2 + galnaalnb dsr' (A]']')

For the RM ansatz, the trace of this inertia tensor is

ol (RM) =47r/s§ X

2 2
X {% + % (f’2 +Ni—£> }err. (A.12)

The orbital inertia tensor gives the contribution to
the energy @ianQb/Q; using the same notation for an
arbitrary configuration, we have

2
0, = /{%(8ifakf+

52
° {aifakfwm)? T (V/)?0mdyn —
— 0; [0, fOMOkn — O fO, fOMI;n +

+ sfcé"inakn) +

+ 8?[(Vn1)28in8kn — (ainaln)(aknaln)]} } X

X €iaa€hppTarad r.  (A.13)

For the RM ansatz, this expression can be simplified as

X [(an)Q(r26ab —Tarp) — 8an6bnr2} -
57 )
= {(&nakn)(&nakn)(r Oab — Talp) —
—r? (6an6[n)(8bn6[n)} }d3r. (A.14)

This allows us to obtain the trace of the inertia tensor

o’ (RM) :47r/s§ X

{ N+ = (f’2/\/+z )}2dr. (A.15)

It is easy to establish inequality for the the traces
of isotopical and orbital inertia tensors

8
o/ —Be! = ”(z BQ)/S;dr >0, (A.16)
because Z > B2. The interference (mixed) inertia ten-

sor, which also defines the isovector part of the mag-
netic transition operator, is equal to

CHs =/5f{

X O;ny — e%(alf&,f + s%@inaun)aum} X

By S0 + 50, )2]] x

X Nperia€iopTad’r.  (A.17)

The components of the spatial angular velocities inter-
fere only with the components wy, wsy, ws of the angular
rotation velocities in configuration space.

Numerically, the components of the mixed inertia
tensor are much smaller than those of isotopical or or-
bital inertia tensor, except in special cases of «hedge-
hogs», where

@znt @I @J
and the axially symmetric configurations where the
three-dimensional components of inertia satisfy the re-
lations
Ot = —nok, = -0l /n.

We finally note that the most general formulas for
inertia tensors are presented here for the first time. For
the RM configurations, they differ in some details from
those given in the literature.
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APPENDIX B

Electromagnetic transition operators

For completeness, we here prove some statements
concerning the isovector (octet in the SU(3) case) vec-
tor charge and the isovector magnetic moment operator
in the general form.

The isovector current and the isospin generator are
related by

1 b b
Voa = 5 Te(AT AN = Rypy( AT, (B.1)
where in the body-fixed coordinate system (connected
with the soliton), the isospin generator is

AL (w, Q)

L=
b 80.)},

(B.2)

We have a,b = 1,2,3 for the SU(2) model and
a,b = 1,...,8 for the SU(3) model. To prove this,
we consider the ansatz

U = exp(—iagAa/2) A(t)Ug At (1) exp(icgAa /2). (B.3)

The Noether vector current is the coefficient before the
derivative of the probe function, d,a. In the lowest
order in a, we obtain the chiral derivative

UtgoU = A [UgAf x
X <A - 5aA> Uy — Al (A - 504A>] Af. (B.4)

Using the definition of the rotation angular velocities
w, in configuration space, we obtain

AtA - %A'fdA - —%)\b(wb + Ray(A)da),  (B.5)
where 1
Rap(A) = 3 Tr(AT A, ANy (B.6)

is a real orthogonal matrix. Because the dependence

on & reduces to a simple addition to angular velocity in

accordance with (B.5), Eq. (B.1) follows immediately.
Because of the well known relation,

I3

Vo3

= (B.7)
the baryonic (topological) charge and the third compo-
nent of the isospin generator contribute to the charge
of the quantized skyrmion.

We also prove that there is a simple relation be-
tween the isovector (octet for the SU(3) model) mag-
netic momentum operator of the skyrmion and the
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mixed (interference) inertia tensor. We first note that
because of the Lorentz invariance, the Lagrangian of an
arbitrary chiral model, not only the Skyrme model, can
be presented as a linear combination of contributions
of the form

LyN =

=Tr(U'UMUYUN - U'o,UMU9,UN), (B.8)

where M and N are some matrices. For example,
M = N =1 for the second-order term. The contribu-
tion of the first term in (B.8) to the rotational energy
that is proportional to 2 and w and therefore defines
the mixed (interference) inertia tensor is (see (A.9))

int
ab Ya

Oty = /Tr(UgATAUO — ATA) x

x MU§0,UgNipd®r + <M YRS N), (B.9)
where M = ATM A and N = ATNA. Thus,

; i
@ﬂt = —561;]'1@ /Tj (t) TI“(UJ/\,IUO — Aa) X
x MU U Nd®r + <M RS N), (B.10)
where r;(t) and 0, are body-fixed. From the second

term in (B.8), we obtain the spatial components of the
vector current,

Vi = 5 T (U AN AU — ATA,4)
x MUl UsN + <M & N). (B.11)

Recalling that

AN A = Royy(A)Ny.  Rap %TrA")\aA)\b,

b
O = 007,
we obtain
i

—RabOlk TI‘(UJ/\(,UO — )\b) X

Vka: D)

x MUSO UGN + (M N N). (B.12)
By definition,

1
M? = §€ijk /erk“dST, (B13)
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or
i = e Ran(A)00k Oy [ ry(t) Tr(UNUp—) x
x MUL0,UsN + <M TN N). (B.14)
Because

€ijkOpjOgr = €pq1 Ol

we obtain the sought relation between components of
the magnetic moment operator and the mixed inertia
tensor in the body-fixed coordinate system:

1
= __Rab

S Ban ()0} O

1 (B.15)
In some particular cases, this relation was used previ-
ously [8, 10].

To calculate the transition matrix elements, it is
necessary to average this expression over wave func-

tions of some initial and final states, see Sec. 2.
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