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ASYMMETRIC DARK SOLITONS IN NONLINEAR LATTICESS. Darmanyan *Institute of Spe
tros
opy, Russian A
ademy of S
ien
es142190, Troitsk, RussiaA. KobyakovS
hool of Opti
s/CREOL, University of Central Florida4000 Central Florida Blvd., Orlando, FL 32816-2700, USAF. LedererInstitute of Solid State Physi
s and Theoreti
al Opti
s,Friedri
h-S
hiller-Universität Jena07743, Jena, GermanySubmitted 16 February 2001New types of stable dis
rete solitons are dis
overed. They represent the �rst example of asymmetri
 darksolitons and sho
k waves with a nonzero ba
kground. Both types of solutions exhibit a strong intrinsi
 phasedynami
s. Their existen
e domains and stability 
riteria are identi�ed. Numeri
al experiments support theanalyti
al �ndings.PACS: 63.20.Pw, 42.65.Tg, 05.45.YvNumerous re
ent studies have eviden
ed that theinherent dis
reteness of nonlinear systems 
an quali-tatively alter their dynami
al behavior 
ompared totheir 
ontinuous 
ounterparts. Be
ause many physi-
al systems are dis
rete by de�nition, these e�e
ts at-tra
t a steadily in
reasing interest in various bran
hesof physi
s (for a detailed overview, see the review pa-pers [1℄ and referen
es therein). In these studies, parti
-ular emphasis was given to stationary, lo
alized stru
-tures that are frequently termed as dis
rete solitons.One option to 
ategorize them is by their degree oflo
alization. Strongly lo
alized solitons (SLSs), wherethe ex
itation is resting and involves only a few latti
esites, exhibit properties that originate from the verydis
reteness of the system [2℄. Thus, their behavior dif-fers in many aspe
ts from solutions of related 
ontinu-ous models. It was shown that SLSs 
an signi�
antly
ontribute to the heat transfer and other thermody-nami
 and magneti
 e�e
ts in solids. Moreover, 
ertaindestabilization s
enarios 
an be used for signal pro
ess-ing and swit
hing appli
ations in dis
rete opti
al sys-tems su
h as the 
oupled waveguide arrays [1, 2, 3, 4℄.*E-mail: sdarmanyan�yahoo.
om

Up to now, various types of SLSs have been reportedto exist. Bright [3, 4, 5, 6, 7℄ and dark [8, 9, 10, 11℄stable SLSs exhibiting interesting new topologies andshapes were identi�ed in various nonlinear evolutionequations.However, similarly to 
ontinuum models, all thesesolutions are (anti-) symmetri
 and do not exhibit anintrinsi
 phase dynami
s. The existen
e and stabilityof asymmetri
 bright SLSs that are quasi-periodi
 intime were studied in [12℄. In this paper, we reveal thata dis
reteness may indu
e new soliton formation me
h-anisms resulting in the existen
e of sho
k waves withtwo �nite ba
kgrounds as well as asymmetri
 dark soli-tons. They exhibit a nontrivial intrinsi
 phase dynam-i
s, i.e., the ba
kgrounds os
illate at two di�erent fre-quen
ies and the transition region is 
hara
terized by
ombinations of these frequen
ies.Our model is based on the dis
rete nonlinearS
hrödinger equation (DNLSE), whi
h is among themost prominent model equations in nonlinear physi
s.Vibron modes in biomole
ules, the Heisenberg ferro-magnet or Frenkel ex
itons in a 
hain with two-levelatoms 
an be mentioned among numerous phenomena486
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e site numberFig. 1. Dis
rete sho
k wave with a �nite ba
kground (a) and asymmetri
 dis
rete dark soliton (b)des
ribed by this equation [1℄. Moreover, the DNLSEalso des
ribes light propagation in arrays of weakly 
ou-pled nonlinear opti
al waveguides exhibiting the Kerrnonlinearity [13℄. Re
ently, the existen
e and dynam-i
s of dis
rete solitons in the latter environment wereexperimentally veri�ed [14℄.We 
onsider the DNLSE in the generi
 formi _ n + 
( n�1 +  n+1) + �j nj2 n = 0; (1)where  n denotes the amplitude ex
itation at the n-thsite, 
 and � = �1 are the linear and nonlinear 
ou-pling 
oe�
ients, respe
tively, and the dot denotes thederivative with respe
t to the evolution variable t.Traditionally, one seeks a resting solution to (1)with the 
ommon frequen
y ! in the form  n == fn exp(i!t), where the lo
alization involves only se-veral latti
e sites n. In 
ontrast to this 
onventionalansatz, we sear
h for solutions that are 
hara
terizedby a 
ombinational frequen
y. This 
ombinational fre-quen
y is determined by intera
tion of the latti
e sitesof the lo
alization region with both ba
kgrounds. Weshow that typi
al stable SLSs of this type are, e.g.,sho
k waves with two �nite ba
kgrounds (Fig. 1a) orasymmetri
 dark solitons (Fig. 1b). A new family ofsymmetri
 dark solitons without the phase jump � inthe soliton 
enter is also identi�ed in what follows.The asymmetri
 SLSs displayed in Fig. 1 have theform = f ng = f(: : : ; 1; 1; 1) exp(i!1t);  �N ; : : :: : :  N ; (A;A;A; : : : ) exp(i!2t)g;where the amplitude of the left ba
kground is s
aledto unity. Strong lo
alization implies 
 � 1 [4; 6�11℄and a small number N of 
onstituents of the transi-tion region. It is evident from Eq. (1) that the twoba
kground frequen
ies, !1 = 2
 + � for n < �N and

!2 = 2
 + �A2 for n > N , do not 
oin
ide. For thesesolutions to exist, the lo
alization between both ba
k-grounds (n = �N; : : : ; N) must have the form n(t) = fn exp(i!1t) + gn exp(i!2t) +mn(t); (2)where mn(t) 
ontains an in�nite sum of terms withvarious 
ombinational frequen
ies of both ba
kgrounds.We follow the 
onventional terminology [3℄, assumingthat odd (even) SLSs have an odd (even) number oftransition sites, and we omit the site n = 0 for evenmodes. As 
an be seen in the ansatz, we assumeunstaggered ba
kgrounds, whi
h requires � = �1 formodulationally stable solutions [15℄. Be
ause (1) is in-variant under the transformation � ! ��, t ! �t; n ! (�1)n n, the results also hold for staggeredba
kgrounds with � = 1 .In what follows, we assume that A is real-valued,thus dealing with either the in-phase (A > 0) or out-of-phase (A < 0) ba
kground at t = 0. Substitutionof (2) into (1) results in a system of equations, wherein the strong lo
alization limit [2�7℄, we only keep theterms in the lowest order in the small parameter 
:SHOCK WAVES WITH A FINITEBACKGROUNDWe begin with SLSs of the narrowest possible width,namely with �nite ba
kground sho
k waves (Fig. 1a).It is an even SLS with N = 1; and therefore, onlytwo sites n = �1; 1 
onstitute the transition region.Within the �rst-order approximation in 
, the solutionto Eq. (1) is given by �1 � �1� 
2� ei!1t��A3ei!2t+�Aei(2!1�!2)t; 1 � �A� 
2A� ei!2t��ei!1t+�A2ei(2!2�!1)t; (3)487
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Fig. 2. Temporal evolution of the amplitude of a stablesho
k wave; A = 3, 
 = 0:08; step-like ex
itationwhere � = 
(A2 � 1)2 � 2
(1 +A2)and the os
illation of ea
h site in the transition regionis determined by a 
ombination of three frequen
ies.Other 
ombinations of the ba
kground frequen
ies !1and !2 appear only as higher-order terms in 
 and donot signi�
antly 
ontribute to the dynami
s of this SLS.Two 
onstraints must be satis�ed for solution (3) beingvalid, namely, j�A3j � 1 for jAj > 1 and j�j � jAj forjAj < 1:We also mention that the limit A! 1 requires tak-ing the se
ond-order terms in 
 into a

ount. The trans-formation �! �(1�
), where the respe
tive signs �+�and ��� 
orrespond to the se
ond and third terms inEq. (3), provides a more a

urate solution in this 
ase.Without loss of generality, we 
onsider the 
ase wherejAj � 1, thereby normalizing with respe
t to the lowerba
kground amplitude.We performed numeri
al experiments to prove theexisten
e and to probe the robustness of this new SLS.We dire
tly integrated Eq. (1) using solution (3) as theinitial 
ondition. The results have shown that the soli-ton 
an be easily ex
ited. Moreover, the solution isvery robust against rather strong perturbations of theinitial 
onditions. We used a step-like pro�lefn = (: : : ; 1; 1; 1; A;A;A; : : : )for ex
itation and obtained the robust propagation dis-played in Fig. 2. A zoomed pi
ture of the amplitude

and phase evolution of the two sites in the transitionregion is shown in Fig. 3, where an ex
ellent agreementbetween analyti
al (Eq. (3)) and numeri
al results 
anbe re
ognized. However, this SLS exists only in a re-stri
ted domain in the parameter spa
e be
ause for Aapproa
hing A� ! 1 � p
 + 
3=2=8, the approximatesolution diverges, see Eq. (3). For example, if 
 = 0:08,then A+ � 1:29. Indeed, the numeri
al integrationof Eq. (1) with the step-like initial 
ondition reveals arapid de
ay of the initial ex
itation even for A = 1:45(Fig. 4). This behavior 
an be easily explained by re-alizing that, e.g., for n = �1, the ratio of the am-plitudes os
illating at !2 and !1 amounts to approxi-mately 0.35. Thus higher-order terms be
ome essentialand evoke the SLS de
ay. If we require that this ratioshould be of the order of 
, we 
an estimate the SLSrobustness domain. The 
ondition �A3 � 
 � 1 givesthe approximate threshold value of the amplitude A asAth � 1:9 + 
: For A & 1:9, one 
an therefore expe
ta robust SLS behavior that has been 
on�rmed by ournumeri
al simulations.ASYMMETRIC DARK SOLITONSFollowing the same approa
h, we 
an �nd an oddsolution that takes form �1 � �1� 
2� ei!1t; 0 � �
ei!1t � 
Aei!2t; 1 � �A� 
2A� ei!2t: (4)To our best knowledge, the solution represents the �rstexample of an asymmetri
 dark soliton (Fig. 1b) ex-hibiting a strong intrinsi
 phase dynami
s. Numeri
alsolution of Eq. (1) with initial 
ondition (4) proves therobustness of the solution. Although both amplitudeswith n = 0 are small, the presen
e of two frequen
y
omponents is essential, be
ause the ba
kgrounds in-tera
t via the ex
itation at n = 0. Pre
isely this in-tera
tion a�e
ts the stability of the dark soliton. Theexisten
e domain of this mode depends on the 
oupling
onstant 
 and the ratio of the ba
kground amplitudesA. If the ba
kgrounds are separated by more than twolatti
e 
onstants, wide solitons form. In fa
t, su
h soli-tons 
an be viewed as two nonintera
ting dis
rete frontwaves reported re
ently [7℄.Whereas the 
anoni
al 
ase where A = �1 has beeninvestigated previously and both even and odd dark so-lutions have been found [8, 9℄, the 
ase where A = 1488
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Fig. 3. Amplitude os
illations and phase evolution of the ex
itations in the sho
k wave transition region: a) n = �1;b) n = 1; the parameters are as in Fig. 2. The solid lines show analyti
al results (3) and the dashed lines 
orrespond to thenumeri
al integration of Eq. (1)provides a new type of solutions, namely symmetri
dark solitons without a phase jump in the 
enter repre-senting a genuine dark soliton with regard to the am-plitude. This parti
ular solution has no intrinsi
 phasedynami
s, i.e., all ex
itations os
illate with frequen
y! = 2
+ �: There are odd, �1 =  1 � �1� 
2� ei!t;  0 � �2
ei!t; (5)and even, �2 =  2 � �1� 
2� ei!t;  �1 =  1 � �
ei!t; (6)solutions.Be
ause asymmetri
 dark soliton (4) is a fairly ex-oti
 obje
t, it is worthwhile to probe its stability by thelinear stability analysis. Introdu
ing a 
omplex pertur-bation at ea
h site via  n !  n + �n and linearizingEq. (1) with respe
t to perturbations �n, we obtain theset of equations

i _��2 � 2��2 + 
��1 � ���2e2i!1t = 0;i _��1 � 2(1� 
)��1 + 
(�0 + ��2)�� (1� 
)���1e2i!1t = 0;i _�0 + 
(��1 + �1) = 0;i _�1 � 2(A2 � 
)�1 ++ 
(�0 + �2)� (A2 � 
)��1e2i!2t = 0;i _�2 � 2A2�2 + 
�1 �A2��2e2i!2t = 0; (7)
where only the sites that belong to the transition regionand one site from ea
h ba
kground were taken into a
-
ount. Nevertheless, this set of equations 
an be easilyextended to any number of ba
kground sites.The approa
h su

essfully used in studying the sta-bility of bright SLSs [4℄ 
annot be applied here, be-
ause the 
oe�
ients in Eqs. (7) depend expli
itly onthe evolution variable. We therefore follow a di�erentpro
edure to ta
kle the stability issue of multifrequen
ylo
alized stru
tures. In doing this, we introdu
e theFourier transform of the perturbations,489
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Fig. 4. Temporal evolution of the amplitude of an un-stable sho
k wave; A = 1:45, 
 = 0:08; step-like ex
i-tation
�n = 1Z�1 Fn(
)ei
td
; ��n = 1Z�1 �n(
)ei
td
;where �n(
) = F �n (�
); and rewrite Eqs. (7) in thefrequen
y domain. We eliminate fun
tions �0 and F0and redu
e the total number of equations to eight,(2 + 
)F�2(
) + ��2(
� 2!1)� 
F�1(
) = 0; (8)F�2(
)� (
� 4
)��2(
� 2!1)�� 
��1(
� 2!1) = 0; (9)� 
F�2(
) +�2� 2
� 
2
 +
�F�1(
) ++ (1� 
)��1(
� 2!1)� 
2
 F1(
) = 0; (10)�
��2(
� 2!1) + (1� 
)F�1(
) ++�2
�
+ 
2
 + 2� 4
���1(
� 2!1) ++ 
2
 + 2� 4
�1(
� 2!1) = 0; (11)

� 
2
 F�1(
) +�
 + 2A2 � 2
� 
2
�F1(
) ++ (A2 � 
)�1(
� 2!2)� 
F2(
) = 0; (12)
2
 + 2A2 � 4
��1(
� 2!2) + (A2 � 
)F1(
)���
� 2
� 
2
+ 2A2 � 4
��1(
� 2!2)��
�2(
� 2!2) = 0; (13)�
F1(
)+(
+2A2)F2(
)+A2�2(
�2!2) = 0; (14)� 
�1(
� 2!2) +A2F2(
)�� (
� 4
)�2(
� 2!2) = 0; (15)where all fun
tions with shifted arguments must be 
on-sidered as independent. A 
omplete set of these equa-tions 
ontains an in�nite number of equations for thefun
tions Fn(
�2l!1); Fn(
�2l!2); �n(
�2l!1); and�n(
�2l!2) with n = �1;�2 and l = 0; 1; 2; 3 : : : Thisfa
t is not surprising be
ause Eqs. (7) expli
itly dependon time, and therefore, their solutions 
ontain all har-moni
s of the ba
kground frequen
ies !1 and !2: Theterms with denominators in Eqs. (8)�(15 ) are responsi-ble for higher harmoni
s. They are of the se
ond orderin 
 and 
ould therefore be omitted. The reason to keepthem is to a

ount for possible resonan
es that appearas any denominators approa
hes zero, i.e., as 
 ! 0;
 � 2!1 ! 0; 
 � 2!2 ! 0: Outside the resonan
eregions, these terms 
an be omitted and Eqs. (8)�(15)redu
e to two sets of four 
losed equations allowing thesolution of the respe
tive eigenvalue problem. The so-lution reveals that all eigenvalues are real, i.e., the SLSis stable. Thus, only the resonan
e regions are poten-tially responsible for the onset of instability. To treatthe set of equations (8)�(15), one needs to 
lose it bytrun
ating to a �nite number of equations. To pro
eedin this way, we note that only the terms �1(
� 2l!1)in (11) and ��1(
 � 2l!2) in (13) introdu
e new fre-quen
ies into the system. A more thorough analysisof Eqs. (8)�(15) shows that it is not ne
essary to 
on-sider these harmoni
s in the �rst-order approximationin 
 be
ause the amplitudes of these os
illations areof a higher order in 
. In seeking the instability gainIm
j � 
, we 
an therefore drop these terms. We thenobtain eight 
losed equations with the 
oe�
ients thatdepend nonlinearly on the eigenvalue 
. The 
orre-sponding eigenvalue problem represents a polynomial490
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Fig. 5. Amplitude evolution of dis
rete dark solitons: a) stable asymmetri
 dark soliton, A = 1:4, 
 = 0:065; b) unstableasymmetri
 dark soliton, A = 1:4, 
 = 0:1; 
) stable symmetri
 dark soliton, A = 1, 
 = 0:07; d) unstable symmetri
 darksoliton, A = 1, 
 = 0:1of the 11th order possessing 
omplex solutions in somedomains of the parameter spa
e (
; A). We found that
omplex eigenvalues appear for 
 > 

r1(A): Our anal-ysis also revealed the existen
e of stability windows for

r2n(A) < 
 < 

r2n+1(A); where n = 1; 2; : : : . Aswas shown re
ently [10℄, the existen
e of su
h windowsis due to the �nite size of the system used for model-ling. The windows tend to disappear with an in
reas-ing number of latti
e sites. With additional sites takeninto a

ount, we indeed observed this phenomenon. Wenote that the results obtained also hold for symmetri
dark soliton (5).Thus, we 
on
lude that both asymmetri
 and sym-metri
 dark solitons destabilize provided the linear 
ou-pling ex
eeds the threshold 
 = 

r1(A): It is importantto note that the value 

r1(A) slightly depends on boththe number Ns of sites regarded for the stability anal-ysis, provided Ns � 5; and the ratio of the ba
kgroundamplitudes A. This value 
an be 
al
ulated with a

good a

ura
y by taking �ve sites into a

ount. To im-prove the a

ura
y, we also 
onsidered the 
ase of sevensites involved. The result obtained was 

r1 � 0:085:A dire
t numeri
al integration of Eq. (1) 
on�rms thispredi
tion. Representative examples are displayed inFig. 5 for A = 1:4 (asymmetri
 dark soliton) and A = 1(symmetri
 dark soliton without a phase jump). Fi-gures 5a and 5
 exhibit stable propagation below the
riti
al 
oupling (
 < 

r1), whereas the solitons de
aybeyond that threshold (
 = 0:1 > 

r1), whi
h is inagreement with the linear stability analysis (Figs. 5band 5d).In 
on
lusion, we have shown that new types ofsolitons, not reported before in the literature, mayexist in nonlinear latti
es des
ribed by the dis
retenonlinear S
hrödinger equation. These solitons aresho
k waves with a �nite ba
kground and asymmetri
dark solitons. They are pe
uliar in that they exhibit anontrivial intrinsi
 phase dynami
s. Additionally, we491
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 dark soliton with the 
onventionalphase dynami
s but without a phase jump in the
enter. A linear stability analysis and numeri
alexperiments revealed the domains of their robustbehavior.The authors (S. D. and F. L.) gratefully a
knowl-edge the grants from the Deuts
he Fors
hungsgemein-s
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