ZKIT®, 2001, rom 120, Boim. 2 (8), crp. 486-492

© 2001

ASYMMETRIC DARK SOLITONS IN NONLINEAR LATTICES

S. Darmanyan”

Institute of Spectroscopy, Russian Academy of Sciences
142190, Troitsk, Russia

A. Kobyakov

School of Optics/CREOL, University of Central Florida
4000 Central Florida Blvd., Orlando, FL 32816-2700, USA

F. Lederer

Institute of Solid State Physics and Theoretical Optics,
Friedrich-Schiller- Universitdt Jena
07743, Jena, Germany

Submitted 16 February 2001

New types of stable discrete solitons are discovered. They represent the first example of asymmetric dark
solitons and shock waves with a nonzero background. Both types of solutions exhibit a strong intrinsic phase

dynamics.
analytical findings.
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Numerous recent studies have evidenced that the
inherent discreteness of nonlinear systems can quali-
tatively alter their dynamical behavior compared to
their continuous counterparts. Because many physi-
cal systems are discrete by definition, these effects at-
tract a steadily increasing interest in various branches
of physics (for a detailed overview, see the review pa-
pers [1] and references therein). In these studies, partic-
ular emphasis was given to stationary, localized struc-
tures that are frequently termed as discrete solitons.
One option to categorize them is by their degree of
localization. Strongly localized solitons (SLSs), where
the excitation is resting and involves only a few lattice
sites, exhibit properties that originate from the very
discreteness of the system [2]. Thus, their behavior dif-
fers in many aspects from solutions of related continu-
ous models. It was shown that SLSs can significantly
contribute to the heat transfer and other thermody-
namic and magnetic effects in solids. Moreover, certain
destabilization scenarios can be used for signal process-
ing and switching applications in discrete optical sys-
tems such as the coupled waveguide arrays [1, 2, 3, 4].
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Their existence domains and stability criteria are identified. Numerical experiments support the

Up to now, various types of SLSs have been reported
to exist. Bright [3, 4, 5, 6, 7] and dark [8, 9, 10, 11]
stable SLSs exhibiting interesting new topologies and
shapes were identified in various nonlinear evolution
equations.

However, similarly to continuum models, all these
solutions are (anti-) symmetric and do not exhibit an
intringic phase dynamics. The existence and stability
of asymmetric bright SLSs that are quasi-periodic in
time were studied in [12]. In this paper, we reveal that
a discreteness may induce new soliton formation mech-
anisms resulting in the existence of shock waves with
two finite backgrounds as well as asymmetric dark soli-
tons. They exhibit a nontrivial intrinsic phase dynam-
ics, i.e., the backgrounds oscillate at two different fre-
quencies and the transition region is characterized by
combinations of these frequencies.

Our model is based on the discrete nonlinear
Schrédinger equation (DNLSE), which is among the
most prominent model equations in nonlinear physics.
Vibron modes in biomolecules, the Heisenberg ferro-
magnet or Frenkel excitons in a chain with two-level

atoms can be mentioned among numerous phenomena
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Fig. 1. Discrete shock wave with a finite background (@) and asymmetric discrete dark soliton (b)

described by this equation [1]. Moreover, the DNLSE
also describes light propagation in arrays of weakly cou-
pled nonlinear optical waveguides exhibiting the Kerr
nonlinearity [13]. Recently, the existence and dynam-
ics of discrete solitons in the latter environment were
experimentally verified [14].

We consider the DNLSE in the generic form

“ﬁn + C(lpnfl + l/)nJrl) + /\W)n|21pn - 07 (]-)

where v, denotes the amplitude excitation at the n-th
site, ¢ and A\ = %1 are the linear and nonlinear cou-
pling coefficients, respectively, and the dot denotes the
derivative with respect to the evolution variable ¢.

Traditionally, one seeks a resting solution to (1)
with the common frequency w in the form ¢, =
= fnexp(iwt), where the localization involves only se-
veral lattice sites n. In contrast to this conventional
ansatz, we search for solutions that are characterized
by a combinational frequency. This combinational fre-
quency is determined by interaction of the lattice sites
of the localization region with both backgrounds. We
show that typical stable SLSs of this type are, e.g.,
shock waves with two finite backgrounds (Fig. 1a) or
asymmetric dark solitons (Fig. 15). A new family of
symmetric dark solitons without the phase jump 7 in
the soliton center is also identified in what follows.

The asymmetric SLSs displayed in Fig. 1 have the
form

v=A{v,} =4{(..,1,1,1)exp(iwit), Y_n, ...
N, (AVAV A, L) expliwat) )

where the amplitude of the left background is scaled
to unity. Strong localization implies ¢ < 1 [4,6-11]
and a small number N of constituents of the transi-
tion region. It is evident from Eq. (1) that the two
background frequencies, w; = 2¢ + A for n < —N and
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wy = 2¢+ MA2 for n > N, do not coincide. For these
solutions to exist, the localization between both back-
grounds (n = —N, ..., N) must have the form

wn(t) = fn exp(iwlt) + 9n exp(iw2t) + mn(t)7 (2)

where m,(t) contains an infinite sum of terms with
various combinational frequencies of both backgrounds.
We follow the conventional terminology [3], assuming
that odd (even) SLSs have an odd (even) number of
transition sites, and we omit the site n = 0 for even
modes. As can be seen in the ansatz, we assume
unstaggered backgrounds, which requires A = —1 for
modulationally stable solutions [15]. Because (1) is in-
variant under the transformation A — —\, t — —t,
Y, — (—=1)",, the results also hold for staggered
backgrounds with A =1 .

In what follows, we assume that A is real-valued,
thus dealing with either the in-phase (A > 0) or out-
of-phase (A < 0) background at ¢ = 0. Substitution
of (2) into (1) results in a system of equations, where
in the strong localization limit [2-7], we only keep the
terms in the lowest order in the small parameter c.

SHOCK WAVES WITH A FINITE
BACKGROUND

We begin with SLSs of the narrowest possible width,
namely with finite background shock waves (Fig. 1a).
It is an even SLS with N = 1, and therefore, only
two sites n = —1,1 constitute the transition region.
Within the first-order approximation in ¢, the solution
to Eq. (1) is given by

1;Z) 1A (1_2) eiw1t_aA3eiw2t+aAei(2w1—wg)t
— 2 3

,¢1 ~ (A—i) eiwgt_aeiw1t+aA26i(2wg—w1)t
24 ’
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Fig.2. Temporal evolution of the amplitude of a stable
shock wave; A = 3, ¢ = 0.08; step-like excitation

where

(A2 —1)2 — 2¢(1 + 42)

a =

and the oscillation of each site in the transition region
is determined by a combination of three frequencies.
Other combinations of the background frequencies w;
and we appear only as higher-order terms in ¢ and do
not significantly contribute to the dynamics of this SLS.
Two constraints must be satisfied for solution (3) being
valid, namely, | 43| < 1 for |A] > 1 and |a| < |A| for
|A] < 1.

We also mention that the limit A — 1 requires tak-
ing the second-order terms in ¢ into account. The trans-
formation a — «(1=c¢), where the respective signs «+»
and «—» correspond to the second and third terms in
Eq. (3), provides a more accurate solution in this case.
Without loss of generality, we consider the case where
|A| > 1, thereby normalizing with respect to the lower
background amplitude.

We performed numerical experiments to prove the
existence and to probe the robustness of this new SLS.
We directly integrated Eq. (1) using solution (3) as the
initial condition. The results have shown that the soli-
ton can be easily excited. Moreover, the solution is
very robust against rather strong perturbations of the
initial conditions. We used a step-like profile

fa=(.. 1,11, A, A A, ...

for excitation and obtained the robust propagation dis-
played in Fig. 2. A zoomed picture of the amplitude
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and phase evolution of the two sites in the transition
region is shown in Fig. 3, where an excellent agreement
between analytical (Eq. (3)) and numerical results can
be recognized. However, this SLS exists only in a re-
stricted domain in the parameter space because for A
approaching AL — 1+ \/c + ¢3/%/8, the approximate
solution diverges, see Eq. (3). For example, if ¢ = 0.08,
then A 1.29. Indeed, the numerical integration
of Eq. (1) with the step-like initial condition reveals a
rapid decay of the initial excitation even for A = 1.45
(Fig. 4). This behavior can be easily explained by re-
alizing that, e.g., for n = —1, the ratio of the am-
plitudes oscillating at ws, and w; amounts to approxi-
mately 0.35. Thus higher-order terms become essential
and evoke the SLS decay. If we require that this ratio
should be of the order of ¢, we can estimate the SLS
robustness domain. The condition aA4® ~ ¢ < 1 gives
the approximate threshold value of the amplitude A as
Ay, 2 1.9+ c. For A > 1.9, one can therefore expect
a robust SLS behavior that has been confirmed by our
numerical simulations.

~
~

ASYMMETRIC DARK SOLITONS

Following the same approach, we can find an odd
solution that takes form

w71 ~ (1 _ g) eiw1t7

,¢0 ~ Ceiwlt _ Eeiwgt (4)
A I

P~ (A — i) eiwzt,

To our best knowledge, the solution represents the first
example of an asymmetric dark soliton (Fig. 1b) ex-
hibiting a strong intrinsic phase dynamics. Numerical
solution of Eq. (1) with initial condition (4) proves the
robustness of the solution. Although both amplitudes
with n = 0 are small, the presence of two frequency
components is essential, because the backgrounds in-
teract via the excitation at n = 0. Precisely this in-
teraction affects the stability of the dark soliton. The
existence domain of this mode depends on the coupling
constant ¢ and the ratio of the background amplitudes
A. If the backgrounds are separated by more than two
lattice constants, wide solitons form. In fact, such soli-
tons can be viewed as two noninteracting discrete front
waves reported recently [7].

Whereas the canonical case where A = —1 has been
investigated previously and both even and odd dark so-
lutions have been found [8, 9], the case where A =1
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Fig.3. Amplitude oscillations and phase evolution of the excitations in the shock wave transition region: a) n = —1;

b) n = 1; the parameters are as in Fig. 2. The solid lines show analytical results (3) and the dashed lines correspond to the
numerical integration of Eq. (1)

provides a new type of solutions, namely symmetric
dark solitons without a phase jump in the center repre-
senting a genuine dark soliton with regard to the am-
plitude. This particular solution has no intrinsic phase
dynamics, i.e., all excitations oscillate with frequency
w = 2¢ + A. There are odd,

’l/)_l = ’l[)l ~ (1 — %) ei“t, wo ~ —2C€iwt7 (5)
and even,
c\ )
b=t x (1= 2) e oy = m—ce, (6)
solutions.

Because asymmetric dark soliton (4) is a fairly ex-
otic object, it is worthwhile to probe its stability by the
linear stability analysis. Introducing a complex pertur-
bation at each site via ¢, — 9, + €, and linearizing
Eq. (1) with respect to perturbations €,, we obtain the
set of equations
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1€_o —2€_o +ce_1 — ei262’“1t =0

i€_1 —2(1 —c)e—y +c(eg +€—2) —
— (1= ¢)er et = 0,
iéop +cle_1 +€1) =0,
iér —2(A% — c)er +

+ c(eg + €2) — (A% —¢)

iéy — 2A%€y + cey — A%ese? 2t =

)

*

61621w2t =0

b

where only the sites that belong to the transition region
and one site from each background were taken into ac-
count. Nevertheless, this set of equations can be easily
extended to any number of background sites.

The approach successfully used in studying the sta-
bility of bright SLSs [4] cannot be applied here, be-
cause the coefficients in Eqgs. (7) depend explicitly on
the evolution variable. We therefore follow a different
procedure to tackle the stability issue of multifrequency
localized structures. In doing this, we introduce the
Fourier transform of the perturbations,
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62
- <Q — 2= m) (6= 2wn)
—C(I)Q(Q - 20.)2) = 0, (13)

Fig.4. Temporal evolution of the amplitude of an un-
stable shock wave; A = 1.45, ¢ = 0.08; step-like exci-
tation

*
677,

€n =

F,(Q)e’taq, 3, (Q)edQ,

70 /oo
where ®,(Q) = F¥(—Q), and rewrite Eqs. (7) in the

frequency domain. We eliminate functions ®y and Fj
and reduce the total number of equations to eight,

(2—|—Q)F_2(Q) +<I>_2(Q—2w1) —CF_l(Q) = 0, (8)

F 5(Q) — (Q—40)® 5(Q — 2w;) —

— C‘b,l(Q - 2&)1) = 0, (9)

2

—eFo(Q) + <2 ~2e— % + Q) Foi(Q) +

2

F (1= )81 (Q - 2w;) — %Fl(ﬁ) =0, (10)
—CQ,Q(Q — 2(,«)1) + (]. — C)Ffl(Q) +
C2
+ <20— QO+ m) ‘I>,1(Q — 2&)1) +
C2
+m‘1)l(Q —2w;) =0, (11)
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—CF1(0)+(Q+2A2)F2(Q)+A2‘P2(Q—2a&) = 0, (14)

- C(I)l(Q - 20)2) + A2F2(Q) —

— (Q — 46)@2(0 - 2&)2) = 0., (15)

where all functions with shifted arguments must be con-
sidered as independent. A complete set of these equa-
tions contains an infinite number of equations for the
functions F, (Q2—2lw;), F,,(Q—2lws), ®,(Q2—2lwy), and
D, (Q—2lws) withn = £1,+£2and [ =0,1,2,3... This
fact is not surprising because Eqs. (7) explicitly depend
on time, and therefore, their solutions contain all har-
monics of the background frequencies wy and w2, The
terms with denominators in Eqs. (8)—(15 ) are responsi-
ble for higher harmonics. They are of the second order
in ¢ and could therefore be omitted. The reason to keep
them is to account for possible resonances that appear
as any denominators approaches zero, i.e., as @ — 0,
Q—2w; — 0, 2 —2ws — 0. Outside the resonance
regions, these terms can be omitted and Eqs. (8)—(15)
reduce to two sets of four closed equations allowing the
solution of the respective eigenvalue problem. The so-
lution reveals that all eigenvalues are real, i.e., the SLS
is stable. Thus, only the resonance regions are poten-
tially responsible for the onset of instability. To treat
the set of equations (8)—(15), one needs to close it by
truncating to a finite number of equations. To proceed
in this way, we note that only the terms ®; (2 — 2lwy)
n (11) and ®_1(2 — 2lws) in (13) introduce new fre-
quencies into the system. A more thorough analysis
of Egs. (8)—(15) shows that it is not necessary to con-
sider these harmonics in the first-order approximation
in ¢ because the amplitudes of these oscillations are
of a higher order in c. In seeking the instability gain
Im Q; ~ ¢, we can therefore drop these terms. We then
obtain eight closed equations with the coefficients that
depend nonlinearly on the eigenvalue ). The corre-
sponding eigenvalue problem represents a polynomial
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Fig.5. Amplitude evolution of discrete dark solitons: a) stable asymmetric dark soliton, A = 1.4, ¢ = 0.065; b) unstable
asymmetric dark soliton, A = 1.4, ¢ = 0.1; c) stable symmetric dark soliton, A = 1, ¢ = 0.07; d) unstable symmetric dark
soliton, A=1, ¢=0.1

of the 11th order possessing complex solutions in some
domains of the parameter space (¢, A). We found that
complex eigenvalues appear for ¢ > c¢qp1(A). Our anal-
ysis also revealed the existence of stability windows for
Ceran(A) < ¢ < Cerant1(A), where n = 1,2,.... As
was shown recently [10], the existence of such windows
is due to the finite size of the system used for model-
ling. The windows tend to disappear with an increas-
ing number of lattice sites. With additional sites taken
into account, we indeed observed this phenomenon. We
note that the results obtained also hold for symmetric
dark soliton (5).

Thus, we conclude that both asymmetric and sym-
metric dark solitons destabilize provided the linear cou-
pling exceeds the threshold ¢ = ¢.,.1 (A). It is important
to note that the value c.,;(A) slightly depends on both
the number Ny of sites regarded for the stability anal-
ysis, provided Ny > 5, and the ratio of the background
amplitudes A. This value can be calculated with a
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good accuracy by taking five sites into account. To im-
prove the accuracy, we also considered the case of seven
sites involved. The result obtained was cq»1 ~ 0.085.
A direct numerical integration of Eq. (1) confirms this
prediction. Representative examples are displayed in
Fig. 5 for A = 1.4 (asymmetric dark soliton) and A =1
(symmetric dark soliton without a phase jump). Fi-
gures 5a and 5c exhibit stable propagation below the
critical coupling (¢ < ¢.p1), whereas the solitons decay
beyond that threshold (¢ = 0.1 > ¢qp1), which is in
agreement with the linear stability analysis (Figs. 5b
and 5d).

In conclusion, we have shown that new types of
solitons, not reported before in the literature, may
exist in nonlinear lattices described by the discrete
nonlinear Schrédinger equation. These solitons are
shock waves with a finite background and asymmetric
dark solitons. They are peculiar in that they exhibit a
nontrivial intrinsic phase dynamics. Additionally, we
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found a symmetric dark soliton with the conventional
phase dynamics but without a phase jump in the

center.

A linear stability analysis and numerical

experiments revealed the domains of their robust
behavior.
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