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FORMATION OF HEAVY-FERMION STATESIN NON-FERMI-LIQUID IMPURITY SYSTEMSL. A. Manakova *RRC �Kur
hatov Institute�123182, Mos
ow, RussiaSubmitted 6 July 2000A me
hanism for the o

urren
e of heavy-fermion states in non-Fermi-liquid (NFL) metals with f -shell impu-rities is proposed. The impurity with an unstable valen
y is suggested to have the energy spe
trum 
onsistingof a deep f -level and quasi
ontinuum states (narrow band) in resonan
e with the Fermi energy. Depending onthe impurity 
on
entration, the single-site NFL states are generated by the two-
hannel Kondo s
attering forthe low 
on
entration (the �Kondo regime�) or by the s
reening intera
tion for a relatively high 
on
entration(the �X-ray edge regime�). It is shown that the NFL states are unstable against the s
attering of the NFLex
itations by ele
tron states of the narrow band. This s
attering generates additional narrow Fermi-liquid (FL)resonan
es at/near the Fermi level in the �Kondo regime� and in the �X-ray edge regime�. The mixed-valen
estates are shown to be indu
ed by new FL resonan
es. The mixed valen
y me
hanism is lo
al and is relatedto the instability of single-site NFL states. The FL resonan
es lead to the existen
e of additional energy s
alesand of pseudogaps near the Fermi level in the mixed-valen
e states. They also 
onsiderably narrow the regionwith a nearly integer valen
y.PACS: 72.10.Fk, 72.15.Qm, 73.20.-r1. INTRODUCTIONAt present, intermetalli
 
ompounds with thef -shell atoms Ce or U are an important 
lass of alloysin whi
h the NFL behavior is observed (see [1; 2℄ fora review). The anomalous temperature dependen
esof their linear spe
i�
 heat, magneti
 sus
eptibility,and resistivity strongly support the NFL s
enario.The Ce and U ions 
arry magneti
 dipole or ele
tri
quadrupole moments that intera
t with the spins and
harges of the 
ondu
tion ele
trons, thereby givingrise to the Kondo e�e
t and the NFL behavior at lowtemperatures. The f -ele
tron 
ompounds of interesthave been alloyed with nonmagneti
 elements (witha few possible ex
eptions) [2; 3℄. The thermodynami
measurements eviden
e in favor of the quadrupoletwo-
hannel Kondo model introdu
ed in [4℄. We notethat a

ording to photoemission spe
tra, the U-based
ompounds look mu
h more like the mixed-valen
eones (see referen
es in [5; 6℄). Re
ently [7℄, it wasshown that the temperature behavior of the spe
i�
*E-mail: manakova�kurm.polyn.kiae.su

heat and magneti
 sus
eptibility is governed bynonuniversal power-law dependen
es for a relativelyhigh 
on
entration of the f -shell atoms.Taking the foregoing into a

ount, it would behighly desirable to have the uni�ed treatment involvingthe explanation of two essential fa
ts:(1) the 
oexisten
e of the single-ion two-
hannelKondo e�e
t and the mixed-valen
e state;(2) the possibility of non-universal power-law en-ergy dependen
es on the parameters.It should be noted that the role of instabilities of theNFL states in forming the heavy-fermion (HF) stateshas not been 
ompletely 
lari�ed. At the same time,it is well known that the single-ion NFL state is un-stable against any perturbation that eliminates the or-bital or spin degenera
y of the impurity. Two instabil-ity me
hanisms are presently known in the two-
hannelquadrupole and orbital Kondo model. In [4℄, the insta-bility is indu
ed by the Jahn�Teller distortions of theimpurity site. The se
ond me
hanism [8℄ attributes theinstability to the 
hannel anisotropy. As shown in [9℄and [10℄, there o

urs a new physi
al realization of thetwo-
hannel quadrupole Kondo model and of the NFL450
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attering generated by thetunnel pro
ess in the doped size-quantized stru
tures.The physi
al reason of the instability is the existen
e ofthe additional narrow FL resonan
es indu
ed by tun-neling.For a metal 
ontaining orbitally degenerated deepimpurity states, it was shown in [11℄ that the NFL state
an be unstable against the s
attering of the multipar-ti
le ex
itations having di�erent z proje
tions of thequadrupole moment.In this paper, we propose a new me
hanism forthe o

urren
e of HF states in NFL metals with thef -shell impurities. We assume that a spe
i�
 featureof atoms with an unstable valen
y is the energy spe
-trum that 
ontains two un�lled shells: the orbitallydegenerate deep f -level states and the atomi
 quasi-
ontinuum states (narrow band) near the Fermi level.As shown below, the s
attering of the NFL ex
itationsby atomi
 quasi
ontinuum states, whi
h is potential inits 
hara
ter, generates additional FL resonan
es nearthe Fermi level. Along with the NFL ex
itations, newFL resonan
es form an additional bran
h of heavy-fermion states with the 
hara
teristi
 energy that ismu
h smaller than the width of the NFL resonan
e(even in the 
ase of the Kondo e�e
t). New FL res-onan
es generate the mixed-valen
e state. The hea-vy-fermion states have a lo
al origin within the treat-ment proposed below.In 
on
lusion, we brie�y dis
uss the temperaturetransitions within the proposed framework and the roleof single-site NFL �u
tuations in the �
on
entrated�heavy-fermion systems.2. THE IMPURITY MODEL AND THESCATTERING PROBLEM FOR ANINTERACTING SYSTEM2.1. It is 
ommonly known that an ion with un�lledd- or f -shells partially retains its atomi
 properties ina 
rystal. This is possible due to the presen
e of a 
en-trifugal barrier separating the region A in whi
h theatomi
 for
es a
t from the region B where the latti
epotential a
ts. The height of the barrier is 
ompara-ble to other 
hara
teristi
 energies of the system, i.e.,the Fermi energy and the interatomi
 intera
tion en-ergy. The typi
al energy spe
trum of lanthanide anda
tinide ions with an unstable valen
y seems to 
ontainquasilo
al deep f -levels together with the quasi
ontin-uum states under the 
entrifugal barrier. The atomi
quasi
ontinuum may be formed by the d-shell states be-ing in resonan
e with the 
ondu
tion band states at the

f2
f1

(�3)
(�7)

B-band"F = 0A-bandU
A-region B-region

d-states
Fig. 1. The initial ele
tron spe
trum. A and B are theimpurity region and the 
ondu
tion band, respe
tively,U is the Hubbard repulsion. The A-band 
onsists ofthe impurity states in resonan
e with the Fermi levelFermi level. A similar impurity model with a highly de-generate f -level was also 
onsidered in [12℄. The initialele
tron spe
trum before mixing is depi
ted in Fig. 1.The Hamiltonian of the system is given byH = HA +HB +HAB ; (2.1)where HB and HA are the Hamiltonians of the 
ondu
-tion band and of the impurity region. The HamiltonianHAB des
ribes the hybridization Hh and the s
atteringHs
 between ele
tron states of the 
ondu
tion band andthe impurity region. The Hamiltonian of the impurityregion is given byHA = Hf0 +Hd0 +HfU ;where Hf0 is the Hamiltonian of the deep level, HfU isthe Hubbard repulsion, and Hd0 is the Hamiltonian ofthe narrowA-band. In what follows, we do not 
onsiderthe intraband intera
tions assuming that they are weak
ompared to the intera
tion between the deep level andthe band ele
trons. Therefore, Hd0 is the Hamiltonianof the nonintera
ting d-ele
trons. It is also assumedthat the d- and f -shells are not mixed in the impurityregion. We start from the low-lying ele
tron 
on�gura-tion of the isolated ion and then take the mixing withthe 
ondu
tion ele
trons into a

ount in the spirit ofthe Anderson model with two un�lled shells.We 
onsider the situation where the deep level isa �3 quadrupole (non-Kramers) doublet of the 
rystal�eld intera
ting with the �8 quartet of the 
ondu
-451 15*
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trons. However, we emphasize that the me
h-anism proposed here 
an be applied for all 
ompoundsin whi
h the symmetry allows the lo
al quartet of 
on-du
tion states to 
ouple to the two-fold degenerate leveland an additional potential s
attering of the multipar-ti
le ex
itations exists.For U-based 
ompounds, the �3 doublet in the 5f2
on�guration is formed as a result of splitting the multi-plet with the total moment J = 4 with the 
ubi
 
rystal�eld. The �3 doublet has an ele
tri
 quadrupole mo-ment and no magneti
 dipole moment. The quantumnumbers of the �3-level ele
tron are the numbers oflines � for the irredu
ible representation of the pointgroup ��3 = �1. The two quantum number values� = �1 
orrespond to the proje
tions of the quadrupolemoment on the z-axis, i.e., Qzz = �8.The multiparti
le 
on�guration of the un�lled shellis denoted by jn;�i, where n indi
ates the number ofele
trons and � is the set of quantum numbers 
hara
-terizing the 
on�guration.For relatively large values of the Hubbard repulsionin the absen
e of hybridization, the ground state 
on-�guration of the ion U4+ is the singly o

upied �3 dou-blet with the ele
tron 
on�gurations j1;+1i and j1;�1iand the energy Ef . The ele
tron 
reation operatorsand ele
tron numbers 
orrespond to the singly o

u-pied states:f+�=+1 = j1;+1ih0; 0j; f+�=�1 = j1;�1ih0; 0j;nf� = f+� f�; X� nf� = 1;Hf0 =Xn;� En;�jn;�ihn; �j �X� Ef�f+� f�;HfU =X��0 U��0nf�nf�0(1� Æ��0): (2.2)

The �3 states are hybridized with the partial 
on-du
tion band waves having the total angular momen-tum j = 5=2. Taking the splitting of the j = 5=2 multi-plet by the 
ubi
 
rystal �eld into a

ount amounts tothe transition from the angular momentum represen-tation to the irredu
ible representations of the pointgroup of the 
rystal. The latter representation hasthe quartet �8 that 
an be hybridized with the �3doublet. The �8 quartet possesses two groups of thestates: �(+)8 , �(�)8 with �(+)8 = j�8; 2i; j�8; 1i and�(�)8 = j�8;�2i; j�8;�1i. The groups �(+)8 and �(�)8
orrespond to di�erent signs of jz. Di�erent signs ofjz 
orrespond to di�erent sings of the spin proje
tion�z . In addition, the states j�8;�2i and j�8;�1i havethe respe
tive z 
omponents of the quadrupole momentQzz = �8.In other words, the quartet �8 of partial waves de-
omposes into the tensor produ
t �3
�7. It is thereforedes
ribed by a 
ombination of the �orbital� (�3) andthe �spin� (magneti
) (�7) indi
es.The partial states of the 
ondu
tion ele
trons mixedwith the �3 doublet 
an therefore be 
lassi�ed by thequantum numbers j"; 
; �i, where " = vF k�"F , with kbeing the wave ve
tor modulus and "F being the Fermienergy. In what follows, we 
hoose the position of theFermi level as zero. The quantum number 
 = 2, 1 � �
orresponds to the two values of the quadrupole mo-ment within the groups �(+)8 and �(�)8 ; the magneti
quantum numbers � = � distinguish the respe
tivegroups �(+)8 and �(�)8 . The operators a+B��(") des
ribethe states j";�; �i in the B-band.In terms of these states, the hybridization Hamilto-nian
Hh =Xk�n X�n+1�n �V f�n+1�n�(k)a+B�(k)jn+ 1;�n+1ihn;�nj+H.
.� ;where a+B�(k) 
reates the 
ondu
tion band ele
tron with the spin � and the wave ve
tor k, 
an be written asHh =X�� +1Z�1 d"�0B(")�V f��(")a+B��(")f� +H.
.� : (2.3)Here, �0B(") is the density of states (DOS) in the B-
ontinuum, the terms with V f��0�("), � 6= �0, are ne-gle
ted be
ause of the 
ubi
 symmetry, and the matrixelements V f���(") are denoted by V f��(").In �nding the intera
tion Hamiltonian in what fol- lows, it is signi�
ant that be
ause of the band statesymmetry, the hybridization matrix elements V f��(")are nonzero for both 
omponents of the �3 doubletwith � = �1. This means that the matrix elements452



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :V f�n+1�n�(k) are spatially nonlo
al. We additionallyassume the hybridization matrix elements to be inde-pendent of the sign of the z 
omponent jz of the totalmomentum j, i.e., V f�� � V f� .The Hamiltonian HAB in Eq. (2.1) also involves thes
attering between ele
tron states of the A- and B-bands. In terms of the partial states, the s
atteringHamiltonian is given byHs
 =X�� +1Z�1 d"�0A(")�� +1Z�1 d"0�0B("0)TAB�� ("; "0)a+A��(")aB��("0); (2.4)where the operators aA��(") des
ribe the states in theatomi
 
ontinuum (A). The s
attering with � 6= �0 isabsent be
ause of the 
ubi
 symmetry. We assume thatthe s
attering matrix elements as well as the hybridiza-tion ones are independent of the quantum number �.In de�ning the NFL states, it is important to a
-
ount for the splitting of the f doublet ground statedue to a lo
al deviation from the 
ubi
 symmetry atthe impurity site. In the Hamiltonian, the splitting isdes
ribed by the termH� = ��̂zf : (2.5)Be
ause the Hubbard repulsion U is the largest param-eter in the problem, it is 
onvenient �rst to take the ef-fe
tive intera
tion indu
ed by U into a

ount and thento use the multi-parti
le states as a basis for solving thes
attering problem. As shown below, the system de-s
ribed by the Hamiltonian H in (2.1) has two physi
alme
hanisms generating singularities at/near the Fermilevel. The Hubbard repulsion U generates the e�e
tiveintera
tion between 
ondu
tion ele
trons and the deeplevel. This intera
tion indu
es an NFL resonan
e atthe Fermi level in the B-band. The s
attering of themultiparti
le ex
itations in the 
ondu
tion band by theele
tron states of the A-band generated by Hs
 resultsin the formation of additional Fermi-liquid (FL) reso-nan
es near the Fermi level.2.2. In the system with the Hamiltonian H , the ex-
itations are 
ompletely des
ribed by the Green's fun
-tion Ĝf�(z) = hf�j(z � Ĥ)�1jf�i:Be
ause the energy U is dominant, it is essential toproperly treat 
orrelations on the site. To 
al
ulateĜf�(z), we use the method of the equations of mo-

tion [19℄ that 
orre
tly a

ounts for these on-site 
or-relations. This givesĜf�(z) = Ĝ0f�(z)1��A�(z)�B�(z)D̂AB� (z) ; (2.6)where Ĝ0f�(z) = hz � "f � �̂hB�(z)i�1is the Green's fun
tion of the intera
ting system with-out s
attering; we then haveD̂AB� (z) = 1��s
A�(z)ŴB�(z);ŴB�(z) = �s
B�(z) + �s
B�(z)�s
�B(z)Ĝ0f�(z):Equation (2.6) implies that the full Green's fun
tionĜf�(z) has features of two types. The fun
tion Ĝ0fr�(z)des
ribes the 
ontributions of the multiparti
le reso-nan
es at the Fermi level due to the intera
tion be-tween the 
ondu
tion ele
trons and the deep level. These
ond fa
tor in Eq. (2.6) is generated by the s
at-tering of the multiparti
le ex
itations via the atomi
quasi
ontinuum states. The s
attering results in addi-tional singularities, namely, simple poles near the Fermilevel. The pole positions are determined by the equa-tion D̂AB� (z) = 0. The self-energy fun
tions �hB�(z)and �s
��(z) with � = A;B are expressed as spe
tralexpansions of multiparti
le Green's fun
tions of the A-and B-bands,�s
��(z) = jT �� (0)j2Xp 1z � "�(p) == jT �� (0)j2 Z d"��(")f(")z � " ;�hB�(z) = jV f� (0)j2 Z d"�B(")f(")z � " ; (2.7)where "�(p) is the ex
itation spe
trum at the Fermilevel, ��(") is the DOS 
orresponding to this spe
trum,and f(") is the Fermi fun
tion. In Eqs. (2.7), it is as-sumed that V f� (") � V f� (0) and the s
attering matrixelements are separable:TAB�� ("; "0) � TAB(0; 0) = TA� (0)TB� (0);where TA� (0) is dimensionless.Without the intera
tion, we have ��(") = �0� andĜ0f�(z) = [z � �"f� � i
f�℄�1, where �"f� is the energyof the deep level renormalized by the hybridization and
f� is the width of this level. In this 
ase, both Ĝ0f�(z)and �0��(z) have no singularities near the Fermi level.In the intera
ting system as U ! 1, we are inter-ested in the 
ase where the dominant e�e
t of the in-tera
tion is the generation of a multiparti
le resonan
e453



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001(the fr-level) near the Fermi level. The Green's fun
-tion Ĝ0fr�(z) of this resonan
e must then be insertedin Eq. (2.6). The multiparti
le peaks in Ĝ0fr�(z) at theFermi level determine the properties of the DOS �B(")and of the self-energy fun
tions �s
;hB� (z).To obtain the density of states at the Fermi levelin the intera
ting system, the following 
onsideration
an be used. It is known [19℄ that the exa
t Green'sfun
tion of the 
ondu
tion ele
trons in the impurityAnderson model is given by (in our notation)G��(k; k0; z) = Æ��0Æ��0Æ(k � k0)G0��(k; k0; z) ++G0��(k; z)V f��� (k)G(0)f��(z)V f��(k0)G0��(k; z); (2.8)whereG0��(k; z) is the Green's fun
tion of nonintera
t-ing ele
trons (in a

ordan
e with the de�nition givenabove, the variables k and " are identi
al). Be
auseof the symmetry properties, the fun
tion G(0)f��(z) 
anhave only diagonal 
omponents. The Green's fun
tionof an impurity state G(0)f��(z) involves all the intera
-tions indu
ed by the Hubbard repulsion U . Near theFermi level, the multiparti
le resonan
e Green's fun
-tion Ĝ0fr�(z) must be inserted in Eq. (2.8). Thus,the DOS of multiparti
le ex
itations at the Fermi leveltakes the form�B(")� �0B(") = � 1�A� Im Sp Ĝ0fr�("); " > 0;where A� / 
B�0B , 
B � P� 
B� and 
B� �� jV f� j2�0B .With the foregoing taken into a

ount, the 
ompletesolution of the s
attering problem requires determiningthe main intera
tion and 
al
ulating the Green's fun
-tion Ĝ0fr�(z).3. THE INTERACTION HAMILTONIAN ANDTHE NON-FERMI-LIQUID STATE3.1. To derive the e�e
tive intera
tion between thedeep f -doublet and the 
ondu
tion ele
trons, we sup-pose that for relatively large values of the Hubbard re-pulsion, the ground state 
on�guration of the ion U4+is the singly o

upied �3 doublet with the ele
tron 
on-�gurations j1;+1i, j1;�1i and the energy Ef . Takingvirtual transitions into the ex
ited states with the en-ergies E2 = 2Ef +U into a

ount and using either theproje
tion operator te
hniques or the S
hri�er�Wol�

transformation for the Hamiltonian HfU +Hf0 +Hh, weobtain the standard expressionHint = X��0��0 ZZ d"d"0�0B(")�0B("0)�� V��0 ("; "0)a+B��(")aB�0�0("0)f+� f�0 : (3.1)As U��0 !1, the matrix elements in Eq. (3.1) be
omeV��0 ("; "0) � V f�� (")V f�0("0)"f ; "F �Ef � "f :The doubly degenerate f -level 
ontaining one ele
-tron 
an be 
onveniently des
ribed in terms of the pseu-dospin variable �̂f . The proje
tions of the pseudospinoperator �̂f on the 
oordinate axes 
oin
ide with the
omponents of the quadrupole moment tensor. Theproje
tion �̂zf � Qzz on the z axis has two values 
or-responding to the o

upation of the di�erent orbitalsof the doublet. The operator �̂xf / J2x � J2y inverts thepseudospin, and we 
an therefore write�̂ if = X��0=�1 f+� �i��0f�0 ;where �i are the Pauli matri
es.The index � = � is magneti
, and therefore, it
annot 
hange under the s
attering by the ele
tri
quadrupole moment of the impurity nonmagneti
 �3doublet des
ribed by (2.4). In other words, for Hamil-tonian (2.4) to possess the time reversal property, thequantum number � must be 
onserved during thes
attering. The s
attering pro
esses 
hange only thestates belonging to the same group (�(+)8 or �(�)8 ) andthese states form a representation for the pseudospin�̂f = 1=2.The time reversal symmetry therefore guaranteesthe transfer from Hamiltonian (2.4) to the two-
hannelquadrupole ex
hange Hamiltonian with the 
hannel in-dex �,Hint = X��0� Xi=x;y;z ZZ d"d"0�0B(")�0B("0)�� Vi("; "0)a+B��(")�i��0aB��0("0)�̂ if ;Vi("; "0)�i��0 � V��0 ("; "0): (3.2)Be
ause the hybridization matrix elements are 
om-plex in general, Eqs. (3.1) and (3.2) 
ontain the terminvolving �̂yf along with the term involving �̂xf . Weare interested in the 
ase where the dominant e�e
t ofthe intera
tion is the generation of a multiparti
le res-onan
e at the Fermi level. The Green's fun
tion 
or-responding to this resonan
e 
an be 
al
ulated using454
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ing the HamiltonianH0 to the resonan
e-level model proposed in [14℄. Toredu
e the Hamiltonian H0 = H00 + Hint + H� withthe two-
hannel ex
hange in Eq. (3.2) to the resonan
e-level model, it is 
onvenient to rewrite H0 asH0 = ivF X��0� +1Z�1  +��(x)�x ��(x) ++ 12X�� Xi=x;y;z Vi +��(0)�̂i��0 �0�(0)�̂ if +��̂zf ; (3.3)where  ��(x) = +1Z�1 dk eikxaB��(k)and  ��(0) =  ��(x = 0):The bosoni
 representation of the fermion �elds ��(x) takes the form ��(x) = �̂�� e�i���(x)(2�a)1=2 ; �̂2�� = 1;���(x) = (�)1=2 24 xZ�1 dx0P��(x0) + '��(x)35 ; (3.4)where '��(x) is the boson �eld, P��(x0) is the 
anon-i
ally 
onjugate momentum, ['��(x); P�0�0(x0)℄ == iÆ(x � x0)Æ��0Æ��0 , and a is the latti
e 
onstant.The operators �̂�� ensure the anti
ommutation rela-tions between di�erent spe
ies of fermions. The boson�elds '��(x) and P��(x) 
an be rewritten in terms ofthe 
olle
tive variables that are introdu
ed by meansof the 
anoni
al transformation of '��(x) and P��(x):'
;f = 12[('11 + '12)� ('21 + '22)℄;'s;(sf) = 12[('11 � '12)� ('21 � '22)℄: (3.5)Similar expressions 
an be written for the 
onjugate�elds P��(x), �; � = 1; 2. The Fourier 
omponentsof the boson �elds k1=2'l(k) 
orrespond to the 
harge(
), �avour (f), pseudospin (s), and mixed (�avour-quadrupole, sf) density operators �l(k). The �avour isgenerated by the 
hannel index �.In terms of the 
olle
tive bosoni
 variables, the spin-less fermion 
olle
tive �elds are given by l(x) = e�i�l(x)(2�a)1=2 ; l = 
; f; s; (sf): (3.6)

The Hamiltonian H0 
an be represented as a sum offour terms 
orresponding to the four spinless fermion
olle
tive 
hannels. The 
harge and �avour 
hannelsare not 
oupled to the impurity pseudospin. The other
hannels give the following terms in the HamiltonianH0 = H00 +Hint +H�:H00 = ivF Xl=s;(sf) +1Z�1 dx +l (x)�x l(x);Hint +H� = Vx(2a�)1=2 [ +sf (0) +  sf (0)℄�̂xf ++ ~Vz +s (0) s(0)�̂zf +��̂zf ; ~Vz � 2(Vz � �vF ): (3.7)The Hamiltonian in Eq. (3.7) 
orresponds to theresonan
e-level model that yields a multiparti
le reso-nan
e (the fr level) at the Fermi level. The fr level 
anbe des
ribed in terms of the fermion operators d+ andd 
oupled to the pseudospin operator �̂f via the Ma-jorana representation: d+ = �̂+f �̂, �̂zf = d+d � (1=2),where �̂ is the Majorana (real) fermion operator su
hthat �̂2 = 1. The Green's fun
tion Ĝ(0)fr (z) of the reso-nan
e level 
ontains the anomalous 
omponents / hddiand / hd+d+i in addition to the normal 
omponents/ hdd+i be
ause the number of fermions is not 
on-served in the models des
ribed by Eq. (3.7).3.2. It is known [15; 16℄ that the two-
hannel modeldes
ribed by Eqs. (3.3) and (3.7) has two regions withessentially di�erent physi
al properties depending onthe relation between TK and �, where TK is the expo-nential Kondo temperature.We 
onsider the region of the parameters where theKondo physi
s plays the key role. This 
ase is referredto as the �Kondo regime� in what follows. It o

ursunder the 
ondition TK � �: (3.8)In this 
ase, the model des
ribed by (3.7) renormalizesto the strong 
oupling limit [15; 16℄. In this limit, thequantites �K = ��0BV 2x and � renormalize to TK and�2=TK , respe
tively. The �xed point lies on the line~Vz = 0 [8℄ (the Emery�Kivelson line) and the s
reen-ing intera
tion is not essential for small energies. Thequantity TK is de�ned on the Emery�Kivelson line anddepends on Vx only. For this reason, the parametersTK and � are independent. The NFL state is gener-ated by the impurity degrees of freedom that are nothybridized with the 
ondu
tion ele
trons [14; 17℄. Nearthe Fermi level at T = 0, the Green's fun
tion be
omesĜ(0)fr (z) = � � �̂0 � �̂xz ��K(z) + �̂0 + �̂xz � ; (3.9)455



L. A. Manakova ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001where �K(z) is the self-energy part determined by thehybridization term in Eq. (3.7), and � 
orresponds toRe(z)><0. As usual, the exponential pole at jzj / TKin the �rst term of Ĝ(0)fr (z) has the exponentially smallresidue ZK / exp(�"�3=
B), TK / "FZK .On the other hand, under the 
onditionsTK � �; ~Vz � Vx;y; (3.10)the model does not renormalize to the strong 
ouplinglimit (or equivalently, to the �xed point at ~Vz = 0) forlow temperatures be
ause of a very weak renormaliza-tion of � [15℄. In this 
ase, the NFL state is gener-ated by the s
reening intera
tion in Eq. (3.7) and bythe non-hybridized impurity degrees of freedom. Thisme
hanism is referred to as the �X-ray edge regime�in what follows. In this 
ase, the hybridization o

ur-ring in the sf -
hannel 
an be treated as a perturbationof the ground state obtained at Vx = 0. At Vx = 0,the problem is solved exa
tly. To obtain the Green'sfun
tion Ĝ(0)fr (z) at Vx = 0, we use the te
hnique thatwas previously applied to the well-known problem ofthe X-ray absorption in metals.We �rst diagonalize the HamiltonianHs00+Hs+H�in (3.7) at Vx;y = 0. For this, we introdu
e the bosonoperators bsk = k�1=2�s(k) and b+sk = k�1=2�s(�k),where�s(k) = 1N1=2 kD�kXq=0  +s (q) s(q + k);�s(�k) = 1N1=2 kDXq=k +s (q) s(q � k); k � 0; (3.11)are density operators,  s(k) are Fourier 
omponents ofthe �elds  s(x), and the 
ut-o� o

urs at kD � a�1.Using the operators bsk and b+sk, we write the Hamilto-nian asHs00+Hs+��̂zf = vF Xk>0 kb+skbsk+~Vz �d+d�12���Xk>0� kN �1=2 (b+sk + bsk) + ��̂zf : (3.12)This is diagonalized by the 
anoni
al transformationUB = exp ~Vz�0B �d+d�12�Xk>0(kN)�1=2(bsk�b+sk)! :Under this operation, the HamiltonianHs00 +Hs +��̂zf is transformed to~Hs = vF Xk>0 k~b+sk~bsk + ~�� ~d+ ~d� 12� ; (3.13)

where ~d+ = UBd+U�1B � U0Bd+;~b+sk = UBb+skU�1B = b+sk + �0B ~Vz(kN)1=2 d+d;U0B = exp ~Vz�0BXk>0 bsk � b+sk(kN)1=2 ! ;~� = �� "U , and "U = ~V 2z �0B is the �polaron shift�.Equation (3.13) allows us to �nd the Green's fun
-tion of the resonan
e level,Ĝ(0)fr (t) = Ĝ(00)fr (t)hU+0B(t)U0B(0)iD; (3.14)where U0B(t) is derived from U0B(0) by the substi-tution bsk ! bskei"kt. In Eq. (3.14), h: : : iD denotesaveraging over the states of the diagonalized Hamilto-nian Hs00+Hs and Ĝ(00)fr (t) is the Green's fun
tion withthe s-
hannel intera
tion disregarded. The averaging isperformed in the standard way using the relationseÂeB̂ = eÂ+B̂+(1=2)[Â;B̂℄;he[F (b+;b)℄i = e(1=2)hF 2(b+;b)i;where F is an arbitrary linear 
ombination of bosonoperators. As a result, we �nd that at large times"F t� 1, the fun
tion in Eq. (3.14) is given byĜ(0)fr (t) � Ĝ(00)fr (t)t��s ; (3.15)where �s = (Æs=�)2 and Æs is the phase shift for thes
attering des
ribed by Hs in the pseudospin 
hannel.At Vx;y = 0, we use Eq. (3.15) with Ĝ(00)fr (t) / e�i ~�tto obtain the known expression for the Green's fun
tionG(0)fr (z) = A(�)�(1� �s)z � ~�  z � ~�W !�s ; (3.16)where A(+) = �1 and A(�) = (�1)��s forRe(z � ~�)><0, respe
tively, �(x) is the gammafun
tion, and W is the 
ut-o� parameter of the orderof the 
ondu
tion band width.We next re
all (e.g., from [23℄) that in
luding thehybridization Vx as a perturbation in the �X-ray edge�Hamiltonian, we re
over the previous �X-ray edge� re-sults with the energy shifted as i! ! i! + i�K sign!,�K = ��0FV 2x , in the resonan
e level Green's fun
tionĜfr . Within the framework of two-
hannel model (3.5),the width due to the hybridization appears only for ahalf of the impurity degrees of freedom �x�3 hybridizedwith the 
ondu
tion sf -
hannel.The same result 
an be obtained by writting Hamil-tonian (3.5) in terms of the hybridized states and then456
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onsidering the s
reening intera
tion for these states.One 
an readily show that additional intera
tions in-du
ed by the transition to the new basis are propor-tional to ~Vz(Vx=W ) and are therefore mu
h smallerthan the s
reening intera
tion. In the new basis, Hamil-tonian (3.7) is redu
ed under 
ondition (3.10) to aHamiltonian of the �X-ray edge� type. In the present
ase, the hybridization in Eq. (3.7) gives the level widthrelated to a half of the degrees of freedom of the impu-rities hybridized with the 
ondu
tion ele
trons.Using Eqs. (3.14) and (3.15) withĜ(00)fr � (�̂0 � �̂x)e�i( ~��i�K)t + (�̂0 + �̂x)e�i ~�t;we thus obtain Ĝ(0)fr (z) in the energy representation,Ĝ(0)fr (z) = A(�)�(1� �s)�� " �̂0 � �̂xz � ~�+ i�K  z � ~� + i�KW !�s ++ �̂0 + �̂xz � ~�  z � ~�W !�s# ; (3.17)where �K �W 
B1
B2"2f :Be
ause we 
al
ulate the retarded Green's fun
tion inEq. (3.17), we must have Im z < 0. If the radial partsof the wave fun
tions entering the matrix elements V f�are independent of �, we readily obtain
B1 � 
B2 = 
B ; �K �W 
2B"2f : (3.18)The power-law dependen
e o

urs in Eq. (3.17) under
onditions (3.10).It follows from (3.17) that the multiparti
le NFLresonan
e at the Fermi level is generated by the mixed�avor-quadrupole (sf) mode. The intera
tions in thepseudospin 
hannels having the s
reening 
hara
terlead to the e�e
tive broadening of the resonan
e level.The se
ond term in Eq. (3.17) is due to the impuritydegrees of freedom that are not hybridized with the
ondu
tion ele
trons.In 
on
lusion of this se
tion, we write the expres-sion for the DOS �B(") near the Fermi level. The mul-tiparti
le resonan
es at the Fermi level are des
ribed bythe Green's fun
tions in Eqs. (3.9), (3.17), and (3.16).These Green's fun
tions must be inserted in Eq. (2.8),after whi
h �B(") is derived. In parti
ular, inserting

Eq. (3.17) in Eq. (2.8), we �nd the DOS in the �X-rayedge� regime�B(")� �0B(") = � 1�A� Im Sp Ĝ(0)fr (") == A� Xi=1;2 sin �(1� �s) ar
tg �i"� ~��W�s [("� ~�)2 + �2i ℄(1��s)=2 ;" > 0; (3.19)where A� � 
B�0B . The widths �1 = Æ ! 0+ and�2 = �K 
orrespond to the two 
ontributions into theGreen's fun
tion Ĝ(0)fr in Eq. (3.17).In the Kondo regime, the DOS is determined byfun
tion (3.9).4. THE FERMI-LIQUID RESONANCES NEARTHE FERMI LEVEL4.1. The s
attering of the multiparti
le ex
itationsdue to the term Hs
 results in simple poles near theFermi level in the 
omplete Green's fun
tion Ĝf�(z) inEq. (2.6). The poles 
orrespond to new Fermi-liquidresonan
es. The positions z(�)r = "(�)r � i
(�)r of thepoles are determined by the equationDAB� (z(�)r ) = 1��s
A�(z(�)r )WB�(z(�)r ) = 0: (4.1)Be
ause this equation is the same for all terms ofthe matrix D̂AB� , the matrix indi
es are omitted inEq. (4.1).The expression for the Green's fun
tion (2.6) nearthe FL resonan
e with the energy zr� be
omesĜf�(") = F�1r zr�Ĝ(0)fr (zr�)"� ~�� zr� ; (4.2)where we expanded the denominator in Eq. (2.6) nearthe resonan
e energy as D(") = D0(zr�)(" � ~�� zr�),where D0(zr�) � Fr=zr� (with the indi
es of the de-nominator omitted at the moment) and Fr is a fun
-tion of the parameters of the order of unity. The energydependen
es of �hs
�� (z) in (2.6) are determined by theDOS ��("). In the model under 
onsideration, the fun
-tion �s
A�(z) has no features at the Fermi level, whi
hallows us to writeRe�s
A�(0) � �0A(0); Im�s
A�(0) = 0: (4.3)The self-energy fun
tions �s
B�(z) have the features
orresponding to the NFL peaks in the DOS �B(").In the Kondo regime, the main singular term ap-pears in �s
B�(z) be
ause of the Æ-like 
ontribution to457
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tral fun
tion indu
ed by the se
ond term in theGreen's fun
tion (3.9) as z ! "+ i0+. In other words,this singular term is due to the impurity degrees offreedom that are not hybridized with the 
ondu
tionele
trons. The self-energy �s
B�(z) takes the form�s
B�(z) � 
onst+ V f� TB�� 
B�0Bz : (4.4)In the �X-ray edge� regime, using the density ofstates in Eq. (3.19), we obtain the 
ontribution of theresonan
e levels to the self-energy fun
tion at zero tem-perature,�s
B�(z) � AB� (
B
B��0B) TB��V f�� !��� Wz � ~� + i�K�1��s (�1)�s�1; (4.5)where jAB�j � 1.In the Kondo regime, inserting (3.9) and (4.4)in (4.1) and taking the most singular term / 1=z3in WB�(z) into a

ount, we readily obtain two reso-nan
es above and below the Fermi level that o

ur dueto the s
attering of the non-hybridized impurity de-grees of freedom. The energies of these resonan
es aredetermined byjz(�)r jW = Ar (
A��0A)1=3 (
B�0B) ; (4.6)where Ar � 1 and 
A� = jTB� j2�0A. The resonan
ewidth above the Fermi level is mu
h smaller than theresonan
e width below the Fermi level. The formerwidth is determined by the terms in Eq. (4.1) that aremu
h smaller than the leading singular term / 1=z3.Therefore, the pseudogap exists near the Fermi levelfor j"(�)j � 
(�)r and for j"(�)j � 
(�)r .In addition, Eq. (4.1) has two solutions above andbelow the Fermi level with jz + i
K j � 
K . For thisreason, the shape and the width of the Kondo peak
hange weakly at the Fermi level. In parti
ular, thewidth of the Kondo peak has a small additional term� TK (
A��0A) (
B�0B)� TK due to the s
attering.The qualitative pi
ture of the DOS in the Kondoregime near the Fermi level is shown in Fig. 2. We seethat the FL resonan
es generate both the additional en-ergy s
ale 
r � TK and the pseudogap near the Fermilevel.We thus obtained the essential result that the s
at-tering of the non-hybridized impurity degrees of free-dom by the ele
tron states of the narrow band leads tothe existen
e of new resonan
es near the Fermi level.

2 2 2
(�)r 
(+)r�

"0"(�)r "(+)r 1
Fig. 2. The Kondo resonan
e (
urve 1 ) and new FL res-onan
es (
urves 2 ) show the respe
tive FL resonan
eswith j"�r j � 
�r and j"�r j � 
�rA

ording to the experimental data [2℄, there existsa 
on
entration region where the Kondo energy TK ex-ponentially in
reases with de
reasing the impurity 
on-
entration. At the same time, the hybridization matrixelements and, 
onsequently, the widths 
B and 
A� re-main approximately 
onstant in this region. We 
antherefore expe
t that the 
ondition jzrj � TK is sat-is�ed at su�
iently low 
o
entration of the impurityatoms.4.2. Using expressions (2.7) and (3.17), it is easyto verify that in the �X-ray edge� regime, Eq. (4.1)possesses solutions of two types with their energies sat-isfying the respe
tive 
onditionsjz(�)r j � �K ; the narrow resonan
es;jz(�)r + i�K j � �K ; the �wide� resonan
es:For simpli
ity, we here used the 
ondition~�� �K ; z(�)r :The signs ��� 
orrespond to the resonan
es above andbelow the Fermi level. For j"(�)r j � 
(�)r ; j
(�)r � �K j,the widths of the FL resonan
es are determined by
(�)rW = A1 �
A�
B��20B�1=(1��s) �� (
B�0B)2=(1��s)� "f
B��4 ; 
(�)r � �K ; (4.7)458
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Fig. 3. The NFL (
urves 1 ) and FL resonan
es in the �X-ray edge� regime: (a) the narrow resonan
es for j"�r j � 
�r ;(b) these resonan
es for j"�r j � 
�r
j
(�)r � �K jW = A2 �
A�
B��20B�1=3(1��s) �� (
B�0B)2=3(1��s) ; j
(�)r � �K j � �K ; (4.8)where A1;2 � 1. In this 
ase, the FL resonan
esmerge into a single weakly split resonan
e at the Fermilevel (Fig. 3b). For j"(�)r j � 
(�)r ; j
(�)r � �K j, theenergies j"(�)r j are determined by the expressions inthe right-hand sides of Eqs. (4.7) and (4.8) and by
(�)r = j"(�)r j sin' with ' � 1. In this 
ase, pairs ofthe FL resonan
es appear above and below the Fermilevel (Fig. 3a). Pairs of the FL resonan
es 
an existbe
ause the Green's fun
tion Ĝf�(z) has two bran
hesabove and below the Fermi level. For j"(�)r j � 
(�)r ,there are well-determined pseudogaps near the Fermilevel in the 
ase of the narrow resonan
es.Two types of the FL resonan
es 
orrespond to theexisten
e of the hybridized and non-hybridized impu-rity degrees of freedom. In parti
ular, the narrow reso-nan
es, whi
h determine a new small energy s
ale nearthe Fermi level, are generated by the interband s
at-tering of the non-hybridized impurity degrees of free-dom. In other words, the narrow resonan
es result frombroadening and displa
ement of the zero-width termin the spe
tral fun
tion Ĝ(0)fr (see the se
ond term inEq. (3.17)) due to the interband s
attering.Equations (4.7) and (4.8) imply that the FL reso-nan
es exist for the deep level ("f � 
B) under the
ondition


A�
B� � (
B��0B)2�6�s �W"f �6(1��s) ; (4.9)whi
h is the same for the resonan
es of both types.Condition (4.9) is satis�ed for all values of �s in thefollowing 
ases. First, for 
A� � 
B and su�
iently�shallow� f -levels su
h that
B � "f �W �
BW �(1�3�s)=3(1��s) ; (4.10)and se
ond, for 
A� � 
B and "f �W .On the other hand, the widths of the NFL resonan
eand, 
orrespondingly, the 
hara
teristi
 binding energyof the 
olle
tive states forming the NFL resonan
e 
anbe estimated as "K � �K � "F�K��s : (4.11)This estimate is derived from the NFL DOS inEq. (3.19). As �s in
reases, the binding energy "Kalso in
reases.The FL resonan
e 
an appear if the 
olle
tive statesde�ned in Eqs. (3.6) and (3.11) de
ay. Taking theforegoing into a

ount, we must bear in mind thatthe de
ay of 
olle
tive states be
omes more di�
ultas �s in
reases. Therefore, the stru
ture of the FLresonan
es near the Fermi level essentially dependson the magnitude of the parameter �s that des
ribesthe s
attering in the quadrupole (pseudospin) 
hannel.From the imaginary part of Eq. (4.1), we readily �ndthat the narrow resonan
es exist for �s � 3=5. For1=7 < �s � 1=3, the narrow resonan
es appear above459
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esare absent.In addition to 
ondition (4.9), we thus �nd that thenarrow FL resonan
es 
an exist when the pseudospin
hannel intera
tion ~Vz is not very strong.In the limiting 
ase where Vx;y = 0, the FL reso-nan
e exists above the Fermi level for �s � 1=3. Itsenergy is determined byjz(�)r jW � (
A��0A)1=(1��s) �� (
B�0B)1=(1��s) � 
B : (4.12)In the �X-ray edge� regime, the narrow FL reso-nan
es provide peaks in the DOS with the widths mu
hsmaller than those of the NFL resonan
e (see Fig. 3).Thus, their existen
e allows us to obtain a new me
ha-nism for the appearan
e of the small energy s
ale.We also mention that as shown in [11℄, the modelwithout the 
ontinuum in the impurity region does notgive narrow FL resonan
es, and therefore, does not leadto the small energy s
ale. The �wide� resonan
es aboveand below the Fermi level and a lo
al state above theFermi level have been obtained in this model. Addi-tional me
hanisms are required for broadening lo
alstates.At the same time, the existen
e of the narrow FLresonan
es leads to the appearan
e of pseudogaps nearthe Fermi level in the �X-ray� regime. The pseudo-gap o

urs under the Fermi level for a single narrowFL resonan
e at 1=3 < �s � 3=5. At �s � 1=3 for thesplit FL resonan
es, the pseudogap also splits into twobran
hes above and below the Fermi level. The pseudo-gaps are well determined for j"rj � 
r. The minimumvalue of the DOS inside the pseudogaps is of the orderof the magnitude of the �wide� resonan
es. The max-imum widths of the pseudogaps are of the order j"(�)r jand are determined by the expression in the right-handside of Eq. (4.7).The 
onditions required for the appearan
e of pseu-dogaps are identi
al to those for the existen
e of thenarrow FL resonan
es.5. THE MIXED-VALENCE AND NEARLYINTEGER STATES5.1. The 
riterion that enables us to 
hoosebetween the two types of states involves the par-tial f -
omponent �fr (0) of the DOS at the Fermilevel and the DOS �f ("f�) at the deep level. For�fr (0)� �f ("f�), the 
harged ex
itations play the keyrole at the Fermi level, while the opposite inequality

means that their role is negligible. The former 
ase
orresponds to the mixed-valen
e state, and the latter
ase leads to the state with a nearly integer valen
y.The Green's fun
tion G(0)f� (z) for jzj 
lose to the en-ergy "f� of the deep level 
an be represented asG(0)f� (z) � Zf�z � "f� ; (5.1)where Zf� � 1 is the residue at the pole z = "f�. Theenergy "f� renormalized by hybridization is determinedby the equation"f� = "f +�(0)B�("f�) � �"f + i
f�:The maximum value of the DOS at the deep level 
antherefore be estimated as�f ("f�) � �0B � "F
B� : (5.2)We now verify our 
riterion for the Kondo reso-nan
e. It is well known [19; 20℄ that in this 
ase, thedensity of 
harged states is small at the Fermi level. Us-ing the �resonan
e�level� formalism, one 
an see thisfrom the small residue ZK that determines the pole
ontribution to the Green's fun
tion at jzj 
lose to theFermi energy,GK(z) � ZKz �EK ;�K(0) � ZK
K � �0B � �f ("f�); (5.3)where EK � i
K and 
K � TK . In a

ordan
e withour 
riterion, the inequality 
orresponds to a small 
on-tribution of the 
harged ex
itations at the Fermi level.However, for new FL resonan
es with the widths 
�rin Eq. (4.6), the following unequality holds:�FLfr (0) � W
r �0B � �f ("f�): (5.4)Therefore, additional FL resonan
es lead to the exis-ten
e of a mixed-valen
e state in the Kondo regime.In the �X-ray edge� regime, the NFL reso-nan
e is generated by the �avor-quadrupole and thequadrupole (pseudospin) modes that have a 
hargedue to the quadrupole 
ontribution. The 
omponent�NFLfr (0) = �(1=�) Im Sp Ĝ(0)fr (0) is then estimated as�NFLfr (0) � �0B � W�K�1��s �� �0B � �"f
B�2(1��s) : (5.5)460
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es, using expression (2.6)for the Green's fun
tion Gfr�(z), we readily arrive atthe estimate�FLfr (0) = � 1�X� Im Sp Ĝf�(0) �� �0B �W
r �(1��s) : (5.6)Assuming �"f � W and 
omparing (5.2) with (5.5)and (5.6), we �nd�NFLfr (0)� �f ("f�) at �s < 12 ;�NFLfr (0)� �f ("f�) at �s > 12 (5.7)and also the inequality�FLfr (0)� �NFLfr (0); �f ("f�) (5.8)that holds for all values of the parameters at whi
h FLresonan
es exist.It is interesting to note that under the 
onditions
A� � 
B andW �
BW �(1�2�s)=2(1��s) � "f ��W �
BW �(1�3�s)=3(1��s) ; (5.9)the mixed-valen
e state and FL resonan
es exist simul-taneously for all values of �s.Inequalities (5.7)�(5.8) imply that, �rst, the statewith a nearly integer valen
y 
an be realized only whenFL resonan
es are absent and the parameter �s is suf-�
iently large. Se
ond, two types of the mixed-valen
estates are generated in our system.The NFL mixed-valen
e state o

urs for �s < 1=2if FL resonan
es are absent.In the extreme 
ase where V �x;y = 0, the mixed-va-len
e state exists only owing to the additional FL reso-nan
e.The FL mixed-valen
e states are generated by theinstability of the NFL state against the interband s
at-tering. These states are formed under the same 
ondi-tions that are ne
essary for the existen
e of FL reso-nan
es at the Fermi level. The type of the FL mixed-valen
e state depends on the type of the FL resonan
e(narrow or �wide�) that 
an be realized for a given setof parameters.As shown above, narrow FL resonan
es exist for allvalues �s < 1=2. Thus, the main features of the FLmixed-valen
e state are the appearan
e of a small en-ergy s
ale and the formation of pseudogaps.

The transitions between the NFL and FL mixed-valen
e states are 
hara
terized by 
hanging the va-len
y from one noninteger value to another. Takingthe foregoing into a

ount, we 
on
lude that 
ondi-tion (4.9) alone is ne
essary for the transitions betweentwo mixed-valen
e states.When 
ondition (4.9) is not satis�ed, the dire
ttransition between the NFL mixed-valen
e state andthe state with a nearly integer valen
y o

urs at�s � 1=2.Apparently, the most realisti
 way to generate thetransitions experimentally is to 
hange the latti
e pa-rameter by doping [3℄. This leads to 
hanging the hy-bridization between 
ondu
tion ele
trons and the �3level that enters the intera
tion matrix elements andthe widths 
B . We 
an thus obtain a series of transi-tions, whi
h are 
onsidered in detail elsewhere.6. CONCLUDING REMARKS6.1. The above results allow us to understand theme
hanisms of two important properties of HF NFLmetals.(1) The single-site two-
hannel Kondo e�e
t andthe mixed valen
e state 
oexist be
ause of additionalFL resonan
es at/near the Fermi level. The s
atter-ing of the non-hybridized impurity degrees of freedomby the narrow A-band ele
trons generates these reso-nan
es. Therefore, two energy s
ales TK and 
r existat the Fermi level. The FL resonan
e with the width
r 
orresponds to the lo
al mixed-valen
e state.(2) There are two possible energy dependen
etypes in a system with the two-
hannel quadrupoleex
hange intera
tion. In the Kondo regime (TK � �),one obtains the known universal energy depen-den
es [14; 17; 22℄ be
ause the Green's fun
tion inEq. (3.9) has a single energy s
ale TK .In the �X-ray edge� regime (TK � �), nonuni-versal power-law energy dependen
es must o

ur ina

ordan
e with the form of the Green's fun
tion inEqs. (3.16) and (3.17).It follows from the experimental data [2℄ that thein
rease of the impurity 
on
entration x in the U-
ompounds results in (a) de
reasing TK(x), (b) in
reas-ing the 
on
entration of the impurity atoms by a noti
e-able value �, and (
) in
reasing the anisotropy of theex
hange parameters. Therefore, in
reasing the impu-rity 
on
entration must enable 
rossing over from theKondo regime with the universal energy dependen
esto the �X-ray edge� regime with nonuniversal energydependen
es.461
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hara
teristi
 features of the NFL
ompounds with f -shell impurities are the di�erenttypes of the mixed-valen
e states with the NFL and FLex
itation spe
tra and the fa
t that the heavy-fermionstate type depends on the intera
tion parameter �s.In the other words, this parameter determines the roleof the 
harge and spin ex
itations in the formation ofheavy fermions.Small energy s
ales and the pseudogaps are indu
edby the narrow FL resonan
es. Therefore, the instabil-ity of the NFL state provides a new physi
al me
ha-nism for the small energy s
ale. Unlike in the previousworks [6; 21℄, this me
hanism is espe
ially appropriatefor impurities with an unstable valen
y.Thus, the instability of the NFL state indu
ed bythe interband s
attering of multiparti
le ex
itations
onsiderably 
hanges the me
hanisms of the formationof heavy-fermion states.6.2. We now brie�y 
onsider the features of thetemperature dependen
es within the framework of theme
hanism proposed in the present paper. The en-ergy dependen
es of the Green's fun
tions (2.6), (3.9),(3.16), and (3.17) imply that new types of the tem-perature transitions (
rossovers) o

ur in the system.When new FL resonan
es generated by s
attering arenot formed, a transition o

urs from the universal tem-perature dependen
es of the physi
al quantities in theKondo regime to nonuniversal power-law dependen
esin the �X-ray edge� regime. The 
hara
teristi
 tem-perature of this 
rossover is T
1 � �. In parti
ular,the logarithmi
 dependen
e of the linear spe
i�
 heatC=T / ln(TK=T ) must be transformed into the power-law dependen
e C=T / T�1+�s . The former depen-den
e was 
al
ulated in [14; 17℄ using expression (3.9)within the framework of the two-
hannel Kondo model.The power-law dependen
es follow from Eqs. (3.16) and(3.18) for the Green's fun
tions in the �X-ray edge�regime. As mentioned in this se
tion, the 
onditionTK � � 
an be realized at a relatively high 
on
en-tration of the f -shell impurities. The power-law depen-den
es of C=T observed in UxY1�xPd3 at x = 0:2 in [7℄
an therefore be generated by the me
hanism dis
ussedhere. We re
all that histori
ally, the alloys UxY1�xPd3were the �rst systems where the NFL behavior indu
edby the two-
hannel quadrupole Kondo model was ob-served [3; 5℄.In the two-
hannel quadrupole Kondo model, themagneti
 sus
eptibility is known [2℄ to have the vanVle
k 
ontribution between the �3 groundstate and the�rst ex
ited 
rystalline ele
tri
 �eld. The van Vle
ksus
eptibility is des
ribed by the temperature depen-den
e � � �0 � �(T=TK)1=2. A

ording to the exper-

imental data [7℄, this dependen
e is also transformedinto a power-law one as the impurity 
on
entration in-
reases.The quadrupole sus
eptibility �Q has the logarith-mi
 divergen
e / ln(TK=T ) in the Kondo regime. Itis experimentally determined from the nonlinear mag-neti
 sus
eptibility �3 [24℄. Correspondingly, �Q and�3 must exhibit the same 
rossover as the spe
i�
 heat.We emphasize that the 
rossover dis
ussed here 
or-responds to the transition between the state with anearly integer valen
y and the mixed-valen
e state.The existen
e of the FL resonan
es generated bythe s
attering of NFL ex
itations results in 
rossoversbetween the FL and NFL temperature dependen
eswithin both the Kondo regime and the �X-ray edge�regime. The 
hara
teristi
 temperatures of these
rossovers are T
2 � 
r, where 
r are the widthsof the FL resonan
es determined in Eqs. (4.6), (4.7).We note that the low-temperature transition to theFL state usually o

urs at T � �2=TK in the two-
hannel Kondo model [3; 25℄. The maximum value ofthe linear spe
i�
 heat is equal to (C=T )max � TK=�2.Within the framework of our me
hanism, it must be(C=T )max � 
�1r for 
r � �2=TK . It is possiblethat the additional small s
ale 
r enters the s
alingdependen
es in the FL�NFL transition region. Theappearen
e of a new small energy s
ale is observed inthe low-temperature s
aling law of resistivity in [24℄.In the �X-ray edge� regions, the 
rossover at T � T
2
orresponds to the transition between the FL and NFLmixed-valen
e states.The temperature transitions between FL mixed-valen
e states of the di�erent origins were 
onsideredin [26℄.6.3. The above results are obtained for single-ionNFL e�e
ts. We now show that these e�e
ts 
an alsobe 
onsiderable in �
on
entrated� systems.The ground state of these systems signi�
antly de-pends on the 
ompetition between the intersite intera
-tion, i.e., the indire
t ex
hange of the RKKY type forpseudospins, and the on-site Kondo s
attering leadingto the s
reening of the quadrupole impurity momentby 
ondu
tion ele
trons. The 
hara
teristi
 energy forthe two-
hannel on-site Kondo s
attering is determinedby expression (4.11). The 
hara
teristi
 energy s
ale ofthe RKKY intera
tion is"RKKY � 
i�V 2ex"F � � 
i�K ; (6.1)where 
i is the 
on
entration of the intera
ting atoms.In 
on
entrated systems, i.e., at 
i � 1, the energies "Kand "RKKY are su
h that462



ÆÝÒÔ, òîì 120, âûï. 2 (8), 2001 Formation of heavy-fermion states : : :"K � "RKKY for �s 6= 0: (6.2)This implies that single-ion NFL e�e
ts 
an be veryimportant even when the two-
hannel impurities forma sublatti
e.The analysis presented here enables us to qual-itatively understand two important aspe
ts of theproblem for the �
on
entrated� systems: the depen-den
e of the HF properties on doping and a physi
alreasons that 
an satisfa
torily explain a number ofproperties of the �
on
entrated� systems within theframework of the single-ion quadrupole Kondo model.This work was supported by the Russian Founda-tion for Basi
 Resear
h and the International Asso
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