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A mechanism for the occurrence of heavy-fermion states in non-Fermi-liquid (NFL) metals with f-shell impu-
rities is proposed. The impurity with an unstable valency is suggested to have the energy spectrum consisting
of a deep f-level and quasicontinuum states (narrow band) in resonance with the Fermi energy. Depending on
the impurity concentration, the single-site NFL states are generated by the two-channel Kondo scattering for
the low concentration (the «Kondo regime») or by the screening interaction for a relatively high concentration
(the «X-ray edge regime»). It is shown that the NFL states are unstable against the scattering of the NFL
excitations by electron states of the narrow band. This scattering generates additional narrow Fermi-liquid (FL)
resonances at/near the Fermi level in the «Kondo regime» and in the « X-ray edge regime». The mixed-valence
states are shown to be induced by new FL resonances. The mixed valency mechanism is local and is related
to the instability of single-site NFL states. The FL resonances lead to the existence of additional energy scales
and of pseudogaps near the Fermi level in the mixed-valence states. They also considerably narrow the region
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with a nearly integer valency.
PACS: 72.10.Fk, 72.15.Qm, 73.20.-r
1. INTRODUCTION

At present, intermetallic compounds with the
f-shell atoms Ce or U are an important class of alloys
in which the NFL behavior is observed (see [1,2] for
a review). The anomalous temperature dependences
of their linear specific heat, magnetic susceptibility,
and resistivity strongly support the NFL scenario.
The Ce and U ions carry magnetic dipole or electric
quadrupole moments that interact with the spins and
charges of the conduction electrons, thereby giving
rise to the Kondo effect and the NFL behavior at low
temperatures. The f-electron compounds of interest
have been alloyed with nonmagnetic elements (with
a few possible exceptions) [2,3]. The thermodynamic
measurements evidence in favor of the quadrupole
two-channel Kondo model introduced in [4]. We note
that according to photoemission spectra, the U-based
compounds look much more like the mixed-valence
ones (see references in [5,6]). Recently [7], it was
shown that the temperature behavior of the specific
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heat and magnetic susceptibility is governed by
nonuniversal power-law dependences for a relatively
high concentration of the f-shell atoms.

Taking the foregoing into account, it would be
highly desirable to have the unified treatment involving
the explanation of two essential facts:

(1) the coexistence of the single-ion two-channel
Kondo effect and the mixed-valence state;

(2) the possibility of non-universal power-law en-
ergy dependences on the parameters.

It should be noted that the role of instabilities of the
NFL states in forming the heavy-fermion (HF) states
has not been completely clarified. At the same time,
it is well known that the single-ion NFL state is un-
stable against any perturbation that eliminates the or-
bital or spin degeneracy of the impurity. Two instabil-
ity mechanisms are presently known in the two-channel
quadrupole and orbital Kondo model. In [4], the insta-
bility is induced by the Jahn-Teller distortions of the
impurity site. The second mechanism [8] attributes the
instability to the channel anisotropy. As shown in [9]
and [10], there occurs a new physical realization of the
two-channel quadrupole Kondo model and of the NFL
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state instability against the scattering generated by the
tunnel process in the doped size-quantized structures.
The physical reason of the instability is the existence of
the additional narrow FL resonances induced by tun-
neling.

For a metal containing orbitally degenerated deep
impurity states, it was shown in [11] that the NFL state
can be unstable against the scattering of the multipar-
ticle excitations having different z projections of the
quadrupole moment.

In this paper, we propose a new mechanism for
the occurrence of HF states in NFL metals with the
f-shell impurities. We assume that a specific feature
of atoms with an unstable valency is the energy spec-
trum that contains two unfilled shells: the orbitally
degenerate deep f-level states and the atomic quasi-
continuum states (narrow band) near the Fermi level.
As shown below, the scattering of the NFL excitations
by atomic quasicontinuum states, which is potential in
its character, generates additional FL resonances near
the Fermi level. Along with the NFL excitations, new
FL resonances form an additional branch of heavy-
fermion states with the characteristic energy that is
much smaller than the width of the NFL resonance
(even in the case of the Kondo effect). New FL res-
onances generate the mixed-valence state. The hea-
vy-fermion states have a local origin within the treat-
ment proposed below.

In conclusion, we briefly discuss the temperature
transitions within the proposed framework and the role
of single-site NFL fluctuations in the «concentrated»
heavy-fermion systems.

2. THE IMPURITY MODEL AND THE
SCATTERING PROBLEM FOR AN
INTERACTING SYSTEM

2.1. It is commonly known that an ion with unfilled
d- or f-shells partially retains its atomic properties in
a crystal. This is possible due to the presence of a cen-
trifugal barrier separating the region A in which the
atomic forces act from the region B where the lattice
potential acts. The height of the barrier is compara-
ble to other characteristic energies of the system, i.e.,
the Fermi energy and the interatomic interaction en-
ergy. The typical energy spectrum of lanthanide and
actinide ions with an unstable valency seems to contain
quasilocal deep f-levels together with the quasicontin-
uum states under the centrifugal barrier. The atomic
quasicontinuum may be formed by the d-shell states be-
ing in resonance with the conduction band states at the

B-region

Fig.1. The initial electron spectrum. A and B are the
impurity region and the conduction band, respectively,
U is the Hubbard repulsion. The A-band consists of
the impurity states in resonance with the Fermi level

Fermi level. A similar impurity model with a highly de-

generate f-level was also considered in [12]. The initial

electron spectrum before mixing is depicted in Fig. 1.
The Hamiltonian of the system is given by

H=Hjs+ Hp+ Hup, (2.1)

where Hg and H 4 are the Hamiltonians of the conduc-
tion band and of the impurity region. The Hamiltonian
H 4p describes the hybridization H, and the scattering
H,. between electron states of the conduction band and
the impurity region. The Hamiltonian of the impurity
region is given by

Hy=H{ + H¢ + H],

where H({ is the Hamiltonian of the deep level, H{j is
the Hubbard repulsion, and H¢ is the Hamiltonian of
the narrow A-band. In what follows, we do not consider
the intraband interactions assuming that they are weak
compared to the interaction between the deep level and
the band electrons. Therefore, H¢ is the Hamiltonian
of the noninteracting d-electrons. It is also assumed
that the d- and f-shells are not mixed in the impurity
region. We start from the low-lying electron configura-
tion of the isolated ion and then take the mixing with
the conduction electrons into account in the spirit of
the Anderson model with two unfilled shells.

We consider the situation where the deep level is
a I's quadrupole (non-Kramers) doublet of the crystal
field interacting with the T's quartet of the conduc-
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tion electrons. However, we emphasize that the mech-
anism proposed here can be applied for all compounds
in which the symmetry allows the local quartet of con-
duction states to couple to the two-fold degenerate level
and an additional potential scattering of the multipar-
ticle excitations exists.

For U-based compounds, the I's doublet in the 5f2
configuration is formed as a result of splitting the multi-
plet with the total moment J = 4 with the cubic crystal
field. The I's doublet has an electric quadrupole mo-
ment and no magnetic dipole moment. The quantum
numbers of the I's-level electron are the numbers of
lines u for the irreducible representation of the point
group pur, = *1. The two quantum number values
u = %1 correspond to the projections of the quadrupole
moment on the z-axis, i.e., @, = £8.

The multiparticle configuration of the unfilled shell
is denoted by |n; u), where n indicates the number of
electrons and p is the set of quantum numbers charac-
terizing the configuration.

For relatively large values of the Hubbard repulsion
in the absence of hybridization, the ground state con-
figuration of the ion U** is the singly occupied I's dou-
blet with the electron configurations |1; +1) and |1; —1)
and the energy F;. The electron creation operators
and electron numbers correspond to the singly occu-
pied states:

The T'3 states are hybridized with the partial con-
duction band waves having the total angular momen-
tum j = 5/2. Taking the splitting of the j = 5/2 multi-
plet by the cubic crystal field into account amounts to
the transition from the angular momentum represen-
tation to the irreducible representations of the point
group of the crystal. The latter representation has
the quartet I's that can be hybridized with the I's
doublet. The T's quartet possesses two groups of the
states: T(Y, T{7) with T(M = |Tg;2), |Ts;1) and

= |Ts:—2), |Ts;—1). The groups T{") and T~
correspond to different signs of j.. Different signs of
j. correspond to different sings of the spin projection
0,. In addition, the states |T's;£2) and |T's; £1) have
the respective z components of the quadrupole moment
sz = £8.

In other words, the quartet I's of partial waves de-
composes into the tensor product I's®@T'7. It is therefore
described by a combination of the «orbitaly (I's) and
the «spin» (magnetic) (I'7) indices.

The partial states of the conduction electrons mixed
with the I's doublet can therefore be classified by the
quantum numbers |e; 7, @), where ¢ = vpk —ep, with k
being the wave vector modulus and ¢ being the Fermi
energy. In what follows, we choose the position of the
Fermi level as zero. The quantum number v =2, 1 = p
corresponds to the two values of the quadrupole mo-
ment within the groups F ) and F ; the magnetic
quantum numbers o ﬂ: dlstlngmsh the respective
groups I‘f;_) and Fé_). The operators agw(s) describe
the states |e; u, @) in the B-band.

In terms of these states, the hybridization Hamilto-
nian

Hy _Z Z ( 41 lnO k)aBa( )|n+1 Mn+1><n Mn|+HC)

u +1 = = [1;+1)(0; 0[; ::—1 = |1; =1)(0; 0[;
Nfu :fufué Z”fu =1
H({ = ZEn u|n ) n, puf = ZEfuJHfu (2.2)
n,p
H{/ = Z Upprngungu (1= 5##’)-
!
kon pfin41fin
where a},

Hh—Z/dEQOB

\
Here, pop(e) is the density of states (DOS) in the B-

!
continuum, the terms with Vuu (@), u # ', are ne-

glected because of the cubic symmetry, and the matrix

elements V7, (¢) are denoted by V,/ (¢).

In finding the interaction Hamiltonian in what fol-
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(k) creates the conduction band electron with the spin o and the wave vector k, can be written as

Vi (€)aho(6) fu + He) (2.3)

lows, it is significant that because of the band state
symmetry, the hybridization matrix elements Vﬂfa(s)
are nonzero for both components of the I's doublet
with 4 = £1. This means that the matrix elements
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Vufn+1una(k) are spatially nonlocal. We additionally
assume the hybridization matrix elements to be inde-
pendent of the sign of the z component j, of the total
momentum j, i.e., Vufa = Vﬂf.

The Hamiltonian H 45 in Eq. (2.1) also involves the
scattering between electron states of the A- and B-
bands. In terms of the partial states, the scattering

Hamiltonian is given by

+oc
H,. = Z / dE/JoA(E) X

pa o
+oe
< [ @ pon( TP ek, G, (20

where the operators aa,q(c) describe the states in the
atomic continuum (A). The scattering with pu # p' is
absent because of the cubic symmetry. We assume that
the scattering matrix elements as well as the hybridiza-
tion ones are independent of the quantum number a.

In defining the NFL states, it is important to ac-
count for the splitting of the f doublet ground state
due to a local deviation from the cubic symmetry at
the impurity site. In the Hamiltonian, the splitting is
described by the term

(2.5)

Because the Hubbard repulsion U is the largest param-
eter in the problem, it is convenient first to take the ef-
fective interaction induced by U into account and then
to use the multi-particle states as a basis for solving the
scattering problem. As shown below, the system de-
scribed by the Hamiltonian H in (2.1) has two physical
mechanisms generating singularities at/near the Fermi
level. The Hubbard repulsion U generates the effective
interaction between conduction electrons and the deep
level. This interaction induces an NFL resonance at
the Fermi level in the B-band. The scattering of the
multiparticle excitations in the conduction band by the
electron states of the A-band generated by H,. results
in the formation of additional Fermi-liquid (FL) reso-
nances near the Fermi level.

2.2. In the system with the Hamiltonian H, the ex-
citations are completely described by the Green’s func-
tion

Gru(2) = (ful(z = H) 71 f).

Because the energy U is dominant, it is essential to
properly treat correlations on the site. To calculate
Gyu(z), we use the method of the equations of mo-
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tion [19] that correctly accounts for these on-site cor-
relations. This gives
1= Yau(2)%Bu(2)
NAB
DB (2)

N

Gru(2) = GJu(2)

, (2.6)

where .

A0 S

Gyu(2) = |2 —ep = X5,(2)
is the Green’s function of the interacting system with-
out scattering; we then have

ﬁfB(Z) =1- %M(Z)WBM(Z%

Wau(2) = B5,(2) + £F,(2)S)5(2)GY,(2).
Equation (2.6) implies that the full Green’s function
éfu(z) has features of two types. The function é?‘ru(z)
describes the contributions of the multiparticle reso-
nances at the Fermi level due to the interaction be-
tween the conduction electrons and the deep level. The
second factor in Eq. (2.6) is generated by the scat-
tering of the multiparticle excitations via the atomic
quasicontinuum states. The scattering results in addi-
tional singularities, namely, simple poles near the Fermi
level. The pole positions are determined by the equa-
tion DAP(z) = 0. The self-energy functions 3% (2)
and X3¢ (z) with v = A, B are expressed as spectral

expansions of multiparticle Green’s functions of the A-
and B-bands,

EIS/Z(Z) = |Tuu(0)|2 Z %u(p)

- \T:(0)|2/d57p"§1f;5),

P
z—¢e

(2.7)
sh (=) = [V (0)]2 /

where ¢,(p) is the excitation spectrum at the Fermi
level, p,(g) is the DOS corresponding to this spectrum,
and f(g) is the Fermi function. In Eqs. (2.7), it is as-
sumed that Vuf (e) = V“f (0) and the scattering matrix
elements are separable:

TaB(e,e") = Tap(0,0) = T,/ (0)T)2(0),

where T;‘(O) is dimensionless.

Without the interaction, we have p, () = po, and
G(}M(z) [z — &y — ivsu) ', where £y, is the energy
of the deep level renormalized by the hybridization and
vfu is the width of this level. In this case, both G"}u(z)
and Y, (2) have no singularities near the Fermi level.

In the interacting system as U — oo, we are inter-
ested in the case where the dominant effect of the in-
teraction is the generation of a multiparticle resonance
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(the fr-level) near the Fermi level. The Green’s func-
tion G ,(2) of this resonance must then be inserted

in Eq. (2.6). The multiparticle peaks in G"}r”(z) at the
Fermi level determine the properties of the DOS pg(e)
and of the self-energy functions E‘;L’Lh(z).

To obtain the density of states at the Fermi level
in the interacting system, the following consideration
can be used. Tt is known [19] that the exact Green’s
function of the conduction electrons in the impurity
Anderson model is given by (in our notation)

Gua(k, k' 2) = 0 6aa6(k — K"Gopa (b, k' 2) +

+ Gopa (k: 2)VEE(K)GY) (2)VE (K) Goua (k; 2),  (2.8)

where Goya (k; 2) is the Green’s function of noninteract-
ing electrons (in accordance with the definition given
above, the variables k& and ¢ are identical). Because
of the symmetry properties, the function G}(gu(z) can
have only diagonal components. The Green’s function
of an impurity state G fogu(z) involves all the interac-
tions induced by the Hubbard repulsion U. Near the
Fermi level, the multiparticle resonance Green’s func-
tion é(}ru(z) must be inserted in Eq. (2.8). Thus,
the DOS of multiparticle excitations at the Fermi level
takes the form

1 N
pB(€) — pon(e) —;Ap ImSpGY ,(e), >0,

where A, o« vyBpoB, VB
= ‘Vuf |2p0B~

With the foregoing taken into account, the complete
solution of the scattering problem requires determining

the main interaction and calculating the Green’s func-
tion G, (2).

Zu YBu and YBu

3. THE INTERACTION HAMILTONIAN AND
THE NON-FERMI-LIQUID STATE

3.1. To derive the effective interaction between the
deep f-doublet and the conduction electrons, we sup-
pose that for relatively large values of the Hubbard re-
pulsion, the ground state configuration of the ion U**t
is the singly occupied I's doublet with the electron con-
figurations |1; +1), |1; —1) and the energy E;. Taking
virtual transitions into the excited states with the en-
ergies By = 2E; + U into account and using either the
projection operator techniques or the Schriffer—Wolff
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transformation for the Hamiltonian Hé + Hg + Hj,, we
obtain the standard expression

o= Y [ [ ded pon(elpon(e’) x
up' o
X Vi (e,6")al o, (E)aarw () fF fur (3.1)
As Uy — 00, the matrix elements in Eq. (3.1) become
VitV
VHHI(575I)NM<€7M, EF—Ef =¢gy.
f

The doubly degenerate f-level containing one elec-
tron can be conveniently described in terms of the pseu-
dospin variable 7¢. The projections of the pseudospin
operator 77 on the coordinate axes coincide with the
components of the quadrupole moment tensor. The
projection %)% ~ Q.. on the z axis has two values cor-
responding to the occupation of the different orbitals
of the doublet. The operator 7§ o< .J7 — J; inverts the

pseudospin, and we can therefore write

= > St

pp'==%1

where ¢! are the Pauli matrices.

The index o = =+ is magnetic, and therefore, it
cannot change under the scattering by the electric
quadrupole moment of the impurity nonmagnetic I's
doublet described by (2.4). In other words, for Hamil-
tonian (2.4) to possess the time reversal property, the
quantum number a must be conserved during the
scattering. The scattering processes change only the
states belonging to the same group (Fé(;_) or I‘é_)) and
these states form a representation for the pseudospin
7r=1/2.

The time reversal symmetry therefore guarantees
the transfer from Hamiltonian (2.4) to the two-channel
quadrupole exchange Hamiltonian with the channel in-
dex «,

Hint = Z Z // dede'pop(e)pon (') x

up' oi=z,y,z
X Vi(a,a')a*l;au(a)aiu, aBaw (£')7},
Vi(e,e')o) = Vi (8,€"). (3.2)

Because the hybridization matrix elements are com-
plex in general, Eqs. (3.1) and (3.2) contain the term
involving %}J along with the term involving 7. We
are interested in the case where the dominant effect of
the interaction is the generation of a multiparticle res-
onance at the Fermi level. The Green’s function cor-
responding to this resonance can be calculated using
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the bosonization method by reducing the Hamiltonian
Hy to the resonance-level model proposed in [14]. To
reduce the Hamiltonian Hy = Hyg + Hine + Ha with
the two-channel exchange in Eq. (3.2) to the resonance-
level model, it is convenient to rewrite Hy as

Hy = ivp Z / ¢ua )02 Ypa () +

pp'a "o

35 Y V06

o i=w,y,z

p Uwa(0)FF + AFF, (3.3)

where .
Vo) = / dk e* ap,q (k)
and
1%(1 (0) = 1%(1 (x = 0)

The bosonic representation of the fermion fields
Yua(z) takes the form

. e—iq),“,(x) .9
Yua(x) = ﬂuaW, Mo = 1,
x (3.4)
®a(z) = (m)1/? / dz' Pua(2') + pua(z)|

where ¢, () is the boson field, P, (z') is the canon-
ically conjugate momentum, [pua(z), Pyo(2')] =
= i0(x — 2')0uudaas. and a is the lattice constant.
The operators 7),, ensure the anticommutation rela-
tions between different species of fermions. The boson
fields ¢q(z) and P, (x) can be rewritten in terms of
the collective variables that are introduced by means
of the canonical transformation of ¢, (z) and P,q(2):

1
Pe,f = 5[(9011 + p12) £ (Y21 + @22)],

%[(9911 — 12)

(3.5)
Ps,(sf) = + (P21 — pa2)].
Similar expressions can be written for the conjugate
fields Pyq(x), p,a = 1,2. The Fourier components
of the boson fields k'/?¢; (k) correspond to the charge
(¢), flavour (f), pseudospin (s), and mixed (flavour-
quadrupole, sf) density operators p;(k). The flavour is
generated by the channel index a.

In terms of the collective bosonic variables, the spin-
less fermion collective fields are given by

e—id’z (m)

Gra (3.6)

¢l(x)= l=c,f,s,(sf).

The Hamiltonian Hy can be represented as a sum of
four terms corresponding to the four spinless fermion
collective channels. The charge and flavour channels
are not coupled to the impurity pseudospin. The other
channels give the following terms in the Hamiltonian
HO = HOO + Hint + HA:

Hoo = ive Y /dv’v% )0z (),

I=s,(sf) _

Va g
Hint + Ha = 71/2@;«(0) + s (0))7F +

(2

+ ‘N/zlbj— (0)15(0 ) V. =2(V. — mup).

The Hamiltonian in Eq. (3.7) corresponds to the
resonance-level model that yields a multiparticle reso-
nance (the f, level) at the Fermi level. The f, level can
be described in terms of the fermion operators d* and
d coupled to the pseudospin operator 7; via the Ma-
jorana representation: dt = %;Lﬁ, 7; = dtd - (1/2),
where 7 is the Majorana (real) fermion operator such
that §? = 1. The Green’s function G}E)(z) of the reso-
nance level contains the anomalous components o (dd)
and o< (d*d*) in addition to the normal components
o (dd*) because the number of fermions is not con-
served in the models described by Eq. (3.7).

3.2. It is known [15, 16] that the two-channel model
described by Egs. (3.3) and (3.7) has two regions with
essentially different physical properties depending on
the relation between Tk and A, where Tk is the expo-
nential Kondo temperature.

We consider the region of the parameters where the
Kondo physics plays the key role. This case is referred
to as the «Kondo regime» in what follows. It occurs
under the condition

Tk > A. (3.8)

In this case, the model described by (3.7) renormalizes
to the strong coupling limit [15,16]. In this limit, the
quantites I'x = ngBng and A renormalize to T and
A? /Ty, respectively. The fixed point lies on the line
V. = 0 [8] (the Emery-Kivelson line) and the screen-
ing interaction is not essential for small energies. The
quantity Tk is defined on the Emery—Kivelson line and
depends on V, only. For this reason, the parameters
Tk and A are independent. The NFL state is gener-
ated by the impurity degrees of freedom that are not
hybridized with the conduction electrons [14,17]. Near
the Fermi level at T' = 0, the Green’s function becomes
Go — Og 60 + 0

A(0) Ly
Gp (2) == 2 —Yg(2) z ’

fr

(3.9)
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where Y (2) is the self-energy part determined by the
hybridization term in Eq. (3.7), and % corresponds to
Re(z)Z0. As usual, the exponential pole at |z| «x Tk
in the first term of G ( ) has the exponentially small
residue Zy o exp(— Er‘g/')/B) Tk xerpZK.

On the other hand, under the conditions

Tk <A, Vo> Vi, (3.10)

the model does not renormalize to the strong coupling
limit (or equivalently, to the fixed point at V. = 0) for
low temperatures because of a very weak renormaliza-
tion of A [15]. In this case, the NFL state is gener-
ated by the screening interaction in Eq. (3.7) and by
the non-hybridized impurity degrees of freedom. This
mechanism is referred to as the «X-ray edge regime»
in what follows. In this case, the hybridization occur-
ring in the sf-channel can be treated as a perturbation
of the ground state obtained at V, = 0. At V, = 0,
the problem is solved exactly. To obtain the Green’s
function égf:)(z) at V, = 0, we use the technique that
was previously applied to the well-known problem of
the X-ray absorption in metals.

We first diagonalize the Hamiltonian Hgy+ Hs+ Ha
in (3.7) at V,, = 0. For this, we introduce the boson

operators bgy = k™'/2pg(k) and b}, = k='/2ps(—k),
where
1 kp—k
pa(k) = 575 D ¥ (@¥alg + k),
w (3.11)
po(=K) = o1 DU @bsla — ), k20,
g=k

are density operators, ¥, (k) are Fourier components of
the fields 1 (z), and the cut-off occurs at kp ~ a™*.
Using the operators bg; and bjk, we write the Hamilto-
nian as

. - 1
Hig+H,+ A = vp I;)kbjkbsk-l-vz <d+d—§> X

B\ /2
x> <N) (b, +bs) + A7, (3.12)
k>0
This is diagonalized by the canonical transformation

- 1
UB = exp (VpoB <d+d—§> > .

> (6N) "2 by —b)

k>0
Under this  operation, the  Hamiltonian
H§y + Hs + A7§ is transformed to
~ Sy~ AT
Hy=vp Y kbhba + A <d+d - 5) : (3.13)

k>0
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where

dt =Upd'Ugz' = Uypd™,

POB Vz

I+ +77—1 _ 1+
bsk_UBbskUB —bsk+W

d*d,

| o)

A=A—-cpy,and ey = f/prB is the «polaron shift».
Equation (3.13) allows us to find the Green’s func-
tion of the resonance level,
— (00

(t) =G} ()(Ugp(t)Uon(0))p

where Upp(t) is derived from Uyp(0) by the substi-
tution bgr — bgre®*t. In Eq. (3.14), (...)p denotes
averaging over the states of the diagonalized Hamilto-
nian H{,+ H, and G’ (00) ( ) is the Green'’s function with
the s-channel 1nteract10n disregarded. The averaging is
performed in the standard way using the relations

k_bsk
kN 1/2

2P0B Z

Uop = exp (
k>0

40)

¢ (3.14)

A

e eB _ 6A+B+(1/2)[A7B]l

(elFOHDy — ((1/2)(F(b* b)),

where F' is an arbitrary linear combination of boson
operators. As a result, we find that at large times
ept > 1, the function in Eq. (3.14) is given by

(t) ~

where a; = (d5/7)? and &5 is the phase shift for the
scattering described by Hy in the pseudospin channel.

At V., =0, we use Eq. (3.15) with G}EO)(t) o e A
to obtain the known expression for the Green’s function

GO (t) ~ GO (e, (3.15)

AT —ay) (2= A\
GOy = ZE) - s ’ 316
5. () - A W (316)
where A(+) = —1 and A(_) = (=1)" for
Re(z — A)%20, respectively, DI(z) is the gamma

function, and W is the cut-off parameter of the order
of the conduction band width.

We next recall (e.g., from [23]) that including the
hybridization V,, as a perturbation in the «X-ray edge»
Hamiltonian, we recover the previous «X-ray edge» re-
sults with the energy shifted as iw — iw + il g sign w,
Lk = mpor V2, in the resonance level Green’s function
G',. Within the framework of two-channel model (3.5),
the width due to the hybridization appears only for a
half of the impurity degrees of freedom 7%, hybridized
with the conduction sf-channel.

The same result can be obtained by writting Hamil-
tonian (3.5) in terms of the hybridized states and then
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considering the screening interaction for these states.
One can readily show that additional interactions in-
duced by the transition to the new basis are propor-
tional to V.(V,/W) and are therefore much smaller
than the screening interaction. In the new basis, Hamil-
tonian (3.7) is reduced under condition (3.10) to a
Hamiltonian of the «X-ray edge» type. In the present
case, the hybridization in Eq. (3.7) gives the level width
related to a half of the degrees of freedom of the impu-
rities hybridized with the conduction electrons.
Using Eqgs. (3.14) and (3.15) with

0 (60 — a_x)e—i(A—il"K)t + (60 + a_x)e—iﬁt7

fr

we thus obtain G’gc(:) (z) in the energy representation,

Gfr (Z) = A(i)l“(l - as) X
Go—6, [2—A+iTk °‘5+
2= A+ilg W
Go+6. (2= A\
- . (317
z—A ( w > ( )
where
Ty ~ W'YBl;YBQ.
€r

Because we calculate the retarded Green’s function in
Eq. (3.17), we must have Im z < 0. If the radial parts
of the wave functions entering the matrix elements Vuf
are independent of u, we readily obtain

2
Y1 ~7B2 =78, L'k~ W7—§. (3.18)

€y

The power-law dependence occurs in Eq. (3.17) under
conditions (3.10).

It follows from (3.17) that the multiparticle NFL
resonance at the Fermi level is generated by the mixed
flavor-quadrupole (sf) mode. The interactions in the
pseudospin channels having the screening character
lead to the effective broadening of the resonance level.
The second term in Eq. (3.17) is due to the impurity
degrees of freedom that are not hybridized with the
conduction electrons.

In conclusion of this section, we write the expres-
sion for the DOS pp(e) near the Fermi level. The mul-
tiparticle resonances at the Fermi level are described by
the Green’s functions in Egs. (3.9), (3.17), and (3.16).
These Green'’s functions must be inserted in Eq. (2.8),
after which pp(e) is derived. In particular, inserting
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Eq. (3.17) in Eq. (2.8), we find the DOS in the «X-ray
edge» regime

1 N
p5(e) — pop(e) = ——4,ImSp G (c) =

sin

=4, > e

i=1,2

{(1 — ay) arctg —
E —
[(e = A)2 + T3] (1-as)/2

e >0,

(3.19)

where A, ~ ygpop. The widths I'y = 6 — 0" and
'y = 'k correspond to the two contributions into the
Green’s function GE“(:) in Eq. (3.17).

In the Kondo regime, the DOS is determined by
function (3.9).

4. THE FERMI-LIQUID RESONANCES NEAR
THE FERMI LEVEL

4.1. The scattering of the multiparticle excitations
due to the term Hg. results in simple poles near the
Fermi level in the complete Green’s function Gy, (2) in
Eq. (2.6). The poles correspond to new Fermi-liquid
resonances. The positions zﬁi) = afai) — z'%(ai) of the
poles are determined by the equation

(£)

DB (zF)) =1 - 3% N W, (:P) =0.  (4.1)

Because this equation is the same for all terms of
the matrix ﬁf}B, the matrix indices are omitted in
Eq. (4.1).

The expression for the Green’s function (2.6) near
the FL resonance with the energy z,, becomes

4(0)
N 2ru Gy (20
Gpule) = 20 ) )
e—A—2zy

where we expanded the denominator in Eq. (2.6) near
the resonance energy as D(¢) = D'(z,,)(e — A = z,.),
where D'(z,,) ~ F,/zy, (with the indices of the de-
nominator omitted at the moment) and F, is a func-
tion of the parameters of the order of unity. The energy
dependences of ijff(z) in (2.6) are determined by the
DOS p,(¢). In the model under consideration, the func-
tion X%, (z) has no features at the Fermi level, which
allows us to write

Re %, (0) ~ poa(0), Tm¥%,(0)=0.  (43)

The self-energy functions %, () have the features
corresponding to the NFL peaks in the DOS pp(e).

In the Kondo regime, the main singular term ap-
pears in X% (z) because of the d-like contribution to
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the spectral function induced by the second term in the
Green'’s function (3.9) as z — £ +40". In other words,
this singular term is due to the impurity degrees of
freedom that are not hybridized with the conduction
electrons. The self-energy X3, (2) takes the form

YBPOB

Y5,(2) = const + Vufo* (4.4)

In the «X-ray edge» regime, using the density of
states in Eq. (3.19), we obtain the contribution of the

3

resonance levels to the self-energy function at zero tem-

perature,
) .

) (1% @45)

TB*
%.(2) = Ay (vBYBupoB) |
Vi

g

where [Ap,| ~ 1.

In the Kondo regime, inserting (3.9) and (4.4)
in (4.1) and taking the most singular term o 1/z3
in Wg,(2) into account, we readily obtain two reso-
nances above and below the Fermi level that occur due
to the scattering of the non-hybridized impurity de-
grees of freedom. The energies of these resonances are
determined by

_w
2 A+iTk

(£)
z
| IT/V | Ar (yappoa)'" (vBpos) (4.6)
where A, ~ 1 and v4, = |T?|?poa. The resonance

width above the Fermi level is much smaller than the
resonance width below the Fermi level. The former
width is determined by the terms in Eq. (4.1) that are
much smaller than the leading singular term o 1/23.
Therefore, the pseudogap exists near the Fermi level
for [e(=)] > w7 and for )] <« W,

In addition, Eq. (4.1) has two solutions above and
below the Fermi level with |z + iyx| < vi. For this
reason, the shape and the width of the Kondo peak
change weakly at the Fermi level. In particular, the
width of the Kondo peak has a small additional term
~ Tk (vaupoa) (vBpor) < Tk due to the scattering.

The qualitative picture of the DOS in the Kondo
regime near the Fermi level is shown in Fig. 2. We see
that the FL resonances generate both the additional en-
ergy scale v, < Tk and the pseudogap near the Fermi
level.

We thus obtained the essential result that the scat-
tering of the non-hybridized impurity degrees of free-
dom by the electron states of the narrow band leads to
the existence of new resonances near the Fermi level.
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1
L >
ES*) 0 E£+) e

Fig.2. The Kondo resonance (curve 1) and new FL res-
onances (curves 2) show the respective FL resonances
with [eF] > ~7F and |eF| < 7F

According to the experimental data [2], there exists
a concentration region where the Kondo energy Tk ex-
ponentially increases with decreasing the impurity con-
centration. At the same time, the hybridization matrix
elements and, consequently, the widths yp and 4, re-
main approximately constant in this region. We can
therefore expect that the condition |z,.| < Tk is sat-
isfied at sufficiently low cocentration of the impurity
atoms.

4.2. Using expressions (2.7) and (3.17), it is easy
to verify that in the «X-ray edge» regime, Eq. (4.1)
possesses solutions of two types with their energies sat-
isfying the respective conditions

2(¥)| « T, the narrow resonances,

\z,(,i) +il'k| < T, the «wide» resonances.

For simplicity, we here used the condition
A < Ik, Zf,i).

The signs «£» correspond to the resonances above and
below the Fermi level. For |67(«i)| < 'y,(,i)., |’y7(«i) - Tkl
the widths of the FL resonances are determined by

P

w

x (yppop)™ 17 <

1/(1—as) %

4
) , )

= A1 (VauvBuPoB)

cr
YBu

< Tk, (4.7
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E£+)

(+)

T

67(«7) 0 ¢

Fig.3. The NFL (curves 1) and FL resonances in the « X-ray edge» regime: (a) the narrow resonances for || > ~:F;
(b) these resonances for |eif| < 7

9 — T _
w

X (YBpoB)

1/3(1—as
As (YauyBuPiB) I ) x

2/3(1—a.)

/) —Tg| < Tk, (4.8)

where A;9 ~ 1. In this case, the FL resonances
merge into a single weakly split resonance at the Fermi
level (Fig. 3b). For \ssi)\ > 'yﬁi),\'yﬁi) — I'x|, the
energies ‘ES«:E)| are determined by the expressions in
the right-hand sides of Eqs. (4.7) and (4.8) and by
'yﬁi) = \ssi)\ sin with ¢ <« 1. In this case, pairs of
the FL resonances appear above and below the Fermi
level (Fig. 3a). Pairs of the FL resonances can exist
because the Green’s function C;’fu(z) has two branches
above and below the Fermi level. For |67(«i)| > yﬁi).,
there are well-determined pseudogaps near the Fermi
level in the case of the narrow resonances.

Two types of the FL resonances correspond to the
existence of the hybridized and non-hybridized impu-
rity degrees of freedom. In particular, the narrow reso-
nances, which determine a new small energy scale near
the Fermi level, are generated by the interband scat-
tering of the non-hybridized impurity degrees of free-
dom. In other words, the narrow resonances result from
broadening and displacement of the zero-width term
in the spectral function C;'EC[:) (see the second term in
Eq. (3.17)) due to the interband scattering.

Equations (4.7) and (4.8) imply that the FL reso-
nances exist for the deep level (¢y > yp) under the
condition
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_ w
< (vBupon)” 0% <—
Ef

YAp

Bu

6(1-a.)
> L (49)
which is the same for the resonances of both types.

Condition (4.9) is satisfied for all values of «a; in the
following cases. First, for v4, > vyp and sufficiently
«shallow» f-levels such that

B

w

and second, for y4, < yp and €5 ~ W.

On the other hand, the widths of the NFL resonance
and, correspondingly, the characteristic binding energy
of the collective states forming the NFL resonance can
be estimated as

)

This estimate is derived from the NFL DOS in
Eq. (3.19). As as increases, the binding energy cx
also increases.

The FL resonance can appear if the collective states
defined in Eqs. (3.6) and (3.11) decay. Taking the
foregoing into account, we must bear in mind that
the decay of collective states becomes more difficult
as ay increases. Therefore, the structure of the FL
resonances near the Fermi level essentially depends
on the magnitude of the parameter a; that describes
the scattering in the quadrupole (pseudospin) channel.
From the imaginary part of Eq. (4.1), we readily find
that the narrow resonances exist for ay < 3/5. For
1/7 < ay < 1/3, the narrow resonances appear above

(1-3as)/3(1—as)
) , (4.10)

7B<<Ef<<W(

EF
I‘I\’

ex ~ Tk < (4.11)
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and below the Fermi level. For ag > 5/7, FL resonances
are absent.

In addition to condition (4.9), we thus find that the
narrow FL resonances can exist when the pseudospin
channel interaction V. is not very strong.

In the limiting case where V, , = 0, the FL reso-
nance exists above the Fermi level for ay, < 1/3. Its
energy is determined by

|27(~i)\ 1/(1-ay)
W~ (Vaupoa) ox
x (yppop)'/' ) < vp. (4.12)

In the «X-ray edge» regime, the narrow FL reso-
nances provide peaks in the DOS with the widths much
smaller than those of the NFL resonance (see Fig. 3).
Thus, their existence allows us to obtain a new mecha-
nism for the appearance of the small energy scale.

We also mention that as shown in [11], the model
without the continuum in the impurity region does not
give narrow FL resonances, and therefore, does not lead
to the small energy scale. The «wide» resonances above
and below the Fermi level and a local state above the
Fermi level have been obtained in this model. Addi-
tional mechanisms are required for broadening local
states.

At the same time, the existence of the narrow FL
resonances leads to the appearance of pseudogaps near
the Fermi level in the «X-ray» regime. The pseudo-
gap occurs under the Fermi level for a single narrow
FL resonance at 1/3 < a; < 3/5. At ay < 1/3 for the
split FL resonances, the pseudogap also splits into two
branches above and below the Fermi level. The pseudo-
gaps are well determined for |e,| 3> 7. The minimum
value of the DOS inside the pseudogaps is of the order
of the magnitude of the «wide» resonances. The max-
imum widths of the pseudogaps are of the order \ssi)\
and are determined by the expression in the right-hand
side of Eq. (4.7).

The conditions required for the appearance of pseu-
dogaps are identical to those for the existence of the
narrow FL resonances.

5. THE MIXED-VALENCE AND NEARLY
INTEGER STATES

5.1. The criterion that enables us to choose
between the two types of states involves the par-
tial f-component py (0) of the DOS at the Fermi
level and the DOS ps(ey,) at the deep level. For
p1£.(0) > ps(esu), the charged excitations play the key
role at the Fermi level, while the opposite inequality
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means that their role is negligible. The former case
corresponds to the mixed-valence state, and the latter
case leads to the state with a nearly integer valency.

The Green'’s function G’;Ou) (z) for |z| close to the en-
ergy ¢y, of the deep level can be represented as

~ Ztu

G0 (2) v 21
z—ep

u(?) (5.1)
where Z;y, ~ 1 is the residue at the pole z = ¢¢,. The
energy ¢y, renormalized by hybridization is determined

by the equation

0 - .
Eru=cp+ S50 (Eru) = &5 + iV

The maximum value of the DOS at the deep level can
therefore be estimated as

We now verify our criterion for the Kondo reso-
nance. It is well known [19,20] that in this case, the
density of charged states is small at the Fermi level. Us-
ing the «resonance-level» formalism, one can see this
from the small residue Zx that determines the pole
contribution to the Green’s function at |z| close to the
Fermi energy,

EF

- (5.2)

pr(Efu) ~ pom (

K
Z— EI\’ l/

Gk(z) ~
(5.3)

ZK
pr(0) ~ ~ poB L prletu),

YK
where Ex ~ 1yx and vg ~ Tx. In accordance with
our criterion, the inequality corresponds to a small con-
tribution of the charged excitations at the Fermi level.
However, for new FL resonances with the widths ;¥
in Eq. (4.6), the following unequality holds:

FL

Ps. (5.4)

(0) ~ E/JOB > pr(Esu)
Ir

Therefore, additional FL resonances lead to the exis-

tence of a mixed-valence state in the Kondo regime.
In the «X-ray edge» regime, the NFL reso-

nance is generated by the flavor-quadrupole and the

quadrupole (pseudospin) modes that have a charge

due to the quadrupole contribution. The component

ppFH(0) = —(1/7) Im Sp C;*Sc(:) (0) is then estimated as
W 1—ag
P?:FL(O) ~ PoB < ) ~

r K

Er

2(1—as)
. (9.5
W)

NﬂOB(
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For the narrow FL resonances, using expression (2.6)
for the Green’s function Gy, ,(z), we readily arrive at
the estimate

1 N
P (0) === ImSp G, (0) ~
I

w

NPOB(
v

)(1%). (5.6)

Assuming &y ~ W and comparing (5.2) with (5.5)
and (5.6), we find

r

1
ppIH0) > prlegy) at as < 3
1 (5.7)
p}\iFL(O) L prlepy) at as> 3
and also the inequality
pf(0) > pRFE0), ps(esn) (5:8)

that holds for all values of the parameters at which FL
resonances exist.

It is interesting to note that under the conditions
YAu > VB and

(1-2as)/2(1—as)
w (%) e K
B (1-3as)/3(1—as)
<W (W) . (5.9

the mixed-valence state and FL resonances exist simul-
taneously for all values of ay.

Inequalities (5.7)—(5.8) imply that, first, the state
with a nearly integer valency can be realized only when
FL resonances are absent and the parameter a, is suf-
ficiently large. Second, two types of the mixed-valence
states are generated in our system.

The NFL mixed-valence state occurs for oy < 1/2
if FL resonances are absent.

In the extreme case where Vz’\,y = 0, the mixed-va-
lence state exists only owing to the additional FL reso-
nance.

The FL mixed-valence states are generated by the
instability of the NFL state against the interband scat-
tering. These states are formed under the same condi-
tions that are necessary for the existence of FL reso-
nances at the Fermi level. The type of the FL mixed-
valence state depends on the type of the FL resonance
(narrow or «wide») that can be realized for a given set
of parameters.

As shown above, narrow FL resonances exist for all
values s < 1/2. Thus, the main features of the FL
mixed-valence state are the appearance of a small en-
ergy scale and the formation of pseudogaps.
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The transitions between the NFL and FL mixed-
valence states are characterized by changing the va-
lency from one noninteger value to another. Taking
the foregoing into account, we conclude that condi-
tion (4.9) alone is necessary for the transitions between
two mixed-valence states.

When condition (4.9) is not satisfied, the direct
transition between the NFL mixed-valence state and
the state with a nearly integer valency occurs at
as ~ 1/2.

Apparently, the most realistic way to generate the
transitions experimentally is to change the lattice pa-
rameter by doping [3]. This leads to changing the hy-
bridization between conduction electrons and the I's
level that enters the interaction matrix elements and
the widths vp. We can thus obtain a series of transi-
tions, which are considered in detail elsewhere.

6. CONCLUDING REMARKS

6.1. The above results allow us to understand the
mechanisms of two important properties of HF NFL
metals.

(1) The single-site two-channel Kondo effect and
the mixed valence state coexist because of additional
FL resonances at/near the Fermi level. The scatter-
ing of the non-hybridized impurity degrees of freedom
by the narrow A-band electrons generates these reso-
nances. Therefore, two energy scales Tk and 7, exist
at the Fermi level. The FL resonance with the width
v, corresponds to the local mixed-valence state.

(2) There are two possible energy dependence
types in a system with the two-channel quadrupole
exchange interaction. In the Kondo regime (Tx > A),
one obtains the known universal energy depen-
dences [14,17,22] because the Green’s function in
Eq. (3.9) has a single energy scale Tk.

In the «X-ray edge» regime (T < A), nonuni-
versal power-law energy dependences must occur in
accordance with the form of the Green’s function in
Eqs. (3.16) and (3.17).

It follows from the experimental data [2] that the
increase of the impurity concentration z in the U-
compounds results in (a) decreasing Tk (z), (b) increas-
ing the concentration of the impurity atoms by a notice-
able value A, and (c¢) increasing the anisotropy of the
exchange parameters. Therefore, increasing the impu-
rity concentration must enable crossing over from the
Kondo regime with the universal energy dependences
to the «X-ray edge» regime with nonuniversal energy
dependences.
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As shown above, characteristic features of the NFL
compounds with f-shell impurities are the different
types of the mixed-valence states with the NFL and FL
excitation spectra and the fact that the heavy-fermion
state type depends on the interaction parameter .
In the other words, this parameter determines the role
of the charge and spin excitations in the formation of
heavy fermions.

Small energy scales and the pseudogaps are induced
by the narrow FL resonances. Therefore, the instabil-
ity of the NFL state provides a new physical mecha-
nism for the small energy scale. Unlike in the previous
works [6,21], this mechanism is especially appropriate
for impurities with an unstable valency.

Thus, the instability of the NFL state induced by
the interband scattering of multiparticle excitations
considerably changes the mechanisms of the formation
of heavy-fermion states.

6.2. We now briefly consider the features of the
temperature dependences within the framework of the
mechanism proposed in the present paper. The en-
ergy dependences of the Green’s functions (2.6), (3.9),
(3.16), and (3.17) imply that new types of the tem-
perature transitions (crossovers) occur in the system.
When new FL resonances generated by scattering are
not formed, a transition occurs from the universal tem-
perature dependences of the physical quantities in the
Kondo regime to nonuniversal power-law dependences
in the «X-ray edge» regime. The characteristic tem-
perature of this crossover is T,y ~ A. In particular,
the logarithmic dependence of the linear specific heat
C/T x In(Tk /T) must be transformed into the power-
law dependence C'/T o T~'*2:. The former depen-
dence was calculated in [14,17] using expression (3.9)
within the framework of the two-channel Kondo model.
The power-law dependences follow from Eqs. (3.16) and
(3.18) for the Green’s functions in the «X-ray edge»
regime. As mentioned in this section, the condition
Tk < A can be realized at a relatively high concen-
tration of the f-shell impurities. The power-law depen-
dences of C'//T observed in U,Y;_,Pds at = 0.2in [7]
can therefore be generated by the mechanism discussed
here. We recall that historically, the alloys U,Y;_,Pds
were the first systems where the NFL behavior induced
by the two-channel quadrupole Kondo model was ob-
served [3, 5].

In the two-channel quadrupole Kondo model, the
magnetic susceptibility is known [2] to have the van
Vleck contribution between the I's groundstate and the
first excited crystalline electric field. The van Vleck
susceptibility is described by the temperature depen-
dence x ~ xo — a(T/Tx)'/?. According to the exper-
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imental data [7], this dependence is also transformed
into a power-law one as the impurity concentration in-
creases.

The quadrupole susceptibility xo has the logarith-
mic divergence x In(Tx/T) in the Kondo regime. It
is experimentally determined from the nonlinear mag-
netic susceptibility v [24]. Correspondingly, x¢o and
v3 must exhibit the same crossover as the specific heat.

We emphasize that the crossover discussed here cor-
responds to the transition between the state with a
nearly integer valency and the mixed-valence state.

The existence of the FL resonances generated by
the scattering of NFL excitations results in crossovers
between the FL and NFL temperature dependences
within both the Kondo regime and the «X-ray edge»
regime. The characteristic temperatures of these
crossovers are T.o ~ 7., where v, are the widths
of the FL resonances determined in Eqs. (4.6), (4.7).
We note that the low-temperature transition to the
FL state usually occurs at T ~ A?/Ty in the two-
channel Kondo model [3,25]. The maximum value of
the linear specific heat is equal to (C/T)™* ~ Ty /A2
Within the framework of our mechanism, it must be
(C/T)mae ~ 4t for 4, > A?/Tk. Tt is possible
that the additional small scale 7, enters the scaling
dependences in the FL-NFL transition region. The
appearence of a new small energy scale is observed in
the low-temperature scaling law of resistivity in [24].
In the «X-ray edge» regions, the crossover at T ~ T
corresponds to the transition between the FL and NFL
mixed-valence states.

The temperature transitions between FL mixed-
valence states of the different origins were considered
in [26].

6.3. The above results are obtained for single-ion
NFL effects. We now show that these effects can also
be considerable in «concentrated» systems.

The ground state of these systems significantly de-
pends on the competition between the intersite interac-
tion, i.e., the indirect exchange of the RKKY type for
pseudospins, and the on-site Kondo scattering leading
to the screening of the quadrupole impurity moment
by conduction electrons. The characteristic energy for
the two-channel on-site Kondo scattering is determined
by expression (4.11). The characteristic energy scale of
the RKKY interaction is

) ~ g,

where ¢; is the concentration of the interacting atoms.
In concentrated systems, i.e., at ¢; ~ 1, the energies e g
and egg Ky are such that

2
ex

EF

ERKKY ~ Cj ( (6.1)
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ex > epxkgy for ag #0. (6.2)

This implies that single-ion NFL effects can be very
important even when the two-channel impurities form
a sublattice.

The analysis presented here enables us to qual-
itatively understand two important aspects of the
problem for the «concentrated» systems: the depen-
dence of the HF properties on doping and a physical
reasons that can satisfactorily explain a number of
properties of the «concentrated» systems within the
framework of the single-ion quadrupole Kondo model.

This work was supported by the Russian Founda-
tion for Basic Research and the International Associa-
tion INTAS (grant Ne97-11066).
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