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COULOMB EFFECTS IN DYNAMICS OF POLAR LATTICESL. A. Falkovsky *Landau Institute for Theoreti
al Physi
s117337, Mos
ow, RussiaSubmitted 16 November 2000Zone-
enter phonon frequen
ies of polar latti
es are 
al
ulated for uniaxial 
rystals from the symmetry ar-guments. Long-range Coulomb for
es and 
rystal anisotropy are expli
itly taken into a

ount. Free-
arrier
ontributions into the diele
tri
 
onstant are in
luded. The angular dispersion of opti
al-phonon modes is
ompared with data for hexagonal 6H-SiC polytype.PACS: 63.20.-e, 78.30.-j1. INTRODUCTIONEle
trostati
 dipole�dipole intera
tions play an im-portant role in the theory of latti
e vibrations. It is
ommon knowledge [1℄ that the degenera
y of phononmodes at the Brillouin zone-
enter (e.g., in the 
ubi
3C�SiC 
rystal) is removed if the atomi
 displa
ementsare a

ompanied by the Coulomb �eld. Then the fre-quen
y of the longitudinal opti
al mode be
omes largerthan the frequen
ies of transverse modes. For non
ubi

rystals (e.g., for the hexagonal or rhombohedral SiCpolytypes), the long-range Coulomb �eld also gives riseto an angular dependen
e of the zone-
enter modes: atk = 0, the opti
al-phonon frequen
ies depend on thepropagation dire
tion.Su
h a phenomenon is rather unusual from both thephysi
al and mathemati
al standpoints: the eigenval-ues of dynami
al matrix 
al
ulated for k = 0 depend onthe k-dire
tion. This is 
aused by a nonanalyti
 k-de-penden
e of the dynami
al matrix whi
h results froma long-range dipole�dipole intera
tion. In polar 
ubi

rystals, the Coulomb �eld splits the three-fold degen-era
y of opti
al modes at the Brillouin zone-
enter, butthe frequen
y dependen
e on the propagation dire
tionalso appears in uniaxial 
rystals due to the long-rangeele
trostati
 �eld.The ele
trodynami
 part of the problem was formu-lated by Loudon [2℄. The Coulomb 
ontributions in thedynami
al matrix are usually 
al
ulated be means of anEvald summation [1℄. The angular dispersion of opti
al*E-mail: falk�itp.a
.ru

modes is 
learly demonstrated by the re
ent numeri-
al 
al
ulations for the zone-
enter phonons [3℄ and forthe entire Brillouin zone [4℄ in the 
ase of A3B5 semi-
ondu
tors with the wurtzite stru
ture. The Coulomb�eld is also taken into a

ount in the theory of phonon�plasmon 
oupled modes (polaritons) [5℄ when the e�e
tof free 
arriers is studied.The main purpose of this paper is i) to 
al
ulate theangular dispersion for the zone-
enter phonons in uni-axial 
rystals using the symmetry arguments and ii) to
onsider the e�e
t of free 
arriers on these modes. Forde�niteness, we 
on
entrate on the phonon modes ofuniaxial SiC polytypes that are presently very popularin te
hni
al appli
ations.2. OPTICAL MODES AT THE ZONE-CENTEROF CUBIC CRYSTALSAmong the hexagonal and rhombohedral SiC poly-types, there is the 
ubi
 3C-SiC one with two atomsin the unit 
ell. First we 
onsider the opti
al modesin this simplest 
ase. For the nearest vi
inity of theBrillouin zone-
enter, k � �=d, where d is the latti
eparameter, the a
ousti
 and opti
al modes 
an be di-vided using the series expansion in k of the dynami
almatrix. As the result, in the zero approximation in kwe obtain the system of three equations for the opti
aldispla
ements ui (i = x; y; z):(� �M�!2)u = f ; (1)where M� is the redu
ed mass of two atoms (Si and C)in the unit 
ell, � is the diagonal element of the for
e-966
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onstant matrix (the only one diagonal element of the3� 3-matrixs exists in a 
ubi
 
rystal). The value of �
an be 
al
ulated in the nearest-neighbor approxima-tion, but the long-range Coulomb intera
tion 
annot be
onsidered in this way. The Coulomb e�e
t is des
ribedby the for
e f = ZeE a
ting on an e�e
tive 
harge Z,where the ele
tri
 �eld E is found from Maxwell's equa-tions. Eliminating the magneti
 �eld from Maxwell'sequations, we 
an express the ele
tri
 �eld E in termsof polarization P asE = �4� �k(k �P)� !2P=
2�k2 � !2=
2 : (2)We are interested in the ! values of the order ofopti
al mode frequen
ies, su
h that !=
 � 103 
m�1.If the phonon is ex
ited by light, its wave ve
tor hasthe value of the photon wave ve
tor, i.e., of the orderof 105 
m�1. The 
ondition k � !=
 is then satis�edand the terms involving 
2 must be omitted in Eq. (2),whi
h then be
omesE = �4�k(k �P)=k2: (3)In the long-wave limit (k � �=d), the polarizationis related to the phonon displa
ement and the ele
tri
�eld by the ma
ros
opi
 equationP = NZeu+ �E; (4)where � is the atomi
 permittivity and N is the num-ber of unit 
ells in 1 
m3. Sometimes, the lo
al �eld isused in equations similar to (4) instead of the ma
ro-s
opi
 �eld E. For 
ubi
 
rystals (for whi
h only thesimple Lorentz relationship exists), the lo
al �eld 
anbe eliminated by renormalizing the for
e 
onstant �.Using Eqs. (3) and (4), we 
an express the ele
tri
�eld E in terms of u. Equation (1) then gives the fre-quen
ies of transverse and longitudinal opti
al modesin the 
ubi
 
rystal as!2TO = �=M� and !2LO = �=M� + �; (5)where� = 4�Z2e2N=M�"1 and "1 = 1 + 4��: (6)Although relation (3) between E and P involvesthe k-dire
tion expli
itly, the frequen
ies of opti
almodes (5) are independent of the propagation dire
-tion as it must be for a 
ubi
 
rystal.3. OPTICAL MODES AT THE ZONE-CENTEROF UNIAXIAL CRYSTALSThe 
rystal anisotropy of the non
ubi
 SiC poly-types is known to be small be
ause the nearest neigh-bors of any given atom preserve the 
ubi
 symmetry.

Let us introdu
e the strain tensor eij des
ribing a smalldi�eren
e between the dynami
 matri
es for the non-
ubi
 polytype and the 
ubi
 one. The phonon spe
-trum of the non
ubi
 polytype 
an then be obtained inthe following way. At the �rst step, we transform theBrillouin zone of the 
ubi
 polytype (�the large zone�)using the strain eij . Hen
e, we �nd the frequen
ies ofthe so-
alled strong modes. For the zone-
enter, they
an be obtained by expanding the dynami
 matrix inthe strain eij .At the se
ond step, we take into a

ount that non-
ubi
 polytypes have more than two atoms in the unit
ell and the additional opti
 modes appear. Phononbran
hes of the large zone are folded [6℄ into the Bril-louin zone of the non
ubi
 polytype, thereby produ
-ing additional weak modes. The weak-mode intensityin both opti
s and Raman s
attering was 
al
ulatedin [7℄. In the present paper, we thus 
onsider onlystrong modes.The dynami
 matrix 
an 
ontain only the eij 
om-ponents that are invariant under the symmetry trans-formations of the 
rystal. There are two �rst-order in-variants, ezz and exx+ eyy, assuming that the z-axis isparallel to the 
-axis. We 
an �x the 
rystal volume,i.e., impose the 
ondition eii = 0. We then have onlyone invariant, for instan
e ezz, whi
h is involved onlyin the diagonal elements of the for
e-
onstant matrix inEq. (1). The 
oe�
ients of the xx and yy elements areequal be
ause of the rotation invarian
e around the 
-axis. Finally, we 
an omit the 
ommon frequen
y shift.Instead of Eq. (1), we thus obtain0B� �+�n2x�!2 �nxny �nxnz�nxny �+�n2y�!2 �nynz�nxnz �nynz �+�n2z�!2 1CA��0B� uxuyuz 1CA = 0; (7)where n = k=k and� = �=M�; � = �+ bezz: (8)We take the ve
tor k in the yz-plane and denote as �the angle between k and the 
-axis,nx = 0; nz = 
os �; ny = sin �:We then see from Eq. (7) that there are one transversemode (TO1) vibrating in the x-dire
tion and two modesin the yz-plane with the frequen
ies967
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os 2�℄2+(���)2 sin2 2�o1=2 :We emphasize that Eqs. (9) give the phonon fre-quen
ies in the zone-
enter, but these frequen
es de-pend on the propagation dire
tion �. This depen-den
e has its origin in the simultaneous e�e
t of theCoulomb �eld (des
ribed by the 
onstant �) and 
rys-tal anisotropy (� 6= �). In absen
e of the Coulomb�eld (� = 0), we have !2z = �, !2y = �, and there isno angular dispersion. For the isotropi
 
ase (� = �),Eqs. (9) give the modes for the 
ubi
 
rystal.If the Coulomb e�e
t is small 
ompared to the 
rys-tal anisotropy (� � j� � �j), we 
an omit the o�-diagonal terms in matrix (7). We then have one modevibrating 
lose to the 
-dire
tion with the frequen
y!2z = � + � 
os2 � (with an a

ura
y to �2=(� � �)2),and the other mode near the y-dire
tion with the fre-quen
y !2y = � + � sin2 �.In the opposite limiting 
ase of the small 
rystalanisotropy, it is useful to pass to the 
oordinate systemwith the z0-axis along the k-ve
tor, subje
ting Eq. (7)to the unitary transformationUij = 0B� 1 0 00 
os � sin �0 � sin � 
os � 1CA : (10)We must then diagonalize the matrix0B� � 0 00 � 
os2 �+� sin2 � (���) sin � 
os �0 (���) sin � 
os � � sin2 �+� 
os2 �+� 1CA :(11)We see that in addition to the TO1 mode, in the 
asewhere j�� �j � �, there are another nearly transverseTO2 mode and nearly longitudinal LO mode with thefrequen
ies!2TO2(�) = � 
os2 � + � sin2 �;!2LO(�) = �+ � sin2 � + � 
os2 �; (12)whi
h 
an also be obtained by expanding Eq. (9) withan a

ura
y to (���)2=�2. The dispersion 
urves 
or-responding to Eqs. (9) and (12) are shown s
hemati-
ally in �gure. The angular dispersions of form (12)were obtained by Loudon [2℄.

0 1
TO1TO2
LO� + ��+ ��� sin2 �

!2

Angular dispersion of opti
al-phonon modes in uniaxial
rystals at the zone-
enter. The angle � is the anglebetween the 
-axis and the wave ve
tor k ! 0. TheTO1 mode is polarized perpendi
ularly to the 
-k plane.The LO and TO2 modes have a nearly longitudinal andtransverse 
hara
ter, respe
tively, if the Coulomb for
ee�e
ts dominate over the 
rystal anisotropyOne 
an see from Eq. (9) that a 
onservation lawexists. Namely, the sum of the squared frequen
ies ofthe y and z modes is independent of the propagationdire
tion, e.g.,!2y(� = 0) + !2z(� = 0) == !2y(� = �=2) + !2z(� = �=2): (13)As an example, we 
onsider 6H-SiC polytype. The an-gular dispersion of its opti
al modes is known from theexperiment [5; 6℄. For � = 0 (propagation parallel tothe 
-axis), the TO1 and y modes are degenerate andtheir frequen
ies are equal to p�. The experimentalvalue is 797 
m�1 (with the un
ertainty about 1 
m�1).The 
orresponding value of the longitudinal mode is!LO(� = 0) = p�+ �:For � = �=2 (propagation perpendi
ular to the 
-axis),!TO2(� = �=2) = p�(the experimental value is 788 
m�1) and!LO(� = �=2) =p�+ �(the experimental value is 970 
m�1). It immediatelyfollows that � = 552:92 
m�2, � = 7882 
m�2, and� = 7972 
m�2.We then �nd!LO(� = 0) = p�+ � = 962:6 
m�1;968
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ts in dynami
s of polar latti
eswhi
h should be 
ompared with the experimental value964 
m�1. The small di�eren
e between these two val-ues 
an be attributed to the anisotropy in the atomi
permittivity, whi
h is 
onsidered in the next se
tion.4. EFFECTS OF THE PERMITTIVITYANISOTROPY AND FREE CARRIERSIn the previous se
tion, we assumed that the uniax-ial anisotropy a�e
ts only the short-range 
ontributionto the for
e-
onstant matrix. But in uniaxial 
rystals,the atomi
 permittivity � is a tensor with two inde-pendent 
omponents, �k and �?, 
orresponding to the
rystal axes. This e�e
t is small be
ause ea
h atomhas nearly 
ubi
 surroundings, but it must be in
ludedfor a 
areful 
omparison with experiments. In a similarway, free 
arriers 
ontribute to the angular dispersionof the longitudinal opti
al mode.Taking into a

ount both the anisotropy of atomi
permittivity and the 
ondu
tivity of free 
arriers �, werepla
e Eq. (4) withPk = NZeuk + ��k + i�k! �Ek;P? = NZeu? + ��? + i�?! �E?: (14)Using Eqs. (3) and (14), we obtain the equation ofmotion in form (7) and phonon frequen
ies (9), but the
onservation law (13) does not apply now be
ause �be
omes a fun
tion of �,�(�) = 4�Z2e2NÆM�h�"1k + 4�i�k! � 
os2 �++ �"1? + 4�i�?! � sin2 �i ; (15)where "1k = 1 + 4��k and "1? = 1 + 4��?. We notethat the vibration modes a
quire some damping due to
ondu
tivity. In addition, the opti
al phonon has a nat-ural width � given by its probability to de
ay into lowerenergy phonons, and the term i�=2 must be added to! in Eq. (7).We 
an then use transformation (10) and obtainmatrix (11) with the fun
tion �(�) instead of 
on-stant �. We see that in the limiting 
ase of theweak anisotropy, j� � �j � �(�), the Coulomb �eld(and therefore the 
arriers) a�e
ts only the longitudi-nal mode. Its frequen
y is determined by the equationR(!) � �(�)+� sin2 �+� 
os2 ��i!��!2 = 0; (16)

where �(�) given by Eq. (15) depends on ! expli
itlyand through the 
ondu
tivity �.Equation (16) gives the frequen
y of the LO-pho-non�plasmon 
oupled mode in uniaxial semi
ondu
-tors. Noti
e that in the isotropi
 
ase, Eq. (16) 
oin-
ides with the 
ondition "(!) = 0, where the diele
tri
fun
tion "(!) is given by the well-known expression"(!) = "1 "1 + !2LO � !2TO!2TO � !2 � i!� � !2p!(! + i
)# ;and the plasmon frequen
y is!2p = 4�ne2"1m :In this 
ase, Eqs. (5), (6), and (8) give!2TO = � = �; !2LO = !2TO + 4�Z2e2NM�"1 ;and the Drude formula for the 
ondu
tivity reads� = ne2m(�i! + 
) :The fun
tion R(!) in Eq. (16) is measured in Ra-man experiments. Namely, the Raman intensity 
on-sidered as a fun
tion of frequen
y transfer ! isI(!; �) � Im 1R(!) (17)for the LO mode ex
itation with the propagation di-re
tion �. If the in
ident or s
attered light has a �niteaperture, Eq. (17) must be integrated over the allowedrange of �.Equation (17) 
an be used in experimental study-ing the e�e
t of 
arriers on the Raman s
atteringin uniaxial semi
ondu
tors. The 
ondu
tivity tensorin Eq. (15) is given by the Drude-like formula withthe diagonal 
omponents mk;? and 
k;?, for instan
e,�k = ne2=mk(�i! + 
k).Let us summarize the main result of the paper: thee�e
ts of 
rystal anisotropy (� 6= �) and Coulomb �eld�(�) on the phonon dispersion are expli
itly separatedas one 
an see in Eqs. (9) and (16).This study was initiated by dis
ussions with J. Ca-massel and P. Vi
ente (GES, Montpellier, Fran
e), andthe author would like to thank them. The authora
knowledges the kind hospitality of the Max-Plank-Institut für Physik komplexer Systeme (Dresden, Ger-many) where this work was 
ompleted. The work wassupported by the Russian Foundation for Basi
 Re-sear
h (proje
t 01-02-16211).969
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