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Zone-center phonon frequencies of polar lattices are calculated for uniaxial crystals from the symmetry ar-

guments.

Long-range Coulomb forces and crystal anisotropy are explicitly taken into account.

Free-carrier

contributions into the dielectric constant are included. The angular dispersion of optical-phonon modes is

compared with data for hexagonal 6 H-SiC polytype.
PACS: 63.20.-e, 78.30.-]

1. INTRODUCTION

Electrostatic dipole—dipole interactions play an im-
portant role in the theory of lattice vibrations. It is
common knowledge [1] that the degeneracy of phonon
modes at the Brillouin zone-center (e.g., in the cubic
3C-SiC crystal) is removed if the atomic displacements
are accompanied by the Coulomb field. Then the fre-
quency of the longitudinal optical mode becomes larger
than the frequencies of transverse modes. For noncubic
crystals (e.g., for the hexagonal or rhombohedral SiC
polytypes), the long-range Coulomb field also gives rise
to an angular dependence of the zone-center modes: at
k = 0, the optical-phonon frequencies depend on the
propagation direction.

Such a phenomenon is rather unusual from both the
physical and mathematical standpoints: the eigenval-
ues of dynamical matrix calculated for k = 0 depend on
the k-direction. This is caused by a nonanalytic k-de-
pendence of the dynamical matrix which results from
a long-range dipole—dipole interaction. In polar cubic
crystals, the Coulomb field splits the three-fold degen-
eracy of optical modes at the Brillouin zone-center, but
the frequency dependence on the propagation direction
also appears in uniaxial crystals due to the long-range
electrostatic field.

The electrodynamic part of the problem was formu-
lated by Loudon [2]. The Coulomb contributions in the
dynamical matrix are usually calculated be means of an
Evald summation [1]. The angular dispersion of optical
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modes is clearly demonstrated by the recent numeri-
cal calculations for the zone-center phonons [3] and for
the entire Brillouin zone [4] in the case of A®B® semi-
conductors with the wurtzite structure. The Coulomb
field is also taken into account in the theory of phonon—
plasmon coupled modes (polaritons) [5] when the effect
of free carriers is studied.

The main purpose of this paper is i) to calculate the
angular dispersion for the zone-center phonons in uni-
axial crystals using the symmetry arguments and ii) to
consider the effect of free carriers on these modes. For
definiteness, we concentrate on the phonon modes of
uniaxial SiC polytypes that are presently very popular
in technical applications.

2. OPTICAL MODES AT THE ZONE-CENTER
OF CUBIC CRYSTALS

Among the hexagonal and rhombohedral SiC poly-
types, there is the cubic 3C-SiC one with two atoms
in the unit cell. First we consider the optical modes
in this simplest case. For the nearest vicinity of the
Brillouin zone-center, k < 7/d, where d is the lattice
parameter, the acoustic and optical modes can be di-
vided using the series expansion in k of the dynamical
matrix. As the result, in the zero approximation in k
we obtain the system of three equations for the optical
displacements u; (i = z,y, 2):

(6 = M*w’)u=f, (1)

where M* is the reduced mass of two atoms (Si and C)
in the unit cell, ¢ is the diagonal element of the force-
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constant matrix (the only one diagonal element of the
3 x 3-matrixs exists in a cubic crystal). The value of ¢
can be calculated in the nearest-neighbor approxima-
tion, but the long-range Coulomb interaction cannot be
considered in this way. The Coulomb effect is described
by the force f = ZeE acting on an effective charge 7,
where the electric field E is found from Maxwell’s equa-
tions. Eliminating the magnetic field from Maxwell’s
equations, we can express the electric field E in terms
of polarization P as
2p /2
E:—47r[k(k~P)—w P/c]‘ @)
k2 — w2/

We are interested in the w values of the order of
optical mode frequencies, such that w/c ~ 10% cm ™!,
If the phonon is excited by light, its wave vector has
the value of the photon wave vector, i.e., of the order
of 10° em™!. The condition k > w/c is then satisfied
and the terms involving ¢ must be omitted in Eq. (2)
which then becomes

E = —4rk(k - P)/k%

~
~

3

(3)

In the long-wave limit (k < 7/d), the polarization
is related to the phonon displacement and the electric
field by the macroscopic equation

P =NZeu+ \E, (4)

where y is the atomic permittivity and N is the num-
ber of unit cells in 1 cm?®. Sometimes, the local field is
used in equations similar to (4) instead of the macro-
scopic field E. For cubic crystals (for which only the
simple Lorentz relationship exists), the local field can
be eliminated by renormalizing the force constant ¢.

Using Eqgs. (3) and (4), we can express the electric
field E in terms of u. Equation (1) then gives the fre-
quencies of transverse and longitudinal optical modes
in the cubic crystal as

wro = ¢/M* and wio=¢/M* +p, (5)

where

p=4nZ?e*N/M*c>® and &> =1+ 4ny.

(6)

Although relation (3) between E and P involves
the k-direction explicitly, the frequencies of optical
modes (5) are independent of the propagation direc-
tion as it must be for a cubic crystal.

3. OPTICAL MODES AT THE ZONE-CENTER
OF UNIAXIAL CRYSTALS

The crystal anisotropy of the noncubic SiC poly-
types is known to be small because the nearest neigh-
bors of any given atom preserve the cubic symmetry.
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Let us introduce the strain tensor e;; describing a small
difference between the dynamic matrices for the non-
cubic polytype and the cubic one. The phonon spec-
trum of the noncubic polytype can then be obtained in
the following way. At the first step, we transform the
Brillouin zone of the cubic polytype («the large zone»)
using the strain e;;. Hence, we find the frequencies of
the so-called strong modes. For the zone-center, they
can be obtained by expanding the dynamic matrix in
the strain e;;.

At the second step, we take into account that non-
cubic polytypes have more than two atoms in the unit
cell and the additional optic modes appear. Phonon
branches of the large zone are folded [6] into the Bril-
louin zone of the noncubic polytype, thereby produc-
ing additional weak modes. The weak-mode intensity
in both optics and Raman scattering was calculated
in [7]. In the present paper, we thus consider only
strong modes.

The dynamic matrix can contain only the e;; com-
ponents that are invariant under the symmetry trans-
formations of the crystal. There are two first-order in-
variants, e.. and e,, + ey, assuming that the z-axis is
parallel to the c-axis. We can fix the crystal volume,
i.e., impose the condition e;; = 0. We then have only
one invariant, for instance e,,, which is involved only
in the diagonal elements of the force-constant matrix in
Eq. (1). The coefficients of the xz and yy elements are
equal because of the rotation invariance around the c-
axis. Finally, we can omit the common frequency shift.
Instead of Eq. (1), we thus obtain

B+pn2—w? Prgny PN,
Prgny ,6’+pn§—w2 PNy, X
PN pryn.; a+pn?—w?
Ug
X u, | =0, (7)
Uz
where n = k/k and
a=¢/M*, [=a+be,.,. (])

We take the vector k in the yz-plane and denote as 6
the angle between k and the c-axis,

n, =0, n;=cosf, mny,=-sind.
We then see from Eq. (7) that there are one transverse
mode (T'0;) vibrating in the z-direction and two modes
in the yz-plane with the frequencies
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w%ol = /B',
2 1 9)
wy,z(e) = E(p-l_ a +ﬂ) +
i% {[p-l—(a—ﬂ) cos 219]2 +(a—p)%sin® 29}1/2 )

We emphasize that Eqs. (9) give the phonon fre-
quencies in the zone-center, but these frequences de-
pend on the propagation direction . This depen-
dence has its origin in the simultaneous effect of the
Coulomb field (described by the constant p) and crys-
tal anisotropy (8 # «). In absence of the Coulomb
field (p = 0), we have w? = a, w; = f3, and there is
no angular dispersion. For the isotropic case (a = f3),
Eqgs. (9) give the modes for the cubic crystal.

If the Coulomb effect is small compared to the crys-
tal anisotropy (p < |a — f]), we can omit the off-
diagonal terms in matrix (7). We then have one mode
vibrating close to the c-direction with the frequency
w? = a + pcos?f (with an accuracy to p?/(a — 3)?),
and the other mode near the y-direction with the fre-
quency w; = f3 + psin® 6.

In the opposite limiting case of the small crystal
anisotropy, it is useful to pass to the coordinate system
with the z’-axis along the k-vector, subjecting Eq. (7)
to the unitary transformation

1 0 0
Uyj=1] 0 cosf sinf (10)
0 —sinf cosf
We must then diagonalize the matrix
3 0 0
0 [cos’f+asin?f  (B—a)sinfcosh
0 (B—a)sinfcosh [sin?fh+acos?h+p
(11)

We see that in addition to the TO; mode, in the case
where |a — 3] < p, there are another nearly transverse
T0O2 mode and nearly longitudinal LO mode with the
frequencies

who, (0) = Bcos® b + a sin® 6, (12)

wio(B) = p+ Bsin® 6 + acos? b,
which can also be obtained by expanding Eq. (9) with
an accuracy to (a — 3)?/p?. The dispersion curves cor-
responding to Eqgs. (9) and (12) are shown schemati-
cally in figure. The angular dispersions of form (12)
were obtained by Loudon [2].

968

T0O:

sin? @

Angular dispersion of optical-phonon modes in uniaxial
crystals at the zone-center. The angle 6 is the angle
between the c-axis and the wave vector k — 0. The
TO1 mode is polarized perpendicularly to the c-k plane.
The LO and T'O2 modes have a nearly longitudinal and
transverse character, respectively, if the Coulomb force
effects dominate over the crystal anisotropy

One can see from Eq. (9) that a conservation law
exists. Namely, the sum of the squared frequencies of
the y and z modes is independent of the propagation
direction, e.g.,

=7/2) +wi(@=r/2). (13)

As an example, we consider 6 H-SiC polytype. The an-
gular dispersion of its optical modes is known from the
experiment [5,6]. For § = 0 (propagation parallel to
the c-axis), the TO; and y modes are degenerate and
their frequencies are equal to /3. The experimental
value is 797 cm~! (with the uncertainty about 1 em~1).
The corresponding value of the longitudinal mode is

wLo(e = 0) == \/p-l-—oz

For 6§ = 7/2 (propagation perpendicular to the c-axis),

wro, (0 = 7/2) = Va

(the experimental value is 788 cm~!) and

wro(@=7/2)=+\/p+ B

(the experimental value is 970 cm™!). It immediately
follows that p = 552.92 em™2, a = 7882 cm~2, and
B =797% cm 2,

We then find

wro(@=0)=p+a=962.6cm ',
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which should be compared with the experimental value
964 cm~!. The small difference between these two val-
ues can be attributed to the anisotropy in the atomic
permittivity, which is considered in the next section.

4. EFFECTS OF THE PERMITTIVITY
ANISOTROPY AND FREE CARRIERS

In the previous section, we assumed that the uniax-
ial anisotropy affects only the short-range contribution
to the force-constant matrix. But in uniaxial crystals,
the atomic permittivity y is a tensor with two inde-
pendent components, x| and x , corresponding to the
crystal axes. This effect is small because each atom
has nearly cubic surroundings, but it must be included
for a careful comparison with experiments. In a similar
way, free carriers contribute to the angular dispersion
of the longitudinal optical mode.

Taking into account both the anisotropy of atomic
permittivity and the conductivity of free carriers o, we
replace Eq. (4) with

g
P = NZeu+ (x) +i-L

)Euv

P, = NZeu, + (XL+iU—l) E..
w

w

(14)

Using Egs. (3) and (14), we obtain the equation of
motion in form (7) and phonon frequencies (9), but the
conservation law (13) does not apply now because p
becomes a function of 6,

il

_ 2 2 * [e’s) .
p(0) = 4nZ?e*N /M [(EH +4mw

) cos? 6+
+ (a‘f + 4m’%) sin 9] . (15)

where 5ﬁ° = 1+4my and e® = 1+ 47y .. We note
that the vibration modes acquire some damping due to
conductivity. In addition, the optical phonon has a nat-
ural width T" given by its probability to decay into lower
energy phonons, and the term iI'/2 must be added to
win Eq. (7).

We can then use transformation (10) and obtain
matrix (11) with the function p(f) instead of con-
stant p. We see that in the limiting case of the
weak anisotropy, |a — | < p(f), the Coulomb field
(and therefore the carriers) affects only the longitudi-
nal mode. Its frequency is determined by the equation

R(w) = p(#)+Bsin? f+a cos® f—iwl—w? =0, (16)
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where p(f) given by Eq. (15) depends on w explicitly
and through the conductivity o.

Equation (16) gives the frequency of the LO-pho-
non—plasmon coupled mode in uniaxial semiconduc-
tors. Notice that in the isotropic case, Eq. (16) coin-
cides with the condition ¢(w) = 0, where the dielectric
function (w) is given by the well-known expression

2 2 w2
e(w)=¢e> |1+ 2wLO 2wTQ - L ,
wio —w? —iwl  w(w +iv)
and the plasmon frequency is
,  Amne?
wy = .
P goom
In this case, Eqgs. (5), (6), and (8) give
AnZ2e>’N
WQTO =a =0, w%o =W%o TMrexs

and the Drude formula for the conductivity reads

ne2

o= ——.
m(—iw + )

The function R(w) in Eq. (16) is measured in Ra-
man experiments. Namely, the Raman intensity con-
sidered as a function of frequency transfer w is

I(w,0)

1
~Im —— 17
m— (1)

(w)
for the LO mode excitation with the propagation di-
rection #. If the incident or scattered light has a finite
aperture, Eq. (17) must be integrated over the allowed
range of 6.

Equation (17) can be used in experimental study-
ing the effect of carriers on the Raman scattering
in uniaxial semiconductors. The conductivity tensor
in Eq. (15) is given by the Drude-like formula with
the diagonal components m | and 7)1, for instance,
o = neQ/mH (—iw + ’yH).

Let us summarize the main result of the paper: the
effects of crystal anisotropy (a # ) and Coulomb field
p(0) on the phonon dispersion are explicitly separated
as one can see in Eqs. (9) and (16).

This study was initiated by discussions with J. Ca-
massel and P. Vicente (GES, Montpellier, France), and
the author would like to thank them. The author
acknowledges the kind hospitality of the Max-Plank-
Institut fiir Physik komplexer Systeme (Dresden, Ger-
many) where this work was completed. The work was
supported by the Russian Foundation for Basic Re-
search (project 01-02-16211).



L. A. Falkovsky MXIOT®, Tom 119, BeIm. 5, 2001

REFERENCES 4. C. Bungaro, K. Rapcevicz, and J. Bernholc, Phys. Rev.
B 61, 6720 (2000).

1. M. Born and K. Huang, Dynamical Theory of Crystal 5. H. Harima, S. Nakashima, and T. Uemura, J. Appl.
Lattices, Clarendon Press, Oxford (1954). Phys. 78, 1996 (1995).

6. D. W. Feldman, J. H. Parker, W. J. Choyke, and
L. Patrick, Phys. Rev. 170, 698 (1968); Phys. Rev.
173, 787 (1968).

2. R. Loudon, Adv. Phys. 13, 423 (1964).

3. H. Grille, Ch. Schnittler, and F. Bechstedt, Phys. Rev.

Zh. Eksp. Teor. Fiz. 69, 247 (1999)].

970



