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A new class of strongly nonlinear steadily rotating vortices is found. The Hamiltonian contour dynamics is
proposed as a new approach for their study in some models of geophysical fluid dynamics and plasma. Using
the Euler description as a starting point, we present a systematic procedure to reduce the two-dimensional
dynamics of constant-vorticity and constant-density patches to the Hamiltonian dynamics of their contours for
various parametrizations of the contour. The special Dirac procedure is used to eliminate the constraints arising
in the Hamiltonian formulations with the Lagrangian parametrization of the contour. Numerical estimations
illustrating the physical significance of the results and the range of model parameters where these results can be
applicable are presented. Possible generalizations of the approach based on the application of the Hamiltonian
contour dynamics to nonplanar and 3D flows are discussed.

PACS: 47.32.-y, 52.30.-q

1. INTRODUCTION

The purpose of this paper is the analytical and
numerical study of a new class of strongly nonlin-
ear steadily rotating vortices that can exist in two-
dimensional flows with the internal scale similar to the
Rosshy deformation radius in quasigeostrophic models
of geophysical fluid dynamics [1]. We show that these
vortices can have a nontrivial multipetal structure and
must rotate with comparatively small velocities under
the assumption that their characteristic scales are suf-
ficiently large compared to the internal one.

We also present a new approach based on Hamilto-
nian versions of the contour dynamics. The fact that
equations of contour dynamics are strongly nonlinear
and genuinely nonlocal gave impetus to the progress
and application mainly of numerical methods for their
solution [2]. The analytical versions involving small pa-
rameters used for deriving and solving the approximate
(local) equations of contour dynamics are only applica-
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ble in fluid models with an exterior characteristic scale
(e.g., the depth of the unperturbed layer [3]) or with an
internal one (e.g., the Rosshy radius [4]). Because the
solution of problems of this type essentially depends on
choosing dynamic variables parametrizing the bound-
ary, it is desirable to have a sufficiently flexible formu-
lation of the equations of contour dynamics such that
these equations could be easily reformulated from one
phase space into another. In using approximate meth-
ods, it is important to keep in mind that all the infor-
mation on the internal symmetry properties responsible
for the dynamical individuality of the Hamiltonian sys-
tem is contained in the Poisson brackets. Thus, in order
to prevent the loss of internal symmetry properties of
the system, we must use the approximations where one
quantity—the Hamiltonian of system—is subjected to
these approximations but the original Poisson brackets
remain intact. The need to use asymptotic methods
is the principal reason for refusing traditional formula-
tions, which are not only incompatible with these re-
quirements but also not infrequently lead to cumber-
some and recurrent calculations.
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This paper is organized as follows. In Sec. 2, we
construct local Poisson brackets for an incompressible
nonuniform fluid. Relying heavily on this result as a
fundamental principle, in Sec. 3 we derive a hierarchy
of the reduced Poisson brackets specially adapted to the
Hamiltonian description of models of the contour dy-
namics. The contour parametrization plays a decisive
role. The occurrence of constraints is the indispensable
feature of those Hamiltonian formulations that use the
Lagrangian coordinates for this purpose. To eliminate
the constraints, Dirac’s procedure is used. In Sec. 4, we
consider multipetal vortex structures in the Hasegawa—
Mima model and the axial model of electronic fluid as
examples of models admitting a direct application of
the obtained results. We focus our attention on the
study of steadily rotating multipetal vortex structures
without contour self-intersections. Some numerical es-
timates and concluding remarks are presented in Sec. 5.

2. POISSON BRACKETS FOR AN
INCOMPRESSIBLE NONUNIFORM
EULERIAN FLUID

The equations of motion for a nonuniform incom-
pressible fluid are formulated in terms of the Eulerian
variables: the mass density p, the velocity v, and the
pressure p, as

1 1
Opv; + v Opv; = —;3ip+ ;fzv (2.1)
8tp-|-vk8kp:0, (2.2)
8kvk = 0, 2.3

where f is the resultant of exterior forces that do not
violate conservativeness of the fluid. This means that
equations of motion (2.1)-(2.3) preserve the total en-
ergy H given by the sum of the kinetic energy 7' and
the potential energy U of the fluid,

H=T+U,

v2
T= [ —d U=U 24
[ 5ax ol (24)
where U is in general an arbitrary functional of the
density p. For simplicity, we assume that the fluid is
unbounded.
We now find the evolution equation for the momen-
tum density @ = pv. Equations (2.1) and (2.2) imply

)

Oy + vy, (8kﬂ'i — 8i7l'k) =
2

v
i <p+ Py

V2
+ 50+ fio (25)
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Taking the curl of (2.5) and thereby eliminating the
gradient term involving the pressure, we obtain the
equation
2

8,5’)/2’ = eimnﬁm enklvk'yl — v?ﬁnp + fn (26)
that describes the evolution law for the vorticity of the
momentum density v = V X 7w under the action of
exterior conservative forces.

We now show that the equations of motion for
the incompressible inhomogeneous fluid reformulated
in terms of the momentum density vorticity are Hamil-
tonian with the local Poisson brackets {v;,v;} and
{p,7.} First, we compute the Poisson bracket {p, v} }.
Because the model is expected to be Hamiltonian, we
have every reason to write

Op={p,H} =
=/[{p,wk}%+{p7p’}§—ﬂ dx'. (2.7

Comparing (2.7) with continuity condition (2.2) leads
us to

5T sU
/ [{p-m’f}W + {p-,p’}é—p,} dx' +vpOpp = 0. (2.8)
k

We next introduce a local term in the integrand using
the d-function and express the velocity components v;
in terms of the functional derivatives §7'/d7; as

T _/ oT
ve= 571'[ B
which can be directly obtained from (2.4). Upon in-

(5’}/2' ’
tegrating by parts and after some algebra in (2.8), we
obtain

or

6v;,

or %dx,:

Lki
> G
o, o o

(2.9)

{7} — €™ 01p0m6 (x — x)] dx' +

sU
+ /{p,p’}é—p,dX’ =0.

This implies that

{0} = ™9pd0 (x —x'), {p,p'} =0. (2.10)

It remains to compute the Poisson bracket {v;, 7}
Using the same reasoning as for the density, we can
write the equation of motion for the vorticity of the
momentum density 4 as

5T
Bt%:{%-,H}:/ {{vmé}g+
k

oT
+ {%P'}(;—p,} dx' + {7, U}. (2.11)
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With the bracket {p,~;} already computed and
T 1,
% = 3%

equation (2.11) can be rewritten as

oT

_Idx' _

dvi = /{%,72}57
k

; 1
—emy,, <§v,%8[p> +{v,U}. (2.12)
Comparing (2.12) and (2.6), we obtain

oT imn n
[ s = e, (et +
k

+{v, U} - eMnQ frn = 0.

If we introduce the local term e'™"9,), (e”klvk'y[) into

the integral using the §-function and replace the veloc-
ity components v; in accordance with (2.9), after the
integration by parts we obtain

oT

5 [{’yi, v} —ePieineknmg 8,6 (X—x’)] dx'+
k

+ {7, U} — ™, fu = 0.

This immediately implies that the Poisson bracket for
the vector field 4 and the relation between the exterior
force and the potential energy are given by

{yi i} = e el et 9,y,10,00,

{7, U} = " Oy f.
We note that the resulting force f can be found
from (2.14) up to a gradient term. This fact is a

consequence of the invariance of the equations of mo-
tion (2.1)—(2.3) under the transformation

fi = fi — 0i0,

where ¢ is an arbitrary function whose choice has no
influence on physical implications of the theory. Thus,
it follows from (2.14) that no structure other than

(2.13)
(2.14)

p—p+ o,

dp 6U
fi= 2
Ox; dp
is admissible for the external forces in the case where

U ="Ulp|.
Collecting Egs. (2.10) and (2.13), we find the
complete system of Poisson brackets in the phase

space (71 p)7

{p,p'} =0, (2.15)
{p7 ’)/llc} = ekmlalpam67 (216)
(i vk} = Pl 9y 40,0, (2.17)
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Therefore, the equations of motion for the incompres-
sible nonuniform fluid corresponding to these Poisson
brackets take the form

Oy ={v.H} =
0H 0H
=V x ({v,v X W} + %Vp> , (2.18)
o0H
Op={p,H} =— <V>< W) -Vp. (2.19)

The results obtained in Eqs. (2.15)—(2.19) can be
considered as a generalization of the well-known Hamil-
tonian description of the incompressible homogeneous
fluid (see, for example, [5-10]) and are used in what
follows as a fundamental principle in constructing a hi-
erarchy of reduced Poisson brackets for various models
of contour dynamics.

3. HAMILTONIAN VERSION OF THE
CONTOUR DYNAMICS

We begin with a two-dimensional plane flow where
the curl of the momentum is normal to the flow plane
and hence has the only component
(3.1)

Y= {0/ 077}7 Y= ‘Sikaiﬂ-ka

where ¢ is the unit antisymmetric tensor (with
e!? = 1). In this case, Poisson brackets (2.15)—(2.17)
for the incompressible inhomogeneous fluid can be re-

formulated for the dynamical variables v and p as

(3.2)
(3.3)

{p.p'} =0,
{p.7'} =" 0;pod (x — '),
{7,9"} = e¥9iv0L6 (x — x').

It is well known that two-dimensional dynamics of
patches of a constant vorticity and density can be re-
duced to dynamics of their contours, ignoring the de-
scription of the rest of the fluid. However, it is a non-
trivial fact that the description of the contour evolu-
tion can take various forms depending on the variables
used; this deserves attention from both practical and
theoretical standpoints.

For simplicity, we consider a single domain G+
bounded by a closed fluid contour that separates it from
the rest of the fluid in an exterior region G~. Denoting
the vorticity and the density inside and outside accord-
ingly as wt, p*, and w™, p~, we use the respective +
and — superscripts for labeling variables in the internal
domain G and in the exterior region G~. Using this
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notation, we can write the momentum and the mass
density as

T=p vt +p v O, p=pTHT +p 67, (3.5)
where #1 and #~ are the mutually complementary sub-
stantive functions

o+ — 1 ifx e GT, )1 ifxeG,
]l o0 ifxeG, ] 0 ifxeGt,
such that
6r +6- =1, 66 =0. (3.6)

We note that by definition, a substantive #-function
characterizing a fluid domain has the dynamical prop-
erty

040 + v,,9,0 = 0

implying that the corresponding domain moves to-
gether with the fluid.
Inserting mr-representation (3.5) in (3.1) yields

v=pTwt0T —pTw T + B, (3.7)
where the variable 3 can be expressed as
B=(ptof —puvy)e™*o,07. (3.8)

It is easily seen that 8 has a d-functional character and
thus describes a vortex sheet whose density is specified
by the jump of the tangential momentum across the
contour.

As the first step, we transform Poisson brack-
ets (3.2)—(3.4) from the phase space (v,p) into the
space of dynamical variables (3,67). In accordance
with (3.5), (3.6), and (3.7), we have

(3.9)
(3.10)

p=p"+(pT—p7)0%,
y=p w + (ptwt —p w) ot + 5.

Depending on the existence of a mass density
jump across the contour, insertion of (3.9) and (3.10)
into (3.2)—(3.4) leads to two types of Poisson brackets.

3.1. Piecewise-constant vortex models without
mass density jumps

We first consider the degenerate case where the
mass density jump is absent, and therefore p™ = p~ =
= po. In this case, the vortex sheet density is a constant
of motion and its presence modifies the Hamiltonian of
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the model but has no influence on the Poisson bracket
{6T,6%"} that completely determines the contour evo-
lution. Taking this into account, we can set 5 = 0 for
simplicity of computing. Inserting (3.10) in (3.4), we
then obtain

{67,607 = v 19,0706 (x — X'), (3.11)

where v = pg (W —w™).

Which of the Hamiltonian versions of contour dy-
namics follows from (3.11) depends on how we param-
eterize the substantive #t-function. The simplest pa-
rameterization can be achieved with the Heaviside func-
tion

1
0

if n >
9+<n—x2>={ Lo

if n < s,

where the variable n = n(z1,t) specifies the contour
shape. The corresponding version of the Hamiltonian
description defined by the Poisson bracket {n,n'} can
be derived directly from (3.11) if we use the trivial re-
lation

d
$2—9+

s (n — x9)dzs

77 =
that maps the dynamics in the phase space of 4 into
the phase space of 1. After some algebra, we then find

2

dzadz)

{6F, 60" Ydaoydah =
9

-1
= —v 8—5016
It is noteworthy that the same Poisson bracket char-
acterizes the KdV-type equations. Hamiltonian formu-
lations based on this version of Poisson brackets are
preferable for the study of multilayer models [3].
A more general parameterization can be realized
when the contour C bounding the domain G is given
in the parametric form

{n,n'} = /rczx’z

(21 — ).

x = % (s,1).

where s is the contour arc length. The vector
t = 0%/0s tangential to the contour satisfies the nor-
malization condition

t> = 1. (3.12)

We note that the §7-functions admit an analytical rep-
resentation through the contour integral,

Zeds

i
= —
2T

.1
=, (3 3)
C
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where z = 1 +ix9 and 2 = 1 +i22 are complex-valued
notations for the vectors x = (21, 22) and X = (21, &2),
and ¢ is the imaginary unit. Representation (3.13) can
be obtained as a consequence of the Cauchy formula
that is well known in the theory of functions of a com-
plex variable. Using another formula [11]

01

0z z
the z-derivative of the #T-function can be easily calcu-
lated from (3.13) as

a0t i

Ezﬁ/zsé(x—x)d&
c

— 76 (),

With this result, we can find the usual and variational
derivatives of the §T-function,

06" = /ni(S (x — %) ds, (3.14)
c
56+ .
5o -n;0 (x — %), (3.15)

where n is the unit normal vector related to the unit
tangent vector t as n; = eFit;,.

We now find the expression for Poisson
bracket (3.11) in the phase space of the dynamic
variables x (s,t). We first express the left-hand side
of (3.11) in terms of the bracket {Z;, 2} },

{6+, 9+/}_// (isext 69+ )){ iy 5 bds ds'.

Using (3.15), we obtain

(o+,0+) = //5(x—§<)5(x'—fc') x
C

X niny {2, 7} tdsds'. (3.16)

On the other hand, using (3.14), we can represent
the right-hand side of (3.11) as

v 1e* 90790 (x — x') =
)dsds’.

= //6(x—§c)6(x’—§<’) Pls=s) (;S_S'
C

Comparmg (3.16) and (3.17) yields the integral equal-

//5 %) x

X [vning {2, 2}, } — 056 (s — s')]dsds' =0,

(3.17)

5 ZKOT®, Bein. 4

whence it follows that

vning {2, 25, } = 056 (s — s'). (3.18)

Because the bracket is skew-symmetric, the general
solution of (3.18) for {#;, ]} can be written as

v{;, 2} = ning050 (s — 8') + tinga(s,s') —

—tinia(s',s) + titpb(s,s'), (3.19)

where a (s',s) and b (s, s') are some structure functions
and in addition, b (s, s') must be antisymmetric,

b(s,s')=—b(s",s).

The choice of the structure functions a (s',s) and
b (s,s') cannot be arbitrary but must be matched with
constraint (3.12) that means that t? is the integral of
motion for contour dynamics models with any Hamil-
tonian. Geometrically, Eq. (3.12) specifies a surface in
the phase space X (s, t) such that all the trajectories of
real motions lie on this surface. Similar integrals of mo-
tion are known as Casimir invariants, or annihilators, of
Poisson brackets, i.e., {t?,#}} = 0. This immediately
implies

ti0s{#;, 2}, } = 0. (3.20)

Inserting (3.19) into this condition, we obtain
dsa(s,s') = %”’a 5(s—s'), (3.21)
Dsb (s,s") = ti%a (s',s). (3.22)

Solving (3.21) and (3.22) for the structure functions
a(s',s) and b(s,s'), we find

‘o (Sl - S)] )

where
KR = n,»@sti = —tl@sni

is the contour curvature and
o(s—s')= Esign(s—s’).

Thus, the Poisson bracket in the phase space x (s, t)
is expressible as

{561’56;@} =v! nzn;fas(s (3 - SI) -

0 0
- tm;@ [K'o(s—s")] + t;ﬂlz% [ko (s'— s)] +

1
+ gtitjc (K”? + K)o (s —s) (3.23)
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Now, the equations of contour dynamics can be written
in the Hamiltonian form as

0 OH
7. = {73, = -1 ;— _—
Oz, ={2;,H} =v n,as <nk&@k>+
0 0H
. ! _ n = ! !
+tz/na(s 8)83’ <nk6§3’k>d8+
C

SH
L I ! !
+nlasm/0(s s)tk&%,kds—}—
c
1 0H
+ 5151/ (K7 + K)o (s = s)t) 5 ds' (3.24)
c

We emphasize that constraint (3.12) must be used only
after all the variational derivatives are taken in (3.24).

In most fluid dynamics models arising commonly
in applications, the Hamiltonians are constructed such

that SH
=0.

“od

In this case, Eqs. (3.24) can be presented as

)-o

t

0 OH
s 55),

n; <8t§3@ -V (325)

Recalling that in these models

0H
02y,

= nk”¢7

where zﬁ is the streamfunction given on the contour, we
obtain from (3.25) the equations of contour dynamics
in the traditional form

o

Os

nlatfcl =

Equation of motion of this type was used in [4] to
derive equation of contour dynamics in the weak-cur-
vature approximation for the Hasegawa—Mima model
of plasma.

To eliminate the constraint from the Hamiltonian
formulation of the contour dynamics, we introduce two
new variables ¢ and p as
(3.26)

t1 =pcosy, ty = psiney,

where ¢ (¢, s) is the inclination angle of the unit tangent
vector t to the axis x1. In terms of the new variables,
constraint (3.12) becomes

p=1
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Following [12], we define the total Hamiltonian as
the superposition

Hp = H + \I;

involving the original Hamiltonian H and a linear com-
bination of the constraints

Iiz/tidSZO

(e}

with \; being some multipliers that must be deter-
mined. The constraints of this type are not a preroga-
tive of closed contours for which the identities

/tidsz/axids
s
C C

0

are quite evident. The same constraints are also valid
for open contours if we assume that the contours are
closed at infinity. In what follows, for simplicity, we
consider an open contour C' running in the z;-direction
from —oo to +00. We note that in the weak-curvature
approximation, the descriptions of models with closed
and open contours are locally equivalent. In this sit-
uation, the results obtained for open contours can be
extended to closed ones.

The multipliers \; can be determined from the re-
quirement that the equation of motion for the variable
 on the surface of the constraint p = 1 must be defined
by the Poisson bracket {¢, ¢'} as

0Hp
o'

o= {o. o) = [ {os} 5 2ds.  (320)

Using the formulas for the variational derivatives

dp _ ny ,
5 Fasé(s—s),
5 (3.28)
? !
5 = ;836(5—3),
we find that
i d¢ w1 9HD
at(p = {‘fo,HD} = / (532‘2,{1‘;,7 lk 63?/]6 ds"ds' =
T of{analy 0 [, 0Hp , 0Hp\
o / M5 as \* oy i op' ds-
(3.29)
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Integration by parts brings Eq. (3.29) to the form

T 0%a: @) 6Hp
— ! vk r_
O = /nmk ds0s’ o' ds

— o

o{z;, &) 0Hp 0Hp
— n; 5 k <n;f 5y +t;f 5y

400

(3.30)

— o0

Under the assumption that the perturbation on the
contour vanishes at infinity, and therefore, ¢ and its
derivatives tend to zero as s — oo, the last term
in (3.30) can be written as

o{i;, &) oH oH
ni (i, 7} nj D + ), D =
s op! YA .

1 0H
=y ! $s8 —? ~ A .
v <go + 2%) <5p ioo-l- 1)
< '
op 09"

In accordance with (3.28), we have
2 2y ds" ds" =

Sl g Vo
i k

— o

{o,¢'} =

] 62{7}2’77};@}

=i o (3.31)

and it is therefore easy to conclude that Eq. (3.30) can
be rewritten in form (3.27) only if the last term in (3.30)
can be eliminated. There is no way of doing this except
by setting

Because the theory is independent of Ay, this multiplier
can be chosen arbitrarily without affecting the equation
of motion. For simplicity, we put Ao = 0.
The explicit form of the Poisson bracket {p, ¢’} can
be found by inserting Poisson bracket (3.23) in (3.31)
and by using the Frenet formulas
8sti = Kn;, 85712' = —Iiti,

K = @s. (3.32)

By a direct calculation, we obtain

P [825 (5 — ') + 20,0, (956 (5 — ) +

1 1
+o(s—s') <<,0’s (@sss + §¢§> + ¢s (@;ss + 59@’5’))] :

Thus, we have obtained the Poisson bracket for one
more Hamiltonian version of contour dynamics. The

corresponding equation of motion (3.29) can now be
written as

0H 0H
6t99 = {‘fo,HD} = _l/_l 83 D + 230583993 D‘+
® dp

1 7 SH
+ <¢ + 5993) / o(s—s") ¢ 5@?(15’ +

—o0
i 1 5\ 6H
D
+ @5 / o(s—s) <30;ss + 599'53) 5—90,615'] - (3.33)
Because the constraint p = 1 can now be imposed

directly on the total Hamiltonian Hp before evaluat-
ing the Poisson bracket, Dirac’s total Hamiltonian is
given by

(3.34)

p=1

3.2. Piecewise-uniform models with vorticity
and density jumps

When a piecewise-uniform model admits density
jumps, i.e., pT # p~, the vortex sheet density

A N ~t +

(s, t) = (p 0; —p+vi+) ti, 07 = v; ‘x:ﬁ
is no longer a constant of motion. In this case, the evo-
lution of the contour is therefore defined in the phase

space of two variables 8 and 3, where in accordance
with (3.8) and (3.14), S is related to p as

B=(ptvf —pvy) c*9,67 =

:/,u(s,t)é(x—fc)ds.
C

Inserting (3.9)-(3.10) in (3.2)—(3.4) gives the Poisson
brackets

{o+,67"} =0 (3.35)

{67,8'} = ™0, 9;6 (x — '), (3.36)
(8.8} = ve™* 0,07 9;6 (x —x') +

+e* 0, 50,0 (x — x') (3.37)

where v = pTwt — p~w™.

The reformulation of contour dynamics from the
(6%, B) phase space into the (%, u) phase space is
carried out in much the same way as in the previ-
ous subsection. Following this procedure, we obtain

5*
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from (3.35)—(3.37) that the Poisson brackets {Z;, %} }
and {Z;, u'} satisfy

niOs [t {2, 25} — ni{@i, '} = 950 (s — s'), (3.39)
050 [p' ptity { i, 23 }] — Os [uts{2s, ' }] —

=0y [ty {p, 23] + {p, '} = 0950 (s — 8') . (3.40)

Finding the Poisson brackets must be matched with
constraint (3.12). As noted above, this constraint
means that the quantity t? is a Casimir invariant and
hence commutes with all the variables making up a ba-
sis of the phase space. Therefore, condition (3.20) must
be complemented by one more condition

ti0s{zi, '} = 0. (3.41)

Solving (3.38)—(3.40) with conditions (3.20)
and (3.41), we obtain

{&;, 8} =0, (3.42)

{Zi, 1"} = —ni0s6 (s — 8') + ;0% [K'o (s — §')], (3.43)
{p, '} = vds6 (s — s') + 950% x

X [(k'p+kp')o (s —s")]. (3.44)

To eliminate the constraints, by analogy with the
previous subsection, we introduce two new variables ¢
and p in accordance with (3.26) under the constraint
p = 1. The Poisson brackets on the (Z;, ) phase space
can be easily transformed into the (p, 1) space. In fact,
only the first two brackets (3.42) and (3.43), where the
dynamical variables Z; appear, must be reformulated.
The required formulas can be obtained using (3.28) and
take the form

o 0 .. .

! a A !
o p'}y = nigAdi '}, (3.46)

Inserting the Poisson bracket in Eqs. (3.42) and (3.43)
in (3.45) and (3.46) and using Frenet formulas (3.32),
we obtain

{p.¢'} =0,
{on'} = =030 (s = ') + 9,0, [¢lo (s = 8")],
{p 't =v050 (s = s') +
+050; [(Psp+ psp’) o (s = 5")] .
If we restrict our consideration to open contours
running from —oo to 400 in the z;-direction, the cor-

responding Dirac’s total Hamiltonian Hp can be deter-
mined in the same way as in the previous subsection,

with the same result as in Eq. (3.34). Thus, contour dy-
namics corresponding to a given system of the Poisson
brackets is described by the equations

9% 6H
Oy ={p,Hp} = ) 6—,uD -

d 6Hp
—sos/saéa(s—S’)@ 50 ds',

— o

& ot
0s% oy

oo

Orp = {NaHD} =

) 0Hp
+% ¢s/¢;a(s—3’) 6'ul ds’ +

— 00

0 6Hp

* " os o

o 6H
(Piptoap) o (s—s') 55 5; dS'} :

\8

o
% |

8

4. N-PETAL STRUCTURES IN
TWO-DIMENSIONAL FLUID MODELS

4.1. Hamiltonian formulation of the problem

The simplest models that admit a direct appli-
cation of the obtained results are a quasigeostrophic
barotropic model, a model of plasma based on the
Hasegawa—Mima equation, and an axial model of elec-
tronic vortices. These models are known [1,13] to be-
long to vorticity-like systems governed by the equation

6tw + (81¢) ﬁgw — (aglﬁ) 61w = 0, (41)

where the potential vorticity w and the streamfunction
¢ are functions of the z; and x5 coordinates in the
horizontal plane and are related by

1

where r is an internal scale treated as the Rossby defor-
mation radius and A = 97 + 93 is the two-dimensional
Laplace operator. For the Hasegawa—Mima model, the
parameter r is treated as the Larmor ion radius rp

given by
m;T.c? 1/2

where m; is the ion mass, T, is the electron temper-
ature, e is the electron charge, ¢ is the light velocity,

(4.2)
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and By is the induction of an ambient uniform mag-
netic field. The electric potential ® and the electron
number density n. can be expressed in terms of the
streamfunction as

)

where ng is the unperturbed plasma density.

In the axial model of electronic fluid with constant
density, the parameter r must be chosen as the skin
layer width rg given by

) 1/2

TS=C<

where m, is the electron mass and n is the constant
plasma density. In this model, the magnetic field B is
related to the streamfunction v by

Boe
Tec

B
7%, Ne = Ng €Xp < (4.3)

Mme
4rne?

B _47rne

.

c

It is easy to verify that the vorticity-like models
governed by equation of motion (4.1) are Hamiltonian,
namely, are characterized by the Poisson bracket of the
same type as (3.4),

{w,w'} = e*9wdpd (x — X'),

and have the Hamiltonian
1
H = —§/¢wdx

that can be rewritten solely in terms of the potential
vorticity as

1
H=-:

5 /ww'G (x,x') dx dx'.

Green’s function G is found as the solution of the prob-

lem
1
(27

and has the explicit form

>G:6(x—x’)

where Ky denotes the modified zero-order Bessel func-
tion.

As already proved, the reduction of the descrip-
tion of vorticity-like systems in Eq. (4.1) to contour
dynamics becomes possible if the entire fluid can be
decomposed into domains each of which moves with
the fluid and has a constant potential vorticity. For

693

the unbounded fluid with a single vortex patch embed-
ded in a background shear flow, the distribution of the

potential vorticity w can be presented as
w=wrgt+w 6, 6T+ =1

where wt, 1 and w™,
before.
by

A~ have the same meaning as
The corresponding Hamiltonian is then given

2
H= —%/9+0+'G(x,x')dxdx', v=wt—-w".

After some manipulations, this can be expressed in
terms of contour-dynamical variables as

2
H= M/t‘)*L9+’ [0 (x —x') — AG]dxdx' =
96" 89*’
+ A
(/9d+/G6xl Dl dx>_
(7'7/)2 +
=3 0tdx + | G(x,X')t;tidsds (4.4)

We note that the first 1ntegral

I = /9"'dx: —%/imids.,

c

has a simple geometric meaning of the vortex patch
area and is a Casimir invariant (belongs to the annihi-
lator of Poisson bracket (3.23)). Therefore, it does not
affect the equation of motion and can be omitted in
defining the Hamiltonian. Thus, we obtain from (4.4)

H_—w // <|X_X>tit;dsds’.

The following analysis is carried out in the weak
curvature approximation where the characteristic cur-
vature radius R of the contour is much larger than the
internal scale (deformation radius) r, which allows in-
troducing a small parameter ¢ = r/R. In this case,
it is possible to develop the local presentation for the
Hamiltonian in Eq. (4.5),

H = / [s;p, @] d

where the Hamiltonian density h is expressible as a
power series in the small parameter ¢,

( )

(4.5)

(4.6)

h =

3

7rr—cp 8 rt
P 3

2 —@s (psps—ppss) +O (54)> :

( 3
Trp+<
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Inserting (4.6) in (3.34) and neglecting the fourth-
order terms in &, we find Dirac’s Hamiltonian for con-
tour dynamics in vorticity-like systems under consider-

ation,
/ <cosgp + 27'230?) ds. (4.7
c

It is interesting to note that because H ~ O (?),
the main contribution to Dirac’s Hamiltonian is given
solely by the constraint functional. In the leading-order
approximation, therefore, Eq. (4.7) becomes

/ cos pds.

C

’1“3 1/2

4

Hp

7,31/2

Hp

(4.8)

In accordance with (3.33), we now obtain the contour

dynamics equation
L 4
Psss + 5905 .

4.2. Steadily rotating localized vortex
structures

r3y

O ={p. Hp} = ——

(4.9)

We consider solutions of Eq. (4.9) that manifest
themselves as stationary vortex structures rotating
with a constant angular velocity wy. These solutions
have the form

p(t,s) = p(s—ct) — wot, (4.10)

where wg > 0 for the clockwise rotation and wy < 0 for
the counterclockwise rotation. Inserting (4.10) in (4.9)
and choosing the spatial scale R as

vl v\ Y?
R=-|— \ 4.11
2 <UJO> ’ ( )
we introduce the dimensionless variables
. s—ct _ 09
s = R s R = %
and obtain the equation
R\’ 1
<a—z> =—Zk4+cm2+k+cQ, (4.12)

where ¢y is
=c¢(2woR) "

According to the theory of elliptic functions [14],
Eq. (4.12) has two sets of periodic solutions expressed
in terms of elliptic functions,

a—>b
1 —aF (\§m)’

an integration constant and ¢

F=b+ (4.13)
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where F is one of the Jacobi elliptic functions (either sn
or dn) and m is the parameter of these functions, with
the vertical line symbolizing the m-dependence. We
note that depending on the type of the Jacobi ellip-
tic functions, the independent basic parameters a and
m parametrize all the others parameters a, b, A\, and
consequently, ¢; and cs.

To derive the equations describing the boundary
shape of vortex structures rotating in the horizontal
z-plane, we must integrate the equation

0z

% = exp
where 2 = (&1 + i#s) /R is the dimensionless complex
coordinate of the contour. It can be directly verified
that if % satisfies (4.12), the solution of (4.14) is given

by
,‘232
<Q‘7

4.3. Classification of solutions

(i), (4.14)

ok .
Sz T

2(3) =2 [ag >] exp (i¢).  (4.15)

In this subsection, we focus our attention on the
classification of those solutions of Eq. (4.12) that cor-
respond to multipetal vortex structures without self-
intersection of the contour. For this purpose, we per-
form both analytical and numerical investigation of the
problem in Eqs. (4.13) and (4.15) restricting our study
to the case where F = sn. As becomes apparent after
a close examination, the solutions of the second type
with F = dn do not contain vortices without contour
self-intersections.

With F = sn, the periodic solution for the contour
curvature (4.13) takes the form

a—>0

R=b 1 — asn (AS|m)’

(4.16)

If the independent parameters a and m are considered
as basic, all the other parameters a, b, and A can be
expressed as

a(1+m —2a?)

a=—2"1/3 ,
[(1 = m)2a(m — ah)]'/*’
b= o173 a? +m(a® —2)
a[(1=m)2a(m —at)]'/?’
\=9o-1/3 V(a2 —m)(1-a?)

[(1—=m)2a(m —

The parameters ¢; and cp are expressed in terms of a
and b as

ba

1
02:—1 (b+a+b2a2).
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We emphasize that the conditions of the contour con-
tinuity (smoothness) and reality of solutions to (4.12)
impose the following restrictions on the parameters «
and m:

0<a<l, m<a? (4.17)

It follows from (4.15) that in order to find the
boundary shape we must know the slope angle $(3)
in addition to the variable #. This can be computed by
integrating (4.16) along the contour line,

0
—2Im {ln [cn (Asm) Va2 —m +
+ idn (A\3)m) V1 — a?]}, (4.18)

where II(u;9|m) is the incomplete elliptic integral of
the third kind and the Jacobi amplitude am(u|m) is
defined by

k(s)ds = b§+aT_bH (a?;am (A3|m) |m) —

o(3)

am(u|m) = arcsin (sn(u/m)).

Ag mentioned above, our study is restricted to vor-
tex structures with a finite area bounded by a closed
contour without self-intersections. It is worth noting
that the elimination of self-intersecting contours corre-
sponding to rather exotic vortex formations from the
consideration is motivated by the weak-curvature ap-
proximation used in deriving Eq. (4.9), but is not at
all dictated by intrinsic reasons of fluid dynamics. In
other words, the exact equations of motion for the two-
dimensional ideal fluid admit the existence of solutions
with such a contour topology.

Obviously, considering such contours requires a gen-
eralization of model assumptions in the initial state-
ment of the problem. Because the vortex region be-
comes multiply connected when the contour admits
self-intersections, the corresponding piecewise-constant
vorticity distribution can be rather specific. If the
topology of the contour self-intersection is known, the
vorticity distribution can be easily reproduced because
the vorticity jump must remain invariant when going
around the contour in one of the directions (see Fig. 1).
In essence, the question of whether to include solutions
of this type into the framework of our scheme is the
question of whether a global behavior of solutions is
sensitive to a local violation of the weak-curvature ap-
proximation. The answer can be found by comparing
numerical and analytical solutions. If these solutions
are insensitive, they have every ground for being in-
cluded and can be improved using various numerical
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Fig.1. The geometry of a three-petal vortex region of

piecewise-constant vorticity with a selfintersecting con-

tour. The vorticity distribution is w™ in petals and 2w™

in the core, so the jump in vorticity is the invariant w™
in tracing the contour

Fig. 2. vortex structure.

Three-petal
§4 = K(m)/X lies in the petal tip and 5_ = 3K(m)/\
lies between the petals. 3" is the selfcontacting point of
the contour

The point

procedures similar to the «contour surgery» proposed
in [2].

Because the contour is closed and its curvature is a
periodic function of §, the boundary shape of the vor-
tices must have an n-petal structure. An example of
this structure is given in Fig. 2. From this figure and
the analysis of (4.16), it is clear that the contour curva-
ture of the n-petal vortex structure, being an oscillatory
function with the period 4K (m)/\, has extrema at the
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Fig.3. The family of n-petal vortex regimes in the plane am. The characteristic curves assign the dependence m, () for

,—9. The limit points where the corresponding vortex structure has the contour with a self-contact are

marked as e

n=-1-2,...
points
. . K(m . . K(m
=i - X g
A A
j=12...,n,

where K (m) is the complete elliptic integral of the first
kind. At these points, the contour curvature takes the
extreme values

N a—>
K+:b+1—0_’ =
_ o173 m(a+2) — a(l + 2a)
[(1=m)2a(m - a)]'/*’
aeb (4.19)
F_=b+ =
14+ a

_ o173 m(a—2) — a(l - 2a)

[(1—m)2a(m —at)]/?

The subscript notation F means that f+ = f(5). The
relative position of the turning points 5_ and 5, de-
pends on the parameters a and m. To establish which
of them is at the tip of the petal and which is in the
trough between the petals, it is necessary to compute
the distances between these points and the symmetry
center (the coordinate origin). For this purpose, we
introduce p and 6 as the polar coordinates,

2(3) = pe?.

In accordance with (4.15) and (4.12), the variables p
and 6 are then given by

pP=4(ci+ea+i), (4.20)
Ok 03
= [ D 2
6 = arcctg <C1 — k2/2> + Q. (4.21)

Expressing ¢; and ¢ in terms of a and m and us-
ing (4.19), we find from (4.20) that

[m(1+2a) —a®(a + 2)]2
a(m—a*)[(1 —=m)2a(m — oz4)‘]
[m(1-2a) —a®(a - 2)]2

a(m = o) [(1 —at)]t

pi — 92/3

1/3°

2 _ 9—1/3
p. =2
—m)2a(m

The relative position of the turning points depends on
whether 1 is greater or less than the ratio

<p_>2: 8a(a? —m)(m — a*) ‘
P+ [m(1 + 2a) — a3(a + 2))°

It is easy to see that the inequality a* < m < a? entails
the inequality p_ > p4; in this interval of the param-
eters, therefore the tops of the petals lie at the points
5_. In the event that m < o (and consequently, the
reverse inequality p— < p. holds), the tips of the petals
lie at the points 5.

It is amply clear that in the region of the permissible
parameters (4.17), not all solutions (4.16) correspond
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Fig.4. Shapes of boundaries for double-petal vor-

tex structures: o« = 0.050 (a), 0.200 (b), 0.300 (c),
0.353 (d)

to vortex structures with closed contours. The condi-
tion under which periodic solution (4.16) corresponds
to a closed contour can be formulated as

Ab=6_—0, ="
n

(4.22)

This condition has a simple geometrical interpretation
shown in Fig. 2. From this figure, it is easy to see that
2A0 is merely the angular distance between neighbor-
ing petals. To evaluate its value, it suffices to note
that the position vector and the tangent one are mu-
tually orthogonal at the turning points. It thus follows
from (4.21) that

- m
O =¢x + 5 A4,
where the sign function AL is defined as
Ay =sign [m(1l £ 2a) — a®(a £2)]. (4.23)

The expression for ¢+ can be easily found from (4.18)
as

. 4j-271
S
x [bK(m) + (a —b) I (@*|m)] — 7, (4.24)
where

M(ulm) =11 (u; g|m)

is the complete elliptic integral of the third kind.

T T T T T T
o[ . /—\t ol b /)
o —
il j ~l \>
1 1 1 1 1 1
-2 0 2 —2 0 2
2+ ¢ 0 2L d
V\ u
oL oL .
-2 0 2 -2 0 2
Fig.5. Shapes of boundaries for three-petal vortex
structures: a = 0.050 (a), 0.200 (b), 0.300 (c),
0.371 (d)
Equations (4.23) and (4.24) allow us to

rewrite (4.22) as
- 2 s 1
bK (m) + (a —b)II (a®|m) = E)\ ——A), (4.25)
n
where

A=—-(A_-A,)= % {sign [m(1-2a)—a®(a-2)] -

DO | =

— sign [m(1 + 2a) — o’ (e +2)] } .

The analysis shows that Eq. (4.25) has solutions in the
form of n-petal structures in the region

m<a? a-2
- 1-2a’

where A = 0, for n < —2. In Fig. 3, this region is
marked by a shaded background. The solutions are
presented by the characteristic curves that determine
the dependence m,,(«) for every n. For a fixed n, the
multipetal structure can therefore be described by a
single parameter a. The vortex shapes for n = 2,3
depending on a are shown in Figs. 4 and 5. For ev-
ery n-petal regime, the characteristic curve has a limit
point where the corresponding vortex structure has a
self-contacting contour. Solutions without intersections
of contours are on the left of the point and those with

self-intersections are on the right.
A prerequisite to the formation of a self-contact in
a contour can be formulated on the basis of geometrical
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Fig.6. Surface plot of the streamfunction field for the
limiting three-petal vortex structure Fig.7. The radial profile of the streamfunction

considerations following from Fig. 2. At the tangency
point §*, the angles # and ¢ are related by

)

Equation (4.21) now implies the condition

~%k

S

0( P(37).-

~2

k% (8%) = 2¢4.

One more condition is obtained by taking into account
that in tracing the contour from the point §; to the tan-
gency point §*, the tangent vector is rotated through
/2, and therefore

P(5) — ¢y = /2.

-s)-

which follows from (4.24) and (4.25) with j = 1, we
obtain the conditions

Using the relation

Loa

P+ = n

2

72 (s*) =273 x
y 204 (1 +m) 4+ a®(1 4+ m(m — 10)) +2m(m + 1)

[(1—m)2a(m —a®)]?

Together with (4.25), these conditions fix all the pa-
rameters of the limiting regimes presented in the Table.

In the quasigeostrophic barotropic model, the phys-
ical interpretation of ¢ is the pressure deviation, and in
the plasma model based on the Hasegawa-Mima equa-
tion, this quantity characterizes the electric potential.
To illustrate the spatially-temporal character of distri-
butions of ¢, we assume for simplicity that the back-
ground vorticity is absent, i.e., w™ = 0. Using the
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for the limiting three-petal vortex structure given in
Fig. 6. The profiles correspond to the directions
6 = 60,48, 36

results obtained in Sec. 4.1, we can then establish the
formula

Y (x) =wT /9+'G (x,x") dx’'

1 5 _
:W+R2 Im/ N —671](1 |Z Z| X
|2 — 2] €
c
ngzi_z)ds, (4.26)
12— 2|
where
z=(xy +ixs) /R and e=|r/R|.

The distribution ¥(x)/1 (0) associated with the pres-
ence of the three-petal vortex of limiting type is calcu-
lated in accordance with (4.26) and is shown in Fig. 6.
The radial profiles corresponding to this vortex are pre-
sented in Fig. 7.

5. CONCLUDING REMARKS

To gain greater insight into the physical significance
of the results and decide in which range of parameters
these results can be applicable, we make some estimates
for the Hasegawa—Mima model and for the axial model
of electronic vortices, in parallel. We note that for these
models, the values of the r; and rg parameters cover
a broad range. According to factual evidence [15], the
Larmor ion radius r; measures 10° cm for the inter-
planetary gas and 102 cm for the solar corona. De-
pending on the type of plasma, the skin layer width rg
varies between 5 - 10 and 5- 1072 cm.

To illustrate the obtained results in more detail, we
consider the Hasegawa—Mima model of plasma with the
parameters T, = 10* K, ng = 10 cm~3, By = 10* G

3
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Table. Values of parameters characterizing the limiting regimes
n a m R— Ry p— P+
-2 0.352823 —0.245778 —0.456761 1.79081 0. 2.12018
-3 0.371469 —0.580662 —0.820287 1.95339 0.193635 3.3365
—4 0.348897 —0.844407 —1.01623 2.03108 0.42446 3.51701
-5 0.323504 —1.0545 —1.15832 2.08942 0.635998 3.65998
-6 0.300157 —1.22456 -1.27263 2.13903 0.83048 3.78634
-10 0.231285 —1.66566 —1.60011 2.29932 1.49709 4.22362

and m; = 1.67 - 1072 g, which are typical for a low-
pressure gas discharge. In accordance with (4.2), we
find r; ~ 1072 cm. Because the theory of limit-
ing vortex structures has only two control parame-
ters (the angular rotation velocity wo and the vorticity
jump v = wt —w™), we put wy = 10 s7!, w™ = 0,
and wt = 10% s7! in order to calculate some char-
acteristics of a three-petal drift vortex. In this case,
Eq. (4.11) gives R ~ 10r;, = 107! c¢m, and therefore,
each petal of the vortex structure has the radial length
p+R ~ 3.3-107! em. Next, upon numerical integra-
tion with ¢ = r,/R ~ 107!, we obtain from (4.26)
that (0) ~ 5.07R?>w*t. Thus, we can estimate the
magnitudes of the electric potential & and the electron
number density n. at the center of the three-petal drift
vortex. It follows from (4.3) that ®(0) ~ 4.4-10% V
and n.(0) ~ 1.5 - 1016 cm 3.

We note, in closing, some possible generalizations
of the Hamiltonian versions of 2D contour dynamics.
The technique that we have described can also be used
for 3D vortex objects, for example, in quasigeostrophic
baroclinic models of geophysical fluid dynamics. The
Hamiltonian versions of 2D contour dynamics can be
successfully applied to the study of nonplanar models
in all the cases where the velocity field is invariant
along the vorticity field direction. Typical examples
are flows on the sphere and also flows with the rota-
tional and helical spatial symmetry of the vortex field.
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