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MULTIPETAL VORTEX STRUCTURES IN TWO-DIMENSIONALMODELS OF GEOPHYSICAL FLUID DYNAMICS AND PLASMAV. P. Gon
harov*Institute of Atmospheri
 Physi
s, Russian A
ademy of S
ien
es109017, Mos
ow, RussiaV. I. Pavlov**U.F.R. des Mathématiques Pures et Appliquées,U.S.T.L, 59655 Villeneuve d'As
q Cedex Fran
eSubmitted 14 September 2000A new 
lass of strongly nonlinear steadily rotating vorti
es is found. The Hamiltonian 
ontour dynami
s isproposed as a new approa
h for their study in some models of geophysi
al �uid dynami
s and plasma. Usingthe Euler des
ription as a starting point, we present a systemati
 pro
edure to redu
e the two-dimensionaldynami
s of 
onstant-vorti
ity and 
onstant-density pat
hes to the Hamiltonian dynami
s of their 
ontours forvarious parametrizations of the 
ontour. The spe
ial Dira
 pro
edure is used to eliminate the 
onstraints arisingin the Hamiltonian formulations with the Lagrangian parametrization of the 
ontour. Numeri
al estimationsillustrating the physi
al signi�
an
e of the results and the range of model parameters where these results 
an beappli
able are presented. Possible generalizations of the approa
h based on the appli
ation of the Hamiltonian
ontour dynami
s to nonplanar and 3D �ows are dis
ussed.PACS: 47.32.-y, 52.30.-q1. INTRODUCTIONThe purpose of this paper is the analyti
al andnumeri
al study of a new 
lass of strongly nonlin-ear steadily rotating vorti
es that 
an exist in two-dimensional �ows with the internal s
ale similar to theRossby deformation radius in quasigeostrophi
 modelsof geophysi
al �uid dynami
s [1℄. We show that thesevorti
es 
an have a nontrivial multipetal stru
ture andmust rotate with 
omparatively small velo
ities underthe assumption that their 
hara
teristi
 s
ales are suf-�
iently large 
ompared to the internal one.We also present a new approa
h based on Hamilto-nian versions of the 
ontour dynami
s. The fa
t thatequations of 
ontour dynami
s are strongly nonlinearand genuinely nonlo
al gave impetus to the progressand appli
ation mainly of numeri
al methods for theirsolution [2℄. The analyti
al versions involving small pa-rameters used for deriving and solving the approximate(lo
al) equations of 
ontour dynami
s are only appli
a-*E-mail: vponom�atm.phys.msu.su**E-mail: vipavlov�omega.univ-lille1.fr

ble in �uid models with an exterior 
hara
teristi
 s
ale(e.g., the depth of the unperturbed layer [3℄) or with aninternal one (e.g., the Rossby radius [4℄). Be
ause thesolution of problems of this type essentially depends on
hoosing dynami
 variables parametrizing the bound-ary, it is desirable to have a su�
iently �exible formu-lation of the equations of 
ontour dynami
s su
h thatthese equations 
ould be easily reformulated from onephase spa
e into another. In using approximate meth-ods, it is important to keep in mind that all the infor-mation on the internal symmetry properties responsiblefor the dynami
al individuality of the Hamiltonian sys-tem is 
ontained in the Poisson bra
kets. Thus, in orderto prevent the loss of internal symmetry properties ofthe system, we must use the approximations where onequantity�the Hamiltonian of system�is subje
ted tothese approximations but the original Poisson bra
ketsremain inta
t. The need to use asymptoti
 methodsis the prin
ipal reason for refusing traditional formula-tions, whi
h are not only in
ompatible with these re-quirements but also not infrequently lead to 
umber-some and re
urrent 
al
ulations.685



V. P. Gon
harov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001This paper is organized as follows. In Se
. 2, we
onstru
t lo
al Poisson bra
kets for an in
ompressiblenonuniform �uid. Relying heavily on this result as afundamental prin
iple, in Se
. 3 we derive a hierar
hyof the redu
ed Poisson bra
kets spe
ially adapted to theHamiltonian des
ription of models of the 
ontour dy-nami
s. The 
ontour parametrization plays a de
isiverole. The o

urren
e of 
onstraints is the indispensablefeature of those Hamiltonian formulations that use theLagrangian 
oordinates for this purpose. To eliminatethe 
onstraints, Dira
's pro
edure is used. In Se
. 4, we
onsider multipetal vortex stru
tures in the Hasegawa�Mima model and the axial model of ele
troni
 �uid asexamples of models admitting a dire
t appli
ation ofthe obtained results. We fo
us our attention on thestudy of steadily rotating multipetal vortex stru
tureswithout 
ontour self-interse
tions. Some numeri
al es-timates and 
on
luding remarks are presented in Se
. 5.2. POISSON BRACKETS FOR ANINCOMPRESSIBLE NONUNIFORMEULERIAN FLUIDThe equations of motion for a nonuniform in
om-pressible �uid are formulated in terms of the Eulerianvariables: the mass density �, the velo
ity v, and thepressure p, as�tvi + vk�kvi = �1��ip+ 1�fi; (2.1)�t�+ vk�k� = 0; (2.2)�kvk = 0; (2.3)where f is the resultant of exterior for
es that do notviolate 
onservativeness of the �uid. This means thatequations of motion (2.1)�(2.3) preserve the total en-ergy H given by the sum of the kineti
 energy T andthe potential energy U of the �uid,H = T + U;T = Z v22�dx; U = U [�℄ ; (2.4)where U is in general an arbitrary fun
tional of thedensity �. For simpli
ity, we assume that the �uid isunbounded.We now �nd the evolution equation for the momen-tum density � = �v. Equations (2.1) and (2.2) imply�t�i + vk (�k�i � �i�k) == ��i�p+ �v22 �+ v22 �i�+ fi: (2.5)

Taking the 
url of (2.5) and thereby eliminating thegradient term involving the pressure, we obtain theequation�t
i = eimn�m �enklvk
l � v22 �n�+ fn� (2.6)that des
ribes the evolution law for the vorti
ity of themomentum density 
 = r � � under the a
tion ofexterior 
onservative for
es.We now show that the equations of motion forthe in
ompressible inhomogeneous �uid reformulatedin terms of the momentum density vorti
ity are Hamil-tonian with the lo
al Poisson bra
kets f
i; 
0kg andf�; 
0kg. First, we 
ompute the Poisson bra
ket f�; 
0kg.Be
ause the model is expe
ted to be Hamiltonian, wehave every reason to write�t� = f�;Hg == Z �f�; 
0kg ÆTÆ
0k + f�; �0gÆUÆ�0 � dx0: (2.7)Comparing (2.7) with 
ontinuity 
ondition (2.2) leadsus toZ �f�; 
0kg ÆTÆ
0k + f�; �0gÆUÆ�0 � dx0 + vk�k� = 0: (2.8)We next introdu
e a lo
al term in the integrand usingthe Æ-fun
tion and express the velo
ity 
omponents vlin terms of the fun
tional derivatives ÆT=Æ
k asvl = ÆTÆ�l = Z ÆTÆ
0k Æ
0kÆ�l dx0 = elki�k ÆTÆ
i ; (2.9)whi
h 
an be dire
tly obtained from (2.4). Upon in-tegrating by parts and after some algebra in (2.8), weobtainZ ÆTÆ
0k �f�; 
0kg � ekml�l��mÆ (x� x0)� dx0 ++ Z f�; �0gÆUÆ�0 dx0 = 0:This implies thatf�; 
0kg = ekml�l��mÆ (x� x0) ; f�; �0g = 0: (2.10)It remains to 
ompute the Poisson bra
ket f
i; 
0kg.Using the same reasoning as for the density, we 
anwrite the equation of motion for the vorti
ity of themomentum density 
 as�t
i = f
i; Hg = Z �f
i; 
0kg ÆTÆ
0k++ f
i; �0g ÆTÆ�0� dx0 + f
i; Ug: (2.11)686



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex stru
tures : : :With the bra
ket f�; 
0kg already 
omputed andÆTÆ� = 12v2k ;equation (2.11) 
an be rewritten as�t
i = Z f
i; 
0kg ÆTÆ
0k dx0 �� eiml�m�12v2k�l��+ f
i; Ug: (2.12)Comparing (2.12) and (2.6), we obtainZ f
i; 
0kg ÆTÆ
0k dx0 � eimn�m �enklvk
l�++ f
i; Ug � eimn�mfn = 0:If we introdu
e the lo
al term eimn�m �enklvk
l� intothe integral using the Æ-fun
tion and repla
e the velo
-ity 
omponents vl in a

ordan
e with (2.9), after theintegration by parts we obtainZ ÆTÆ
0k �f
i; 
0kg�eipjejlneknm�p
l�mÆ (x�x0)� dx0++ f
i; Ug � eimn�mfn = 0:This immediately implies that the Poisson bra
ket forthe ve
tor �eld 
 and the relation between the exteriorfor
e and the potential energy are given byf
i; 
0kg = eipjejlneknm�p
l�mÆ; (2.13)f
i; Ug = eimn�mfn: (2.14)We note that the resulting for
e f 
an be foundfrom (2.14) up to a gradient term. This fa
t is a
onsequen
e of the invarian
e of the equations of mo-tion (2.1)�(2.3) under the transformationp! p+ �; fi ! fi � �i�;where � is an arbitrary fun
tion whose 
hoi
e has noin�uen
e on physi
al impli
ations of the theory. Thus,it follows from (2.14) that no stru
ture other thanfi = ���xi ÆUÆ�is admissible for the external for
es in the 
ase whereU = U [�℄.Colle
ting Eqs. (2.10) and (2.13), we �nd the
omplete system of Poisson bra
kets in the phasespa
e (
; �), f�; �0g = 0; (2.15)f�; 
0kg = ekml�l��mÆ; (2.16)f
i; 
0kg = eipjejlneknm�h
l�mÆ: (2.17)

Therefore, the equations of motion for the in
ompres-sible nonuniform �uid 
orresponding to these Poissonbra
kets take the form�t
 = f
; Hg == r���
;r� ÆHÆ
 �+ ÆHÆ� r�� ; (2.18)�t� = f�;Hg = ��r�ÆHÆ
 � � r�: (2.19)The results obtained in Eqs. (2.15)�(2.19) 
an be
onsidered as a generalization of the well-known Hamil-tonian des
ription of the in
ompressible homogeneous�uid (see, for example, [5�10℄) and are used in whatfollows as a fundamental prin
iple in 
onstru
ting a hi-erar
hy of redu
ed Poisson bra
kets for various modelsof 
ontour dynami
s.3. HAMILTONIAN VERSION OF THECONTOUR DYNAMICSWe begin with a two-dimensional plane �ow wherethe 
url of the momentum is normal to the �ow planeand hen
e has the only 
omponent
 = f0; 0; 
g ; 
 = "ik�i�k; (3.1)where "ik is the unit antisymmetri
 tensor (with"12 = 1). In this 
ase, Poisson bra
kets (2.15)�(2.17)for the in
ompressible inhomogeneous �uid 
an be re-formulated for the dynami
al variables 
 and � asf�; �0g = 0; (3.2)f�; 
0g = "ki�i��kÆ (x� x0) ; (3.3)f
; 
0g = "ki�i
�kÆ (x� x0) : (3.4)It is well known that two-dimensional dynami
s ofpat
hes of a 
onstant vorti
ity and density 
an be re-du
ed to dynami
s of their 
ontours, ignoring the de-s
ription of the rest of the �uid. However, it is a non-trivial fa
t that the des
ription of the 
ontour evolu-tion 
an take various forms depending on the variablesused; this deserves attention from both pra
ti
al andtheoreti
al standpoints.For simpli
ity, we 
onsider a single domain G+bounded by a 
losed �uid 
ontour that separates it fromthe rest of the �uid in an exterior region G�. Denotingthe vorti
ity and the density inside and outside a

ord-ingly as !+, �+, and !�, ��, we use the respe
tive +and � supers
ripts for labeling variables in the internaldomain G+ and in the exterior region G�. Using this687



V. P. Gon
harov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001notation, we 
an write the momentum and the massdensity as� = �+v+�+ + ��v���; � = �+�+ + ����; (3.5)where �+ and �� are the mutually 
omplementary sub-stantive fun
tions�+ = ( 1 if x 2 G+;0 if x 2 G�; �� = ( 1 if x 2 G�;0 if x 2 G+;su
h that �+ + �� = 1; �+�� = 0: (3.6)We note that by de�nition, a substantive �-fun
tion
hara
terizing a �uid domain has the dynami
al prop-erty �t� + vk�k� = 0implying that the 
orresponding domain moves to-gether with the �uid.Inserting �-representation (3.5) in (3.1) yields
 = �+!+�+ � ��!��� + �; (3.7)where the variable � 
an be expressed as� = ��+v+k � ��v�k � "ik�i�+: (3.8)It is easily seen that � has a Æ-fun
tional 
hara
ter andthus des
ribes a vortex sheet whose density is spe
i�edby the jump of the tangential momentum a
ross the
ontour.As the �rst step, we transform Poisson bra
k-ets (3.2)�(3.4) from the phase spa
e (
; �) into thespa
e of dynami
al variables (�; �+). In a

ordan
ewith (3.5), (3.6), and (3.7), we have� = �� + ��+ � ��� �+; (3.9)
 = ��!� + ��+!+ � ��!�� �+ + �: (3.10)Depending on the existen
e of a mass densityjump a
ross the 
ontour, insertion of (3.9) and (3.10)into (3.2)�(3.4) leads to two types of Poisson bra
kets.3.1. Pie
ewise-
onstant vortex models withoutmass density jumpsWe �rst 
onsider the degenerate 
ase where themass density jump is absent, and therefore �+ = �� == �0. In this 
ase, the vortex sheet density is a 
onstantof motion and its presen
e modi�es the Hamiltonian of

the model but has no in�uen
e on the Poisson bra
ketf�+; �+0g that 
ompletely determines the 
ontour evo-lution. Taking this into a

ount, we 
an set � = 0 forsimpli
ity of 
omputing. Inserting (3.10) in (3.4), wethen obtainf�+; �+0g = ��1"ik�k�+�iÆ (x� x0) ; (3.11)where � = �0 (!+ � !�).Whi
h of the Hamiltonian versions of 
ontour dy-nami
s follows from (3.11) depends on how we param-eterize the substantive �+-fun
tion. The simplest pa-rameterization 
an be a
hieved with the Heaviside fun
-tion �+ (� � x2) = ( 1 if � � x2;0 if � < x2;where the variable � = � (x1; t) spe
i�es the 
ontourshape. The 
orresponding version of the Hamiltoniandes
ription de�ned by the Poisson bra
ket f�; �0g 
anbe derived dire
tly from (3.11) if we use the trivial re-lation � = Z x2 ddx2 �+ (� � x2) dx2that maps the dynami
s in the phase spa
e of 
 intothe phase spa
e of �. After some algebra, we then �ndf�; �0g = Z x2x02 d2dx2dx02 f�+; �+0gdx2dx02 == ���1 ��x1 Æ (x1 � x01) :It is noteworthy that the same Poisson bra
ket 
har-a
terizes the KdV-type equations. Hamiltonian formu-lations based on this version of Poisson bra
kets arepreferable for the study of multilayer models [3℄.A more general parameterization 
an be realizedwhen the 
ontour C bounding the domain G+ is givenin the parametri
 formx = x̂ (s; t) ;where s is the 
ontour ar
 length. The ve
tort = �x̂=�s tangential to the 
ontour satis�es the nor-malization 
ondition t2 = 1: (3.12)We note that the �+-fun
tions admit an analyti
al rep-resentation through the 
ontour integral,�+ = i2� ZC ẑsdsz � ẑ ; (3.13)688



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex stru
tures : : :where z = x1+ix2 and ẑ = x̂1+ix̂2 are 
omplex-valuednotations for the ve
tors x = (x1; x2) and x̂ = (x̂1; x̂2),and i is the imaginary unit. Representation (3.13) 
anbe obtained as a 
onsequen
e of the Cau
hy formulathat is well known in the theory of fun
tions of a 
om-plex variable. Using another formula [11℄���z 1z = �Æ (x) ;the z-derivative of the �+-fun
tion 
an be easily 
al
u-lated from (3.13) as��+��z = i2 ZC ẑsÆ (x� x̂) ds:With this result, we 
an �nd the usual and variationalderivatives of the �+-fun
tion,�i�+ = ZC niÆ (x� x̂) ds; (3.14)Æ�+Æx̂i = �niÆ (x� x̂) ; (3.15)where n is the unit normal ve
tor related to the unittangent ve
tor t as ni = "kitk.We now �nd the expression for Poissonbra
ket (3.11) in the phase spa
e of the dynami
variables x̂ (s; t). We �rst express the left-hand sideof (3.11) in terms of the bra
ket fx̂i; x̂0kg,f�+; �+0g = ZZC Æ�+ (x)Æx̂i (s) Æ�+ (x0)Æx̂k (s0) fx̂i; x̂0kgds ds0:Using (3.15), we obtainf�+; �+0g = ZZC Æ (x� x̂) Æ (x0 � x̂0)�� nin0kfx̂i; x̂0kgds ds0: (3.16)On the other hand, using (3.14), we 
an representthe right-hand side of (3.11) as��1"ik�k�+�iÆ (x� x0) == ��1 ZZC Æ (x�x̂) Æ (x0�x̂0) �Æ (s�s0)�s dsds0: (3.17)Comparing (3.16) and (3.17) yields the integral equal-ityZZC Æ (x� x̂) Æ (x0 � x̂0)�� [�nin0kfx̂i; x̂0kg � �sÆ (s� s0)℄ ds ds0 = 0;

when
e it follows that�nin0kfx̂i; x̂0kg = �sÆ (s� s0) : (3.18)Be
ause the bra
ket is skew-symmetri
, the generalsolution of (3.18) for fx̂i; x̂0kg 
an be written as�fx̂i; x̂0kg = nin0k�sÆ (s� s0) + tin0ka (s; s0)�� t0knia (s0; s) + tit0kb (s; s0) ; (3.19)where a (s0; s) and b (s; s0) are some stru
ture fun
tionsand in addition, b (s; s0) must be antisymmetri
,b (s; s0) = �b (s0; s) :The 
hoi
e of the stru
ture fun
tions a (s0; s) andb (s; s0) 
annot be arbitrary but must be mat
hed with
onstraint (3.12) that means that t2 is the integral ofmotion for 
ontour dynami
s models with any Hamil-tonian. Geometri
ally, Eq. (3.12) spe
i�es a surfa
e inthe phase spa
e x̂ (s; t) su
h that all the traje
tories ofreal motions lie on this surfa
e. Similar integrals of mo-tion are known as Casimir invariants, or annihilators, ofPoisson bra
kets, i.e., ft2; x̂0kg = 0. This immediatelyimplies ti�sfx̂i; x̂0kg = 0: (3.20)Inserting (3.19) into this 
ondition, we obtain�sa (s; s0) = �ti �ni�s �sÆ (s� s0) ; (3.21)�sb (s; s0) = ti �ni�s a (s0; s) : (3.22)Solving (3.21) and (3.22) for the stru
ture fun
tionsa (s0; s) and b (s; s0), we �nda (s; s0) = ��s0 [�0� (s0 � s)℄ ;b (s; s0) = 12 ��02 + �2�� (s0 � s) ;where � = ni�sti = �ti�sniis the 
ontour 
urvature and� (s� s0) = 12 sign (s� s0) :Thus, the Poisson bra
ket in the phase spa
e x̂ (s; t)is expressible asfx̂i; x̂0kg = ��1 �nin0k�sÆ (s� s0)�� tin0k ��s0 [�0� (s� s0)℄ + t0kni ��s [�� (s0 � s)℄ ++ 12 tit0k ��02 + �2�� (s0 � s)� : (3.23)5 ÆÝÒÔ, âûï. 4 689



V. P. Gon
harov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001Now, the equations of 
ontour dynami
s 
an be writtenin the Hamiltonian form as�tx̂i = fx̂i; Hg = ��1 24ni ��s �nk ÆHÆx̂k�++ ti ZC �0� (s� s0) ��s0 �n0k ÆHÆx̂0k� ds0 ++ ni ��s� ZC � (s0 � s) t0k ÆHÆx̂0k ds0 ++ 12 ti ZC ��02 + �2�� (s0 � s) t0k ÆHÆx̂0k ds035 : (3.24)We emphasize that 
onstraint (3.12) must be used onlyafter all the variational derivatives are taken in (3.24).In most �uid dynami
s models arising 
ommonlyin appli
ations, the Hamiltonians are 
onstru
ted su
hthat ti ÆHÆx̂k = 0:In this 
ase, Eqs. (3.24) 
an be presented asni��tx̂i � ��1 ��s ÆHÆx̂i� = 0: (3.25)Re
alling that in these modelsÆHÆx̂k = nk� ̂;where  ̂ is the streamfun
tion given on the 
ontour, weobtain from (3.25) the equations of 
ontour dynami
sin the traditional formni�tx̂i = � ̂�s :Equation of motion of this type was used in [4℄ toderive equation of 
ontour dynami
s in the weak-
ur-vature approximation for the Hasegawa�Mima modelof plasma.To eliminate the 
onstraint from the Hamiltonianformulation of the 
ontour dynami
s, we introdu
e twonew variables ' and � ast1 = � 
os'; t2 = � sin'; (3.26)where ' (t; s) is the in
lination angle of the unit tangentve
tor t to the axis x1. In terms of the new variables,
onstraint (3.12) be
omes� = 1:

Following [12℄, we de�ne the total Hamiltonian asthe superposition HD = H + �iIiinvolving the original Hamiltonian H and a linear 
om-bination of the 
onstraintsIi = ZC tids = 0with �i being some multipliers that must be deter-mined. The 
onstraints of this type are not a preroga-tive of 
losed 
ontours for whi
h the identitiesZC tids � ZC �x̂i�s ds � 0are quite evident. The same 
onstraints are also validfor open 
ontours if we assume that the 
ontours are
losed at in�nity. In what follows, for simpli
ity, we
onsider an open 
ontour C running in the x1-dire
tionfrom �1 to +1. We note that in the weak-
urvatureapproximation, the des
riptions of models with 
losedand open 
ontours are lo
ally equivalent. In this sit-uation, the results obtained for open 
ontours 
an beextended to 
losed ones.The multipliers �i 
an be determined from the re-quirement that the equation of motion for the variable' on the surfa
e of the 
onstraint � = 1must be de�nedby the Poisson bra
ket f'; '0g as�t' = f';HDg = 1Z�1 f'; '0gÆHDÆ'0 ds0: (3.27)Using the formulas for the variational derivativesÆ'Æx̂0i = ni�2 �sÆ (s� s0) ;Æ�Æx̂0i = ti� �sÆ (s� s0) ; (3.28)we �nd that�t' = f';HDg = 1Z�1 Æ'Æx̂00i fx̂00i ; x̂0kgÆHDÆx̂0k ds00ds0 == � 1Z�1 ni �fx̂i; x̂0kg�s ��s0 �n0k ÆHDÆ'0 +t0k ÆHDÆ�0 � ds0:(3.29)690



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex stru
tures : : :Integration by parts brings Eq. (3.29) to the form�t' = 1Z�1 nin0k �2fx̂i; x̂0kg�s�s0 ÆHDÆ'0 ds0 �� ni �fx̂i; x̂0kg�s �n0k ÆHDÆ'0 + t0k ÆHDÆ�0 �����+1�1 : (3.30)Under the assumption that the perturbation on the
ontour vanishes at in�nity, and therefore, ' and itsderivatives tend to zero as s ! �1, the last termin (3.30) 
an be written asni �fx̂i; x̂0kg�s �n0k ÆHDÆ'0 + t0k ÆHDÆ�0 ������1 == ��1 �'sss + 12'3s� ÆHÆ� �����1 + �1! :In a

ordan
e with (3.28), we havef'; '0g = 1Z�1 Æ'Æx̂00i Æ'0Æx̂000k fx̂00i ; x̂000k gds00ds000 == nin0k �2fx̂i; x̂0kg�s�s0 ; (3.31)and it is therefore easy to 
on
lude that Eq. (3.30) 
anbe rewritten in form (3.27) only if the last term in (3.30)
an be eliminated. There is no way of doing this ex
eptby setting �1 = � ÆHÆ� �����1 :Be
ause the theory is independent of �2, this multiplier
an be 
hosen arbitrarily without a�e
ting the equationof motion. For simpli
ity, we put �2 = 0.The expli
it form of the Poisson bra
ket f'; '0g 
anbe found by inserting Poisson bra
ket (3.23) in (3.31)and by using the Frenet formulas�sti = �ni; �sni = ��ti; � = 's: (3.32)By a dire
t 
al
ulation, we obtainf'; '0g = ���1��3sÆ (s� s0) + 2's�s ('sÆ (s� s0))++� (s� s0)�'0s �'sss + 12'3s�+ 's �'0sss + 12'03s ���:Thus, we have obtained the Poisson bra
ket for onemore Hamiltonian version of 
ontour dynami
s. The


orresponding equation of motion (3.29) 
an now bewritten as�t' = f';HDg = ���1"�3s ÆHDÆ' + 2's�s's ÆHDÆ' ++�'sss + 12'3s� 1Z�1 � (s� s0)'0s ÆHDÆ'0 ds0 ++ 's 1Z�1 � (s� s0)�'0sss + 12'03s � ÆHDÆ'0 ds0#: (3.33)Be
ause the 
onstraint � = 1 
an now be imposeddire
tly on the total Hamiltonian HD before evaluat-ing the Poisson bra
ket, Dira
's total Hamiltonian isgiven byHD = 24H � ÆHÆ� ����s=1 1Z�1 
os'ds35�=1 : (3.34)3.2. Pie
ewise-uniform models with vorti
ityand density jumpsWhen a pie
ewise-uniform model admits densityjumps, i.e., �+ 6= ��, the vortex sheet density� (s; t) = ���v̂�i � �+v̂+i � ti; v̂�i = v�i ��x=x̂is no longer a 
onstant of motion. In this 
ase, the evo-lution of the 
ontour is therefore de�ned in the phasespa
e of two variables �+ and �, where in a

ordan
ewith (3.8) and (3.14), � is related to � as� = ��+v+k � ��v�k � "ik�i�+ == ZC � (s; t) Æ (x� x̂) ds:Inserting (3.9)�(3.10) in (3.2)�(3.4) gives the Poissonbra
kets f�+; �+0g = 0; (3.35)f�+; �0g = "ik�k�+�iÆ (x� x0) ; (3.36)f�; �0g = �"ik�k�+�iÆ (x� x0) ++"ik�k��iÆ (x� x0) ; (3.37)where � = �+!+ � ��!�.The reformulation of 
ontour dynami
s from the(�+, �) phase spa
e into the (x̂, �) phase spa
e is
arried out in mu
h the same way as in the previ-ous subse
tion. Following this pro
edure, we obtain691 5*
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harov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001from (3.35)�(3.37) that the Poisson bra
kets fx̂i; x̂0kgand fx̂i; �0g satisfynin0kfx̂i; x̂0kg = 0; (3.38)ni�s [�0t0kfx̂i; x̂0kg℄� nifx̂i; �0g = �sÆ (s� s0) ; (3.39)�s�0s [�0�tit0kfx̂i; x̂0kg℄� �s [�tifx̂i; �0g℄���0s [�0t0if�; x̂0ig℄ + f�; �0g = ��sÆ (s� s0) : (3.40)Finding the Poisson bra
kets must be mat
hed with
onstraint (3.12). As noted above, this 
onstraintmeans that the quantity t2 is a Casimir invariant andhen
e 
ommutes with all the variables making up a ba-sis of the phase spa
e. Therefore, 
ondition (3.20) mustbe 
omplemented by one more 
onditionti�sfx̂i; �0g = 0: (3.41)Solving (3.38)�(3.40) with 
onditions (3.20)and (3.41), we obtainfx̂i; x̂0kg = 0; (3.42)fx̂i; �0g = �ni�sÆ (s� s0) + ti�0s [�0� (s� s0)℄ ; (3.43)f�; �0g = ��sÆ (s� s0) + �s�0s �� [(�0�+ ��0) � (s� s0)℄ : (3.44)To eliminate the 
onstraints, by analogy with theprevious subse
tion, we introdu
e two new variables 'and � in a

ordan
e with (3.26) under the 
onstraint� = 1. The Poisson bra
kets on the (x̂i; �) phase spa
e
an be easily transformed into the ('; �) spa
e. In fa
t,only the �rst two bra
kets (3.42) and (3.43), where thedynami
al variables x̂i appear, must be reformulated.The required formulas 
an be obtained using (3.28) andtake the formf'; '0g = nin0k ��s ��s0 fx̂i; x̂0kg; (3.45)f'; �0g = ni ��sfx̂i; �0g: (3.46)Inserting the Poisson bra
ket in Eqs. (3.42) and (3.43)in (3.45) and (3.46) and using Frenet formulas (3.32),we obtain f'; '0g = 0;f'; �0g = ��2sÆ (s� s0) + 's�0s ['0s� (s� s0)℄ ;f�; �0g = ��sÆ (s� s0) ++�s�0s [('0s�+ 's�0)� (s� s0)℄ :If we restri
t our 
onsideration to open 
ontoursrunning from �1 to +1 in the x1-dire
tion, the 
or-responding Dira
's total Hamiltonian HD 
an be deter-mined in the same way as in the previous subse
tion,

with the same result as in Eq. (3.34). Thus, 
ontour dy-nami
s 
orresponding to a given system of the Poissonbra
kets is des
ribed by the equations�t' = f';HDg = � �2�s2 ÆHDÆ� �� 's 1Z�1 '0s� (s� s0) ��s0 ÆHDÆ�0 ds0;�t� = f�;HDg = �2�s2 ÆHDÆ' ++ ��s 24's 1Z�1 '0s� (s� s0) ÆHDÆ�0 ds035++ � ��s ÆHDÆ� �� ��s 24 1Z�1 ('0s�+'s�0)� (s�s0) ��s0 ÆHDÆ�0 ds035 :4. N -PETAL STRUCTURES INTWO-DIMENSIONAL FLUID MODELS4.1. Hamiltonian formulation of the problemThe simplest models that admit a dire
t appli-
ation of the obtained results are a quasigeostrophi
barotropi
 model, a model of plasma based on theHasegawa�Mima equation, and an axial model of ele
-troni
 vorti
es. These models are known [1; 13℄ to be-long to vorti
ity-like systems governed by the equation�t! + (�1 ) �2! � (�2 ) �1! = 0; (4.1)where the potential vorti
ity ! and the streamfun
tion are fun
tions of the x1 and x2 
oordinates in thehorizontal plane and are related by! = ��� 1r2� ;where r is an internal s
ale treated as the Rossby defor-mation radius and � = �21 + �22 is the two-dimensionalLapla
e operator. For the Hasegawa�Mima model, theparameter r is treated as the Larmor ion radius rLgiven by rL = �miTe
2B20e2 �1=2 ; (4.2)where mi is the ion mass, Te is the ele
tron temper-ature, e is the ele
tron 
harge, 
 is the light velo
ity,692



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex stru
tures : : :and B0 is the indu
tion of an ambient uniform mag-neti
 �eld. The ele
tri
 potential � and the ele
tronnumber density ne 
an be expressed in terms of thestreamfun
tion as� = B0
  ; ne = n0 exp�B0eTe
  � ; (4.3)where n0 is the unperturbed plasma density.In the axial model of ele
troni
 �uid with 
onstantdensity, the parameter r must be 
hosen as the skinlayer width rS given byrS = 
� me4�ne2�1=2 ;where me is the ele
tron mass and n is the 
onstantplasma density. In this model, the magneti
 �eld B isrelated to the streamfun
tion  byB = �4�ne
  :It is easy to verify that the vorti
ity-like modelsgoverned by equation of motion (4.1) are Hamiltonian,namely, are 
hara
terized by the Poisson bra
ket of thesame type as (3.4),f!; !0g = "ki�i!�kÆ (x� x0) ;and have the HamiltonianH = �12 Z  !dxthat 
an be rewritten solely in terms of the potentialvorti
ity asH = �12 Z !!0G (x;x0) dx dx0:Green's fun
tion G is found as the solution of the prob-lem ��� 1r2�G = Æ (x� x0)and has the expli
it formG (x;x0) = � 12�K0� jx� x0jr � ;where K0 denotes the modi�ed zero-order Bessel fun
-tion.As already proved, the redu
tion of the des
rip-tion of vorti
ity-like systems in Eq. (4.1) to 
ontourdynami
s be
omes possible if the entire �uid 
an bede
omposed into domains ea
h of whi
h moves withthe �uid and has a 
onstant potential vorti
ity. For

the unbounded �uid with a single vortex pat
h embed-ded in a ba
kground shear �ow, the distribution of thepotential vorti
ity ! 
an be presented as! = !+�+ + !���; �+ + �� = 1;where !+, �+ and !�, �� have the same meaning asbefore. The 
orresponding Hamiltonian is then givenbyH = ��22 Z �+�+0G (x;x0) dx dx0; � = !+ � !�:After some manipulations, this 
an be expressed interms of 
ontour-dynami
al variables asH = (r�)22 Z �+�+0 [Æ (x� x0)��G℄ dx dx0 == (r�)22 �Z �+dx+ Z G��+�xi ��+0�x0i dxdx0� == (r�)22 0�Z �+dx+ ZC G (x̂; x̂0) tit0ids ds01A : (4.4)We note that the �rst integralI = Z �+dx = �12 ZC x̂inids;has a simple geometri
 meaning of the vortex pat
harea and is a Casimir invariant (belongs to the annihi-lator of Poisson bra
ket (3.23)). Therefore, it does nota�e
t the equation of motion and 
an be omitted inde�ning the Hamiltonian. Thus, we obtain from (4.4)H = � (r�)24� ZZC K0� jx̂� x̂0jr � tit0ids ds0: (4.5)The following analysis is 
arried out in the weak
urvature approximation where the 
hara
teristi
 
ur-vature radius R of the 
ontour is mu
h larger than theinternal s
ale (deformation radius) r, whi
h allows in-trodu
ing a small parameter " = r=R. In this 
ase,it is possible to develop the lo
al presentation for theHamiltonian in Eq. (4.5),H = ZC h [s; �; '℄ ds; (4.6)where the Hamiltonian density h is expressible as apower series in the small parameter ",h = (r�)24� �����r�+38� r3� '2s�83 r4�3's (�s's��'ss)+O �"4�� :693
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harov, V. I. Pavlov ÆÝÒÔ, òîì 119, âûï. 4, 2001Inserting (4.6) in (3.34) and negle
ting the fourth-order terms in ", we �nd Dira
's Hamiltonian for 
on-tour dynami
s in vorti
ity-like systems under 
onsider-ation, HD = r3�24 ZC �
os'+ 38r2'2s� ds: (4.7)It is interesting to note that be
ause H � O �"2�,the main 
ontribution to Dira
's Hamiltonian is givensolely by the 
onstraint fun
tional. In the leading-orderapproximation, therefore, Eq. (4.7) be
omesHD = r3�24 ZC 
os'ds: (4.8)In a

ordan
e with (3.33), we now obtain the 
ontourdynami
s equation�t' = f';HDg = �r3�4 �'sss + 12'3s� : (4.9)4.2. Steadily rotating lo
alized vortexstru
turesWe 
onsider solutions of Eq. (4.9) that manifestthemselves as stationary vortex stru
tures rotatingwith a 
onstant angular velo
ity !0. These solutionshave the form' (t; s) = ~' (s� 
t)� !0t; (4.10)where !0 > 0 for the 
lo
kwise rotation and !0 < 0 forthe 
ounter
lo
kwise rotation. Inserting (4.10) in (4.9)and 
hoosing the spatial s
ale R asR = r2 � �!0�1=3 ; (4.11)we introdu
e the dimensionless variables~s = s� 
tR ; ~� = � ~'�~sand obtain the equation��~��~s�2 = �14~�4 + 
1~�2 + ~�+ 
2; (4.12)where 
2 is an integration 
onstant and 
1 == 
 (2!0R)�1.A

ording to the theory of ellipti
 fun
tions [14℄,Eq. (4.12) has two sets of periodi
 solutions expressedin terms of ellipti
 fun
tions,~� = b+ a� b1� � F (�~sjm) ; (4.13)

where F is one of the Ja
obi ellipti
 fun
tions (either snor dn) and m is the parameter of these fun
tions, withthe verti
al line symbolizing the m-dependen
e. Wenote that depending on the type of the Ja
obi ellip-ti
 fun
tions, the independent basi
 parameters � andm parametrize all the others parameters a, b, �, and
onsequently, 
1 and 
2.To derive the equations des
ribing the boundaryshape of vortex stru
tures rotating in the horizontalz-plane, we must integrate the equation�ẑ�~s = exp (i ~') ; (4.14)where ẑ = (x̂1 + ix̂2) =R is the dimensionless 
omplex
oordinate of the 
ontour. It 
an be dire
tly veri�edthat if ~� satis�es (4.12), the solution of (4.14) is givenby ẑ (~s) = 2 ��~��~s + i�
1 � ~�22 �� exp (i ~') : (4.15)4.3. Classi�
ation of solutionsIn this subse
tion, we fo
us our attention on the
lassi�
ation of those solutions of Eq. (4.12) that 
or-respond to multipetal vortex stru
tures without self-interse
tion of the 
ontour. For this purpose, we per-form both analyti
al and numeri
al investigation of theproblem in Eqs. (4.13) and (4.15) restri
ting our studyto the 
ase where F = sn. As be
omes apparent aftera 
lose examination, the solutions of the se
ond typewith F = dn do not 
ontain vorti
es without 
ontourself-interse
tions.With F = sn, the periodi
 solution for the 
ontour
urvature (4.13) takes the form~� = b+ a� b1� �sn (�~sjm) : (4.16)If the independent parameters � and m are 
onsideredas basi
, all the other parameters a, b, and � 
an beexpressed asa = �2�1=3 � �1 +m� 2�2�[(1�m)2�(m� �4)℄1=3 ;b = 2�1=3 �2 +m(�2 � 2)� [(1�m)2�(m� �4)℄1=3 ;� = 2�1=3 p(�2 �m)(1� �2)[(1�m)2�(m� �4)℄1=3 :The parameters 
1 and 
2 are expressed in terms of aand b as
1 = ba2 � 1a+ b ; 
2 = �14 �b+ a+ b2a2� :694
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tures : : :We emphasize that the 
onditions of the 
ontour 
on-tinuity (smoothness) and reality of solutions to (4.12)impose the following restri
tions on the parameters �and m: 0 � � � 1; m < �2: (4.17)It follows from (4.15) that in order to �nd theboundary shape we must know the slope angle ~'(~s)in addition to the variable ~�. This 
an be 
omputed byintegrating (4.16) along the 
ontour line,~'(~s) = ~sZ0 ~�(s)ds = b~s+a�b� � ��2; am (�~sjm) jm��� 2 Imnln h
n (�~sjm)p�2 �m ++ idn (�~sjm)p1� �2 io ; (4.18)where �(u;#jm) is the in
omplete ellipti
 integral ofthe third kind and the Ja
obi amplitude am(ujm) isde�ned by am(ujm) = ar
sin (sn(ujm)) :As mentioned above, our study is restri
ted to vor-tex stru
tures with a �nite area bounded by a 
losed
ontour without self-interse
tions. It is worth notingthat the elimination of self-interse
ting 
ontours 
orre-sponding to rather exoti
 vortex formations from the
onsideration is motivated by the weak-
urvature ap-proximation used in deriving Eq. (4.9), but is not atall di
tated by intrinsi
 reasons of �uid dynami
s. Inother words, the exa
t equations of motion for the two-dimensional ideal �uid admit the existen
e of solutionswith su
h a 
ontour topology.Obviously, 
onsidering su
h 
ontours requires a gen-eralization of model assumptions in the initial state-ment of the problem. Be
ause the vortex region be-
omes multiply 
onne
ted when the 
ontour admitsself-interse
tions, the 
orresponding pie
ewise-
onstantvorti
ity distribution 
an be rather spe
i�
. If thetopology of the 
ontour self-interse
tion is known, thevorti
ity distribution 
an be easily reprodu
ed be
ausethe vorti
ity jump must remain invariant when goingaround the 
ontour in one of the dire
tions (see Fig. 1).In essen
e, the question of whether to in
lude solutionsof this type into the framework of our s
heme is thequestion of whether a global behavior of solutions issensitive to a lo
al violation of the weak-
urvature ap-proximation. The answer 
an be found by 
omparingnumeri
al and analyti
al solutions. If these solutionsare insensitive, they have every ground for being in-
luded and 
an be improved using various numeri
al

�2 �1 0 1 2
01 !+ !+
�2�1 !+
x2

2!+
x1Fig. 1. The geometry of a three-petal vortex region ofpie
ewise-
onstant vorti
ity with a sel�nterse
ting 
on-tour. The vorti
ity distribution is !+ in petals and 2!+in the 
ore, so the jump in vorti
ity is the invariant !+in tra
ing the 
ontour

�3 �2 �1 0 1 2 3 4�3�2�1
012
3 ~s� ~s+ = K(m)��� = �nx2

x1
~s� = 3K(m)�

Fig. 2. Three-petal vortex stru
ture. The point~s+ = K(m)=� lies in the petal tip and ~s� = 3K(m)=�lies between the petals. ~s� is the self
onta
ting point ofthe 
ontourpro
edures similar to the �
ontour surgery� proposedin [2℄.Be
ause the 
ontour is 
losed and its 
urvature is aperiodi
 fun
tion of ~s, the boundary shape of the vor-ti
es must have an n-petal stru
ture. An example ofthis stru
ture is given in Fig. 2. From this �gure andthe analysis of (4.16), it is 
lear that the 
ontour 
urva-ture of the n-petal vortex stru
ture, being an os
illatoryfun
tion with the period 4K(m)=�, has extrema at the695
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0 0.1 0.2 0.3 0.4 0.5�2:0�1:5�1:0�0:50 n = �2n = �3n = �4n = �5n = �6n = �7n = �8n = �9

m

�Fig. 3. The family of n-petal vortex regimes in the plane �m. The 
hara
teristi
 
urves assign the dependen
e mn(�) forn = �1;�2; : : : ;�9. The limit points where the 
orresponding vortex stru
ture has the 
ontour with a self-
onta
t aremarked as �points~s� = (4j � 1)K(m)� ; ~s+ = (4j � 3)K(m)� ;j = 1; 2; : : : ; n;where K(m) is the 
omplete ellipti
 integral of the �rstkind. At these points, the 
ontour 
urvature takes theextreme values~�+ = b+ a� b1� � == 2�1=3 m(�+ 2)� �(1 + 2�)[(1�m)2�(m� �4)℄1=3 ;~�� = b+ a� b1 + � == 2�1=3 m(�� 2)� �(1� 2�)[(1�m)2�(m� �4)℄1=3 : (4.19)
The subs
ript notation � means that f� = f(~s�). Therelative position of the turning points ~s� and ~s+ de-pends on the parameters � and m. To establish whi
hof them is at the tip of the petal and whi
h is in thetrough between the petals, it is ne
essary to 
omputethe distan
es between these points and the symmetry
enter (the 
oordinate origin). For this purpose, weintrodu
e � and � as the polar 
oordinates,ẑ(~s) = �ei�:

In a

ordan
e with (4.15) and (4.12), the variables �and � are then given by�2 = 4 �
21 + 
2 + ~�� ; (4.20)� = ar

tg� �~�=�~s
1 � ~�2=2�+ ~': (4.21)Expressing 
1 and 
2 in terms of � and m and us-ing (4.19), we �nd from (4.20) that�2+ = 22=3 �m(1 + 2�)� �3(� + 2)�2�(m� �4) [(1�m)2�(m� �4)℄1=3 ;�2� = 2�1=3 �m(1� 2�)� �3(�� 2)�2�(m� �4) [(1�m)2�(m� �4)℄1=3 :The relative position of the turning points depends onwhether 1 is greater or less than the ratio����+�2 = 1 + 8�(�2 �m)(m� �4)[m(1 + 2�)� �3(�+ 2)℄2 :It is easy to see that the inequality �4 � m � �2 entailsthe inequality �� � �+; in this interval of the param-eters, therefore the tops of the petals lie at the points~s�. In the event that m � �4 (and 
onsequently, thereverse inequality �� � �+ holds), the tips of the petalslie at the points ~s+.It is amply 
lear that in the region of the permissibleparameters (4.17), not all solutions (4.16) 
orrespond696
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01 0 1
02 0 2 02 0 2
�1 �1

a b

 d�20

2
0 2

�2 �2�2
�2
�2Fig. 4. Shapes of boundaries for double-petal vor-tex stru
tures: � = 0:050 (a), 0.200 (b), 0.300 (
),0.353 (d)to vortex stru
tures with 
losed 
ontours. The 
ondi-tion under whi
h periodi
 solution (4.16) 
orrespondsto a 
losed 
ontour 
an be formulated as�� = �� � �+ = �n: (4.22)This 
ondition has a simple geometri
al interpretationshown in Fig. 2. From this �gure, it is easy to see that2�� is merely the angular distan
e between neighbor-ing petals. To evaluate its value, it su�
es to notethat the position ve
tor and the tangent one are mu-tually orthogonal at the turning points. It thus followsfrom (4.21) that �� = ~'� + �2��;where the sign fun
tion �� is de�ned as�� = sign �m(1� 2�)� �3(�� 2)� : (4.23)The expression for ~'� 
an be easily found from (4.18)as ~'� = 4j � 2� 1� �� �bK(m) + (a� b)� ��2jm��� �; (4.24)where �(ujm) = ��u; �2 jm�is the 
omplete ellipti
 integral of the third kind.

02�2 0 2�2 �220a b

 d�2

�2
0

0 220�2 �2 0 22�2
20

Fig. 5. Shapes of boundaries for three-petal vortexstru
tures: � = 0:050 (a), 0.200 (b), 0.300 (
),0.371 (d)Equations (4.23) and (4.24) allow us torewrite (4.22) asbK(m) + (a� b)� ��2jm� = �2 �� 1n ��� ; (4.25)where� = 12(����+) = 12 �sign �m(1�2�)��3(��2)��� sign �m(1 + 2�)� �3(�+ 2)�	 :The analysis shows that Eq. (4.25) has solutions in theform of n-petal stru
tures in the regionm � �3 �� 21� 2�;where � = 0, for n � �2. In Fig. 3, this region ismarked by a shaded ba
kground. The solutions arepresented by the 
hara
teristi
 
urves that determinethe dependen
e mn(�) for every n. For a �xed n, themultipetal stru
ture 
an therefore be des
ribed by asingle parameter �. The vortex shapes for n = 2; 3depending on � are shown in Figs. 4 and 5. For ev-ery n-petal regime, the 
hara
teristi
 
urve has a limitpoint where the 
orresponding vortex stru
ture has aself-
onta
ting 
ontour. Solutions without interse
tionsof 
ontours are on the left of the point and those withself-interse
tions are on the right.A prerequisite to the formation of a self-
onta
t ina 
ontour 
an be formulated on the basis of geometri
al697
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Fig. 6. Surfa
e plot of the streamfun
tion �eld for thelimiting three-petal vortex stru
ture
onsiderations following from Fig. 2. At the tangen
ypoint ~s�, the angles � and ~' are related by�(~s�) = ~'(~s�):Equation (4.21) now implies the 
ondition~�2 (~s�) = 2
1:One more 
ondition is obtained by taking into a

ountthat in tra
ing the 
ontour from the point ~s+ to the tan-gen
y point ~s�, the tangent ve
tor is rotated through�=2, and therefore~'(~s�)� ~'+ = �=2:Using the relation~'+ = �2 � 1n ���� �;whi
h follows from (4.24) and (4.25) with j = 1, weobtain the 
onditions~'(s�) = �2 � 1n ��� 1� ;~�2 (s�) = 2�2=3 �� 2�4(1 +m) + �2(1 +m(m� 10)) + 2m(m+ 1)[(1�m)2�(m� �4)℄2=3 :Together with (4.25), these 
onditions �x all the pa-rameters of the limiting regimes presented in the Table.In the quasigeostrophi
 barotropi
 model, the phys-i
al interpretation of  is the pressure deviation, and inthe plasma model based on the Hasegawa�Mima equa-tion, this quantity 
hara
terizes the ele
tri
 potential.To illustrate the spatially-temporal 
hara
ter of distri-butions of  , we assume for simpli
ity that the ba
k-ground vorti
ity is absent, i.e., !� = 0. Using the

0 1 2 3 40.40.81.21.6
36Æ

� = 60Æ (r) (0)
r

48Æ
Fig. 7. The radial pro�le of the streamfun
tionfor the limiting three-petal vortex stru
ture given inFig. 6. The pro�les 
orrespond to the dire
tions� = 60; 48; 36results obtained in Se
. 4.1, we 
an then establish theformula (x) = !+ Z �+0G (x;x0) dx0 == !+R2 Im ZC � 1jẑ � zj � "�1K1� jẑ � zj" ���� ẑs ��̂z � �z�jẑ � zj ds; (4.26)where z = (x1 + ix2) =R and " = jr=Rj :The distribution  (x)= (0) asso
iated with the pres-en
e of the three-petal vortex of limiting type is 
al
u-lated in a

ordan
e with (4.26) and is shown in Fig. 6.The radial pro�les 
orresponding to this vortex are pre-sented in Fig. 7.5. CONCLUDING REMARKSTo gain greater insight into the physi
al signi�
an
eof the results and de
ide in whi
h range of parametersthese results 
an be appli
able, we make some estimatesfor the Hasegawa�Mima model and for the axial modelof ele
troni
 vorti
es, in parallel. We note that for thesemodels, the values of the rL and rS parameters 
overa broad range. A

ording to fa
tual eviden
e [15℄, theLarmor ion radius rL measures 103 
m for the inter-planetary gas and 10�2 
m for the solar 
orona. De-pending on the type of plasma, the skin layer width rSvaries between 5 � 105 and 5 � 10�3 
m.To illustrate the obtained results in more detail, we
onsider the Hasegawa�Mimamodel of plasma with theparameters Te = 104 K, n0 = 1014 
m�3, B0 = 104 G,698



ÆÝÒÔ, òîì 119, âûï. 4, 2001 Multipetal vortex stru
tures : : :Table. Values of parameters 
hara
terizing the limiting regimesn � m ~�� ~�+ �� �+�2 0.352823 �0:245778 �0:456761 1.79081 0. 2.12018�3 0.371469 �0:580662 �0:820287 1.95339 0.193635 3.3365�4 0.348897 �0:844407 �1:01623 2.03108 0.42446 3.51701�5 0.323504 �1:0545 �1:15832 2.08942 0.635998 3.65998�6 0.300157 �1:22456 �1:27263 2.13903 0.83048 3.78634�10 0.231285 �1:66566 �1:60011 2.29932 1.49709 4.22362and mi = 1:67 � 10�24 g, whi
h are typi
al for a low-pressure gas dis
harge. In a

ordan
e with (4.2), we�nd rL � 10�2 
m. Be
ause the theory of limit-ing vortex stru
tures has only two 
ontrol parame-ters (the angular rotation velo
ity !0 and the vorti
ityjump � = !+ � !�), we put !0 = 10 s�1, !� = 0,and !+ = 106 s�1 in order to 
al
ulate some 
har-a
teristi
s of a three-petal drift vortex. In this 
ase,Eq. (4.11) gives R � 10rL = 10�1 
m, and therefore,ea
h petal of the vortex stru
ture has the radial length�+R � 3:3 � 10�1 
m. Next, upon numeri
al integra-tion with " = rL=R � 10�1, we obtain from (4.26)that  (0) � 5:07R2!+. Thus, we 
an estimate themagnitudes of the ele
tri
 potential � and the ele
tronnumber density ne at the 
enter of the three-petal driftvortex. It follows from (4.3) that �(0) � 4:4 � 102 Vand ne(0) � 1:5 � 1016 
m�3.We note, in 
losing, some possible generalizationsof the Hamiltonian versions of 2D 
ontour dynami
s.The te
hnique that we have des
ribed 
an also be usedfor 3D vortex obje
ts, for example, in quasigeostrophi
baro
lini
 models of geophysi
al �uid dynami
s. TheHamiltonian versions of 2D 
ontour dynami
s 
an besu

essfully applied to the study of nonplanar modelsin all the 
ases where the velo
ity �eld is invariantalong the vorti
ity �eld dire
tion. Typi
al examplesare �ows on the sphere and also �ows with the rota-tional and heli
al spatial symmetry of the vortex �eld.This work was partly supported by theRussian Foundation for Basi
 Resear
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