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NONLINEAR FLUCTUATION PHENOMENAIN THE TRANSPORT PROPERTIES OF SUPERCONDUCTORSA. I. Larkin a;b, Yu. N. Ovhinnikov a*a L. D. Landau Institute for Theoretial Physis, Russian Aademy Sienes117940, Mosow, Russiab Theoretial Physial Institute, University of Minnesota116 Churh Street SE, Minneapolis, Minnesota USASubmitted 28 September 2000There exists a wide temperature region (GiT < T � T < TpGi), where the in�uene of �utuations on thethermodynami properties of superondutors an be taken into aount in the linear (Gaussian) approximation,while their in�uene on the kineti properties is strongly nonlinear. The Maki�Thompson otribution to theondutivity saturates in this region. However, the Aslamazov�Larkin ontribution beomes even more singu-lar. This enhanement is related to the fat that nonlinear e�ets inrease the lifetime of �utuating pairs.Pair-breaking and energy relaxation proesses an derease the nonlinear e�ets.PACS: 74.40.+k 1. INTRODUCTIONThe eletron sattering o� the usual impuritiesleads to a temperature-independent residual resistaneof the normal metal [1℄. The ondutivity of bulksamples and �lms an be measured with a very highauray. This allows one to study di�erent meha-nisms leading to the temperature-dependent ondu-tivity at low temperatures. One of these mehanismsis related to thermal �utuations above the superon-duting transition temperature T [2�5℄. There aretwo kinds of �utuation orretions leading to thetemperature-dependent ondutivity above T. The�rst one is known as the Maki�Thompson (MT) on-tribution and the seond is the ondutivity of �u-tuating pairs (the Aslamazov�Larkin (AL) ontribu-tion). These orretions depend di�erently on the spin�ip sattering time �s. The harateristi temperaturerange for the ontributions of both types is determinedby the Ginzburg parameter Gi that depends on dimen-sionality; for �lms, to Gi = �0 = 1=32�Dd = e2=16~��,where � = mp2=2�2 is the eletron density of states perspin, D = vF ltr=3 is the di�usion oe�ient, d is the�lm thikness, ltr is the eletron mean free path, p is*E-mail: ovhin�labs.polynrs-gre.fr

the Fermi momentum, and �� is the ondutane ofa square �lm. It has been found in [6℄ that nonlin-ear �utuation phenomena lead to a new temperaturesale TpGi (see also [7�10℄). In this paper, we obtainexpressions for the ondutivity in the temperature re-gion Gi < � < pGi, where the Gaussian approximationworks well and the nonlinear �utuation e�ets are im-portant.In [6℄, an attempt to �nd the �utuating orre-tion to the ondutivity was made. The main pointwas that long-wave �utuations with Dk2 < T� areessential. These �utuations an be onsidered as aBose ondensate. The dynamis of superondutorsmust be onsidered in the bakground of these �u-tuations. They lead to a pseudogap in the exitationspetrum. In this paper, we show that short-wave �u-tuations with Dk2 � T� an be important. It wasfound in [11℄ that short-wave �utuations of the or-der parameter � a�et the eletron Green's funtionsas paramagneti impurities with the depairing fator� = ��1s = hj�j2i=". Essential values of the energy "are of the order " � � � TpGi, and therefore, � isof the order TpGi. This large value of the depairingfator leads to the saturation of the MT ontributionto ondutivity in the temperature region � < pGi.A more ompliated situation ours for the AL595 12*



A. I. Larkin, Yu. N. Ovhinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001ontribution. This ontribution is proportional to thedensity of pairs and their lifetime. For su�ientlylarge values of � , the time-dependent Ginzburg�Landau(TDGL) equation an be used to obtain this lifetime.It is proportional to ~=(T�T), and hene, the AL on-tribution is proportional to ��1. If the onentrationof paramagneti impurities is large or if the energy re-laxation time is short, the TDGL equation an be usedfor all temperatures T . In this ase, the AL ontribu-tion is valid in the temperature range � > Gi. In theopposite limiting ase, the nonlinear �utuation e�etsdestroy the appliability of the TDGL equation andinrease the lifetime of �utuating pairs. As a result,the AL ontribution to the ondutivity beomes moresingular in the temperature region pGi > � > Gi.2. QUALITATIVE PICTUREIn the temperature region 1 � � � Gi, thermo-dynami �utuations of the order parameter � an beonsidered to be Gaussian. The orresponding orrela-tor is given byh��k�ki = T�d 1�+�Dk2=8T = 256� GiT 2k2+8T�=�D : (1)To alulate thermodynami quantities in the tem-perature region � > Gi, it is su�ient to know thisorrelator only. However, a more ompliated prob-lem must be solved in order to alulate kineti oef-�ients. One must �nd how the Gaussian �utuationshange the one-partile exitation spetrum. The long-wavelength �utuations with k2 < k2min = 8T�=�D anbe onsidered as a loal ondensate. They lead to theformation of a pseudogap in the one-partile spetrumof exitations. It follows from Eq. (1) that the pseudo-gap is equal to �PG = 8�pGiT: (2)At some distane from the transition (for � > pGi),only the exitations with the energy ! > �PG are sig-ni�ant. The pseudogap does not play any role in theseexitations. It is therefore su�ient to onsider �utu-ations in the linear approximation only (see [3�5℄). Itis important, however, that the exitations with theenergy ! < �PG beome essential in the temperatureregion � < pGi. In [6℄, the �utuation orretion tothe ondutivity was onsidered with the pseudogaptaken into aount in the same way as the gap belowthe transition temperature. This approximation gives aorret estimate for the width of the temperature region

where the non-linear e�ets are important. However,the model with a onstant � onsidered in [6℄ annotreprodue the orret temperature dependene of theondutivity in the temperature region � < pGi.To desribe the nonlinear e�ets, we onsider �u-tuations of � in the statial approximation. This is el-igible, beause the �utuation lifetime (T�)�1 is largeompared to the inverse pseudogap. However, the spa-tial dispersion of the pseudogap hanges the physialpiture signi�antly. To take the spatial variationsinto aount, we must alulate the ondutivity as afuntion of the order parameter �(r) that is an ar-bitrary funtion of r and average the result over theGaussian �utuations with orrelator (1). We aom-plish this program up to a numerial oe�ient in thelimiting ase where the energy relaxation rate is large(�" � (T�)�1). In the other ases, we obtain a fun-tional form of the temperature dependene of the on-dutivity with undetermined oe�ients.To onsider the spatial dependene of the order pa-rameter, we use the results obtained in [11℄, wherethe spatial variations of � were shown to at on one-partile exitations in the same way as the magnetiimpurities. In this ase, the total pair-breaking rate �an be written as a sum of the pair-breaking rate dueto the magneti impurities and the �utuation term.Thus, the self-onsistent equation for � beomes� = Z d2k(2�)2 h��k�ki! +Dk2=2 + � + 1�s : (3)It is important to mention that Eq. (3) is exat if either! � � or �s is very small suh that the �rst term inEq. (3) is a small orretion to the seond one. In theother ases, the self-onsistent equation (3) an be on-sidered as an approximation and gives the result validby the order of magnitude only.In the region where ! < � and � � T� , we obtainfrom Eqs. (3) and (1) that� = 8T� �Gi ln �T� �1=2 ; (4)whih oinides with the value obtained in [7; 12℄ up tothe logarithmi term. In what follows, we repeat thederivation from [11℄ and show that the pseudogap doesnot hange result (4) qualitatively.We note that the pair-breaking rate � is of the or-der of the pseudogap �PG. Thus, a wide maximum ofthe density of states appears at ! � �PG.As known from [5℄, the MT orretion to the on-dutivity saturates for T� < � and takes the formÆ�MT�0 = 8TGi�� ln ��4T� : (5)596



ÆÝÒÔ, òîì 119, âûï. 3, 2001 Nonlinear �utuation phenomena : : :As an be seen from Eqs. (4) and (5), this saturationours for � < pGi. Similar results have been obtainedin [7; 8; 10℄. However, numerial oe�ients are di�er-ent.We note that the numerial oe�ient in Eq. (5) de-pends on how the summation of higher-order diagramsis made. However, its exat value is not very importantbeause in the region T� < �, the MT ontribution isless singular than the AL ontribution and an be ne-gleted. The AL ontribution does not saturate as Ttends to T but beomes more and more singular.To estimate the AL ontribution due to the appear-ane of �utuating Cooper pairs, we use the simpleDrude formula Æ�AL = ne2m �fl; (6)where n, m, and �fl are the onentration, the mass,and the lifetime of the �utuating Cooper pairs. Theratio n=m an be estimated from Eq. (1), while thelifetime follows from the TDGL equations,�a ��t +Dk2 + 8�T���k(t) = �(t); (7)where � is the Langevin noise. In the two-dimensionalase, we have nm � T2�d~2and �fl = �~8(T � T)a:At a su�ient distane from the transition (T� > �PG)or for a very large energy relaxation rate, we an seta = 1, beause the quasipartiles are at the thermalequilibrium. Thus, we haveÆ�AL� = Gi� : (8)In the presene of the pseudogap, there is no equi-librium and the oe�ient a beomes greater than one.We reall that below the transition temperature, theoe�ient a in the TDGL equations for j�j hangessimilarly (see, e.g., [13�17℄). The growth of a and, on-sequently, the growth of the �utuation lifetime ourbeause the quasipartiles require more time to attainthe thermal equilibrium (we let �e denote the orre-sponding time). A rough estimate gives a � �PG�e.For a weak energy relaxation, �e must be determinedfrom the di�usion equation with the pseudogap taken

into aount (see [18�20℄). We note that in this om-pliated ase, the oe�ient a beomes a nonloal op-erator. Rough estimates give the thermal equilibriumtransition time �e � (Dk2min)�1 � (T�)�1. TakingEq. (2) into aount, we obtainÆ�=�0 = Gi3=2=�2: (9)We see that paraondutivity an exeed the normalondutivity �0 in the region Gi3=4 > � > Gi. Weemphasize that orretions to all the thermodynamioe�ients are small in this region and are adequatelydesribed by the linear theory.We now disuss the role of the energy relaxationproesses haraterized by the quasipartile lifetime �".In the two-dimensional ase, the nonelasti eletron�eletron sattering in dirty metals leads to the eletron�eletron ollision time��1" � Td l p2 � GiT:Suh a large ollision time does not hange nonlineare�ets. However, the nonelasti eletron sattering o�phonons and other possible olletive exitations anderease �" signi�antly. These proesses together withadditional pair-breaking proesses (due to magneti im-purities or a magneti �eld) derease the nonlinear ef-fets. The energy relaxation redues the thermal equi-librium transition time �e. If these proesses are verystrong (for example, if the temperature is relativelyhigh), the transport equation for the distribution fun-tion beomes loal and in the limit T� � Dk2 � ��1" ,we an write �e = �". Thus, in the temperature regionunder onsideration, we haveÆ��0 = Gi3=2T�"� : (10)The elasti sattering o� magneti impurities and themagneti �eld also tend to diminish the nonlinear�utuation e�ets in ondutivity, but in a di�erentway. These sattering proesses (as well as satter-ings o� the stati �utuations of the order parame-ter) do not a�et the quasipartile motion and hene,�". However, if the pair-breaking rate is su�ientlylarge (� > �PG), these proesses lead to the re-dued pseudogap �PG � hj�j2i=� (we reall that�PG �qhj�j2i � TGi1=2 without the pair breaking).Thus, the �utuation orretion an be written asÆ�=�0 = Gi2T=�2�: (11)In the presene of both a strong pair breaking anda large energy relaxation, exat expressions for the o-e�ient a in the TDGL equation, whih is loal in this597



A. I. Larkin, Yu. N. Ovhinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001ase, and for paraondutivity an be derived with alogarithmi auray. The main ontribution to a thenomes from the �utuations with T� < Dk2 < ��1" .The �rst inequality allows us to onsider only the lead-ing terms in the expansion of a with respet to �, andthe seond one implies a loal approximation in thetransport equation. The result isa = �"h�2i2� ; (12)Æ��0 = 32Gi2T 2�"�2�� ln �8T�"� : (13)We note that Eqs. (9)�(13) are valid only if the parame-ters � and �" are suh that the ontribution to the on-dutivity Æ� is larger than the usual Aslamazov�Larkinontribution in Eq. (8). If � > T and T�" < pGi orif T 2�"=� < Gi, the nonlinear e�ets are negligible andthe usual result (8) is valid for all � > Gi. We notethat the MT ontribution saturates at the tempera-tures suh that T� � max h�; 1=�"; TpGii.3. DEPAIRING FACTOR INDUCED BYFLUCTUATIONSA nonzero �utuating order parameter � and theGor'kov Green's funtion � [6℄ exist above the transi-tion temperature. In the temperature region � > Gi,the main ontribution to the order parameter � arisesfrom zero �frequeny�. The momentum spae an besplit into two parts, �Dk2=8T < � and �Dk2=8T > � .The �utuations with �Dk2=8T > � an be onsideredas �fast� variables reated in the bakground of slow�utuations with �Dk2=8T < � . The �fast� �utua-tions indue the intrinsi depairing fator � even if theexternal depairing fator related to paramagneti im-purities is missing (�s ! 1). A similar phenomenonwas studied in [11℄. Using the method developed in thatpaper, we obtain expressions for the statial Green'sfuntions � and � and the depairing fator �. We startfrom the Usadel equation for the Green's funtions �and � in the dirty limit (see [6; 21℄),��� !� + D2 ��r2� � �r2�� = ���: (14)Following [11℄, we present the Green's funtions �and � in the �eld of �fast� �utuations of the orderparameter �(k) as� = h�i + �1; � = h�i+ �1: (15)

The deviations of the Green's funtions from theirmean values an be found in the perturbation theory.We have [11℄�1(k) = � �(k)h�ih�i!h�i+ h�ih�i +Dk2=2 : (16)The �mean� Green's funtions h�i and h�i are so-lutions of the system of equationsh�i2 + h�i2 = 1; h�ih�i � !h�i = h�ih�i�: (17)The value of the parameter � is determined byEq. (16) and is equal to� = Z d2k(2�)2 h��k�kih�i! + h�ih�i +Dk2=2 ; (18)where h�i = hj�j2i1=2. The quantity h�i in Eqs. (16)and (17) must be understood as the integral over k ofexpression (18) over the range �Dk2=8T � � ; it thenbeomesh�i = � T�d Z d2k(2�)2 1� + �Dk2=8T �1=2 �� T �64Gi�2 �1=2 : (19)From Eqs. (1) and (18), we obtain� = 16TGi�� 1(�=4T�)(!h�i + h�ih�i) � 1 �� ln��(!h�i+ h�ih�i)4T� � : (20)As an be seen from Eq. (20), �(!) is a funtion ofthe energy !. In the range � � pGi, essential values of! are of the order �. Thus, � itself is of the order h�i(see (19)). This order of � is related to �utuationsof the order parameter modulus. This value is muhlarger than the one due to the phase �utuations of theorder parameter (see [6℄).4. EQUATIONS FOR THE TIME-DEPENDENTORDER PARAMETERThe stati Ginzburg�Landau equations are valid inthe wide temperature regionGi� j1� T=Tj � 1: (21)The TDGL equations are valid if the energy relax-ation time �" or the pair-breaking time �s = ��1 issu�iently short [13�16℄. For large �", the dynamis598



ÆÝÒÔ, òîì 119, âûï. 3, 2001 Nonlinear �utuation phenomena : : :of normal exitations beomes essential. As a result,the dynamial term in the equation for the order pa-rameter beomes more ompliated. We now derive theorresponding equation.The order parameters �1;2(t) an be written as�1;2(t) = ��eff2 FK1;2(t; t); (22)with the Green's funtion Ĝ presented in the form [18℄Ĝ =  GR; GK0; GA ! ; (23)where GR;A;K are the retarded, advaned, and KeldyshGreen's funtions. Eah of these is a Gor'kov�Nambumatrix GR;A;K =  g1 F1�F2 g2 !R;A;K ;~� =  0 �1��2 0 ! ; (24)where �2(!) = ��1(�!).In the dirty limit, we have the system of equationsfor GR;A (see [19℄)�D���gR;A��FR;A1;2 � FR;A1;2 �gR;A�r �+2i�1;2gR;A�� 2i"FR;A1;2 + 2�s gR;AFR;A1;2 = �IPh(R;A)1;2 ; (25)where IPh(R;A)1;2 is the eletron�phonon ollision inte-gral; in the viinity of the transition temperature Tfor small energy values j"j � T , it is equal toIPh(R;A)1;2 = � 1�"FR;A1;2 : (26)The Keldysh Green's funtion GK an be writtenas [20℄ G = Z dt1(GRf̂ � f̂GA); (27)where the distribution funtion f̂ is given by [20℄f̂ = f + �zf1: (28)

Equations for the distribution funtions f1;2 havebeen derived in [20℄ and are given by�D ��r(�f�r (1�GRGA))�D ��r (f1j") ++ 2�f�t Sp�+ �f�" ��(eD�A�t j" � 2 Sp ��̂�t Æ)+ 4IPh1 (f) = 0;�D ��r Sp(�f1�r (1��zGR�zGA))�D�f�r j"++ 2 ��t(f1 Sp�)� 4if1 Sp(�̂) ++ 2�f�" Sp(e�'�t �� ��̂�t �z + i2 �2�̂�t2 �Æ�")++ 4IPh2 (f1) = 0;
(29)

where j" = Sp �z(GR�GR �GA�GA);� = ��r � ieA�z; (30)2� = GR�z��zGA; 2Æ = GR�GA; 2 = GR+GA:In the important limiting ase where " � � � �,Eqs. (25) and (29) an be simpli�ed and we obtainFR;A1 = �i �� i"� D2 �2�r2!�1�;FR;A2 = �i �� i"� D2 �2�r2!�1��; (31)�D�2f�r2 � D4 ��r (j"f1) + �f�t + 14 �f�" ��(��1�t (FR2 �FA2 )+��2�t (FR1 �FA1 ))+IPh1 (f) = 0;�D�2f1�r2 � D4 j" �f1�r + �f1�t ++ i2f1 ��(FR2 + FA2 ) + ��(FR1 + FA1 )�+ �f�" ��(e�'�t +14 ����1�t (FR2 +FA2 )+��2�t (FR1 +FA1 )�)++ IPh2 (f1) = 0;wherej" = �FR1 �FR2�r + FR2 �FR1�r ++ FA1 �FA2�r � FA2 �FA1�r : (32)599



A. I. Larkin, Yu. N. Ovhinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001The general expression for the ollision integralsIPh1;2 is given in [20; 22℄. For small energy values j"j � T ,these integrals an be taken in the simple formIPh1 (f) = 1�" ��th� "2T �+ f� ; (33)IPh2 (f1) = 1�" f1;��1" = 7�(3)��g2T 3=2(sp)2;where s is the sound veloity in the metal and g is theeletron�phonon oupling onstant.In the limiting ase of strong energy relaxation with�"� � 1, the distribution funtion f̂ an be taken asthe equilibrium one,f = th("=2T ); f1 = 0: (34)In this ase, Eqs. (22), (31), and (34) allow us to obtainthe time-dependent Ginzburg�Landau equation in thestandard form�1� T=T � 7�(3)8�2T 2 j�j2��+ �D8T �2���� �8T � ��t + 2ie'�� = 0: (35)If the ondition �"�� 1 is not satis�ed, the devia-tion of the distribution funtion f̂ from its equilibriumvalue an hange the last term in Eq. (35).In the range � � �, the rossing term in Eq. (31)has the smallness (�=�)2. In the leading approxima-tion, system (31) is therefore diagonal.With the aid of Eqs. (27), (28), and (31), we anrewrite Eq. (22) as�� + �8T ��i!1 �D �2�r2���1 � �2 1Z�1 d"2� �� �Æf(FR1 � FA1 )� f1(FR1 + FA1 )� = 0;�� + �8T ��i!1 �D �2�r2���2 � �2 1Z�1 d"2� �� �Æf(FR2 � FA2 )� f1(FR2 + FA2 )� = 0; (36)
where we set f = th("=2T ) + Æf: (37)In (36), the ontributions of the seond terms are ofthe order (�=�)2. This result is due to the anellationof the terms oming from Æf and f1. But in the nextorders of the perturbation theory, the quantity f1 be-omes small and the main ontribution arises from thedistribution funtion Æf beyond perturbation theory.

5. THE CONDUCTIVITY OF FLUCTUATINGPAIRS (THE ASLAMAZOV�LARKINCONTRIBUTION)The ondutivity of �utuating pairs is given by thediagrams in Fig. a. In what follows, we assume thatthe order parameters �1;2 an be written as the sumsof two terms. One of them is related to the statialthermodynami �utuations � and ��. In the range� > Gi, these �utuations are Gaussian with the or-relator given by Eq. (1). The wavy line in Fig. a givesthe dynamial �utuations ~�1;2 of the order parameter.The orrelators of these �utuations K̂ij must be foundin the bakground of thermodynami �utuations,K̂ij(!1) = �h��i�ji!1 : (38)The ontribution to the ondutivity an be ex-pressed through the orrelators K̂ in the same way asfor weak �utuations [3℄.We must �rst �nd the ondutivity as a funtion ofthe Matzubara frequeny !0 and then perform the ana-lytial ontinuation in !0. The orretion to the urrentwas found in [6℄ with the aid of the equations for theGreen's funtion in the dirty limit in high-frequeny�elds,j�!0 = 12d Z d2r1TX!1 Sp L̂�r K̂(!1 + !0; r; r1)�� L̂�r1K̂(!1; r1; r)A�!0 ; (39)where A!0 is the vetor potential of the external �eldand the matrix L̂ is given byL̂�12 = L�21 = 0; L̂�11(r) = ��eD2T ��r� ;L̂�22 = �L̂�11: (40)After the analytial ontinuation with respet to !0
a bThe Aslamov�Larkin ontribution to the ondutivi-ty (a); the Maki�Thompson ontributions to the on-dutivity (b)600



ÆÝÒÔ, òîì 119, âûï. 3, 2001 Nonlinear �utuation phenomena : : :in Eq. (39), we obtainj�! = � 12d Z d2r1 iT2� i1Z�i1 d!1" 1!1�i!�Æ� 1!1+Æ#�� Sp�L̂�r K̂(!1 � i! + Æ; r; r1) ��L̂�r1K̂(!1 � Æ; r1; r)�A�!: (41)It was found in [6℄ that the �utuations are weak inthe range � > Gi1=2. In this region, we haveK11(!1+Æ) = K22(!1 + Æ) =
= 1�+(�=8T )(!1 +Dk2) : (42)From Eqs. (40)�(42), we obtain the well-known resultfor the paraondutivity [3℄,�(a)=�0 = Gi=�: (43)To obtain the ondutivity in the temperature re-gion � < Gi1=2, we must �nd the orrelation funtionsK̂ in the �eld of thermodynami �utuations �. Wemust then average the expression for ondutivity over�. The orrelation funtions K̂ an be found fromEq. (36),

K̂�1 = 0BBB� � + �8T �!1 �D �2�r2�� C11 �C12�C21 � + �8T �!1 �D �2�r2�� C22 1CCCA ; (44)where the operators Cij are given byC11 = �2 1Z�1 d"2�"�FR1 � FA1 � Æf (1) � f (1)1 �FR1 + FA1 �#;C12 = �2 1Z�1 d"2�"�FR1 � FA1 � Æf (2) � f (2)1 �FR1 + FA1 �#;C21 = �2 1Z�1 d"2�"�FR2 � FA2 � Æf (1) + �FR2 + FA2 � Æf (1)1 #;C22 = �2 1Z�1 d"2�"�FR2 � FA2 � Æf (2) + �FR2 + FA2 � Æf (2)1 #: (45)
In Eqs. (45), the operators Æf (1;2) and f (1;2)1 are suh thatÆf = Æf (1) ~�1 + Æf (2) ~�2; (46)f1 = f (1)1 ~�1 + f (2)1 ~�2;with Æf and f1 being the respetive solutions of system (31) in the �eld of ~�1 and ~�2. System (31) annot besolved analytially for an arbitrary funtion �(r). Nevertheless, in the range � < Gi1=2, the expression for theorrelation funtions K̂ an be found with the logarithmi auray if the value of the external depairing fator �is larger than �. In this ase, simple expressions for the Green's funtions FR;A1;2 an be used,FR;A1 = �i��� i" ; FR;A2 = �i���� i" : (47)If Dk2 � j�j2=�, the ontribution of Æf (1;2) is anelled out in the expressions for C11 and C22. We note thatDk2 � j�j2=� implies f (1;2)1 � Æf (1;2). Thus, this region gives the dominant ontribution to Cij . Equations (44)and (45) an then be redued to 601



A. I. Larkin, Yu. N. Ovhinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001"� + �8T �!1 �D �2�r2 �#K11 + �!1�16T��!1 + ��1" �D �2�r2��1���K11�++ �!1�16T� �!1 + ��1" �D �2�r2 ��1��K21� = Æ(r � r1);"� + �8T �!1 �D �2�r2 �#K12 + �!1�16T��!1 + ��1" �D �2�r2��1���K12�++ �!1�16T� �!1 + ��1" �D �2�r2 ��1��K22� = 0;"� + �8T �!1 �D �2�r2 �#K21 + �!1��16T� �!1 + ��1" �D �2�r2��1��K21�++ �!1��16T� �!1 + ��1" �D �2�r2��1���K11� = 0;"� + �8T �!1 �D �2�r2 �#K22 + �!1��16T� �!1 + ��1" �D �2�r2��1��K22�++ �!1��16T� �!1 + ��1" �D �2�r2��1���K12� = Æ(r � r1):
(48)

This system an be solved with the logarithmi a-uray for strong energy relaxation ��1" > T� . In thisregion, it follows from Eq. (1) that����!1 + ��1" �D �2�r2��1�� == 64Gi�2 T 2�" ln �8T��"!: (49)Equations (1), (48), and (49) now imply the relationsfor the orrelators K̂,(� + �D8T k2 + 4GiT�"!1�� ln �8T��"!�� 2�  4GiT�"!1�� !2I)K11 = 1; K22 = K11; (50)whereI = 1Z0 dx dy(x+1)(y+1)p(x�y)2+2(x+y)a+a2 ;a = 1 + 4!1T�"Gi��� ln �8T��"!: (51)The nondiagonal elements in K̂ give a logarithmi-ally small ontribution to the ondutivity. As a re-sult, we obtain�a�0 = 32Gi2T 2�"�2�� ln �8T��"!: (52)

The situation beomes more ompliated if the en-ergy relaxation time �" is large. From (48), we thenobtain the equation for the orrelator K11"� + �8T �!1 �D �2�r2 �#K11 ++ �!1�16T��!1 + ��1" �D �2�r2��1���K11��� �!116T�!2� !1 + ��1" �D �2�r2!�1 ���"� + �8T  !1 �D �2�r2!++ �!116T����!1 + ��1" �D �2�r2��1�#�1 �����!1 + ��1" �D �2�r2!�1���K11� == Æ(r � r1): (53)We next �nd the mean value*���!1 �D �2�r2��1 ��exp(ikr)�+ ==64T 2Gi�2 1Dk2+8T�=� ln �(Dk2+8T�=�)28T�!1 !: (54)This implies that the oe�ient at !1 in the equationfor K11 is logarithmially large. Contrary to the previ-602



ÆÝÒÔ, òîì 119, âûï. 3, 2001 Nonlinear �utuation phenomena : : :ous ase (��1" � T�), the last term in the right-handside of Eq. (53) is essential; together with o�-diagonalelements in K̂, it leads to the anellation of large terms in the ondutivity. To verify this, we must �nd themean value of the produt of four � in the last term inEq. (53). We haveI1 =  �16T�!2*��!1 �D �2�r2��1�"� + �8T �!1 �D �2�r2�+ �!116T� �� ���!1 �D �2�r2��1�#�1���!1 �D �2�r2��1�� exp(ikr)+ = exp(ikr) �16T��d!2 Z d2k1(2�)2 Z d2k2(2�)2 �� ��� + �D8T k21��� + �D8T k22���1 h(!1 +D(k � k2)2)(!1 +D(k � k1)2) �� + �8T Dk23 + !1�k3�i�1 ; (55)where k3 = k � k1 � k2;�k = 4TGi�� 1Dk2 + 8T�=� ln � �Dk2 + 8T�=��28T�!1 !: (56)The ln2 term an be easily separated in expression (55). As the result, we obtainI1 = 1� + (�D=8T )k2 + !1�k ��(�2k � 4��kGi� Z d2k1(2�)2 (�D=8T )(k21 � k2) + !1(�k1 � �k)(� + (�D=8T )k21) (k1 � k)2 (� + (�D=8T )(k1 � k)2 + !1�k1�k)): (57)In Eq. (55), we omitted the �diagonal� term with the denominator of the type [!1 + D(k + k1)2℄2. This termleads to a small orretion to the oe�ient at !1 in (53).With the same auray, we now present the expression for the nondiagonal elements K12 and K21 asK21 = � �!116T� Z d2k1d2k2(2�)4 ��k1��k2K11(k)(!1 +D(k � k1)2) [� + (�D=8T )(k � k1 � k2)2 + !1�k�k1�k2 ℄ ;K12 = � �!116T� Z d2k3d2k4(2�)4 �k3�k4K22(k)(!1 +D(k + k3)2) [� + (�D=8T )(k + k3 + k4)2 + !1�k+k3+k4 ℄ : (58)Using Eqs. (57) and (58), we obtain the orretionto the ondutivity as�a�0 � 4TGi2���2 : (59)This expression is valid up to a numerial fator of theorder unity.If the external depairing fator � is zero (a super-ondutor without paramagneti impurities), the quan-tity � in Eqs. (51) and (59) must be replaed by itsintrinsi value � � TGi1=2 (60)(see Eq. (18)). In the temperature region Gi < � << Gi1=2, we then obtain�a=�0 � 4Gi3=2=��2: (61)

Equation (61) implies that the AL ontribution tothe ondutivity is strongly enhaned in the tempera-ture region Gi < � < Gi1=2.6. THE MAKI�THOMPSON CONTRIBUTIONTO CONDUCTIVITY IN THE NONLINEARFLUCTUATION REGIONThe general expression for the MT ontribution tothe ondutivity (�b) was given in [6℄. Equation (28)in [6℄ an be onsidered as the interpolation of the MTontribution that is valid in the entire temperature re-603



A. I. Larkin, Yu. N. Ovhinnikov ÆÝÒÔ, òîì 119, âûï. 3, 2001gion � > Gi. The depairing fator � in Eq. (28) in [6℄must be hanged to a sum of two terms: the externaldepairing fator ��1s related to the spin �ip satteringon magneti impurities and the intrinsi depairing fa-tor given by Eq. (20). As a result, we obtain�b�0 = �8d� Z d2k(2�)2 1� +Dk2=2 1� + (�D=8T )k2 == 2Gi� 1��=4T� � 1 ln ��4T�!: (62)In the range Gi < � < Gi1=2, the MT ontribu-tion reahes its saturation value and e�etively beomestemperature independent,�b�0 = Gi1=2 ln Gi1=2� !: (63)The orretion remains small in the entire regionGi < � < Gi1=2 where nonlinear e�ets are important.We note that real superondutors are always in-homogeneous. The �nite value of the transition widthleads to the appearane of an e�etive depairing fa-tor [11℄. The value of this depairing fator an be su�-iently large in the units of TGi. In this ase, the MTontribution to the ondutivity is small ompared tothe AL ontribution in the entire temperature region.7. CONCLUSIONSWe have seen that nonlinear �utuation e�ets aremuh stronger in kinetis phenomena than in ther-modynamis. If the external depairing fator is ab-sent, the nonlinear e�ets lead to a saturation of theMT ontribution to the ondutivity in the temper-ature region � � Gi1=2. In this temperature re-gion, the AL ontribution beomes even stronger andgrows as �a=�0 � Gi3=2=�2. In a superondu-tor with a su�iently large external depairing fator� = ��1s > TGi1=2 or a short energy relaxation time��1" > TGi1=2, the MT ontribution saturates in thetemperature region T� � � or T� � ��1" . It is not verysensitive to nonlinear e�ets. Magneti impurities andthe energy relaxation at on the AL ontribution in dif-ferent ways. Energy relaxation leads to the appearaneof a ollision integral in the kineti equation for the dis-tribution funtions of normal exitations. This ollisionintegral diminishes the nonequilibrium ontributions tothe distribution funtions. Magneti impurities and themagneti �eld at only on the superondutivity and donot lead to the relaxation of the distribution funtions.

However, the TDGL equation essentially depends onthe eletron distribution funtion. If ��1" > TGi1=2, thenonlinear �utuation e�ets are not essential and theAL ontribution remains the same, �a=�0 = Gi=� , inthe entire temperature region � > Gi. If the inequality��1" < TGi1=2 is satis�ed, the law �a=�0 � Gi3=2=�2applies in the temperature region T� > ��1" . In theregion (T�")�1 > � > Gi, the orretion to the ondu-tivity is given by �a=�0 � Gi3=2T�"=� (see Eq. (52)).Magneti impurities (or a urrent) suppress nonlin-ear �utuation e�ets in �a, but the e�et is not asstrong as for the energy relaxation. In the rangeTGi=� > � > Gi, the orretion to the ondutivity�a is given by Eq. (59), �a=�0 � TGi2=(��2). In thetemperature region � > TGi=�, the orretion �a isgiven by (43) in the linear approximation.It is essential that the ondutivity of �utuatingpairs an be larger than the ondutivity of normaleletrons in the temperature region where the orre-tion to the thermodynami quantities is still small (seeEq. (61)).A. I. Larkin thanks M. Yu. Reizer and V. M. Ga-litski for disussions. The work of A. L. was supportedby NSF grant DMR-9812340. The researh of Yu. O.was made possible in part by Award �RP1-2251 ofthe U.S. Civilian Researh & Development Founda-tion for the Independent States of the Former SovietUnion (CRDF). Researh of Yu. O. is also supportedby RFBR. REFERENCES1. A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshin-skii, Methods of Quantum Field Theory in StatistialPhysis, Prentie-Hall, Englewood Cli�s, N. Y. (1963).2. R. E. Glover, Phys. Lett. A 25, 542 (1967).3. L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10,1106 (1968); Phys. Lett. A 26, 238 (1968).4. K. Maki, Progr. Theor. Phys. (Kyoto) 39, 897 (1968).5. R. S. Thompson, Phys. Rev. B 1, 327 (1970).6. A. I. Larkin and Yu. N. Ovhinnikov, J. Low Temp.Phys. 10, 407 (1973).7. B. R. Patton, Phys. Rev. Lett. 27, 1273 (1971).8. J. Keller and V. Korenman, Phys. Rev. B 5, 4367(1972).9. A. A. Varlamov and V. V. Dorin, Zh. Eksp. Teor. Fiz.84, 1868 (1983).604
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