ВОЗБУЖДЕНИЕ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В СТОЛКНОВЕНИЯХ АТОМА ГЕЛИЯ С БЫСТРЫМИ ИОНАМИ

Н. В. Новиков^{*a**}, В. С. Сенашенко^{*b***}

^а Институт проблем безопасного развития атомной энергетики Российской академии наук 113191, Москва, Россия

^b Научно-исследовательский институт ядерной физики им Д.В. Скобельцына, Московский государственный университет им. М.В. Ломоносова 119899, Москва, Россия

Поступила в редакцию 17 октября 2000 г.

Предлагается теоретическая модель столкновений быстрых ионов с атомами, описывающая влияние налетающего и рассеянного ионов на возбуждение автоионизационных резонансов. Эта модель учитывает изменение энергии связи электронов атома мишени полем налетающего иона, влияние на кинематику рассеяния иона поля атома, а также влияние промежуточных $(1snl)^1L$ -состояний на механизм двухэлектронного возбуждения. Полученная зарядовая зависимость сечения возбуждения резонансов $(2s^2)^1S$ и $(2s2p)^1P$ оказывается более слабой, чем в первом порядке теории возмущений, и качественно согласуется с экспериментальными данными. Анализируются причины появления такой зарядовой зависимости.

PACS: 34.30.+h

1. ВВЕДЕНИЕ

Описание рассеяния бесструктурных ионов атомами является одной из фундаментальных задач физики столкновений [1]. В многоэлектронных процессах, простейшими примерами которых является возбуждение и распад автоионизационных резонансов атома гелия, требуется не только корректный учет взаимодействия налетающего иона и атома мишени, но и учет межэлектронных корреляций.

В настоящее время имеется ряд экспериментальных исследований двухэлектронного возбуждения бесструктурными и частично ионизованными ионами при высоких и промежуточных энергиях столкновения [2–7]. В экспериментах определялась зависимость профиля автоионизационных резонансов от угла эжекции электрона, заряда и скорости налетающей частицы, а также усредненные по углам эжекции электронов параметры выхода [2–4] и асимметрии [2, 4] автоионизационных резонансов. Было обнаружено, что с увеличением заряда налетающего иона Z_p проинтегрированные по углам эжекции выходы резонансов $(2s^2)^1 S$ и $(2s2p)^1 P$ увеличиваются очень медленно, $Y(Z_p) \sim Z_p^n$, n < 2 [2], а усредненный выход резонанса $(2s^2)^1 S$ вообще может уменьшаться с увеличением заряда налетающего иона, n < 0 [4]. Такая слабая зависимость дифференциальных и полных сечений возбуждения автоионизационных резонансов от заряда налетающей частицы не является спецификой двухэлектронного возбуждения. Аналогичные зависимости полных сечений были также обнаружены в процессах однократной ионизации [8] и одноэлектронного возбуждения атома [9, 10] в столкновениях с различными ионами.

Для теоретического объяснения насыщения зарядовой зависимости первоначально предполагалось, что в пределе $Z_p \to \infty$ дифференциальные и полные сечения должны стремиться к независящей от Z_p константе $d\sigma/dZ_p \to 0$ [11]. Достаточным условием такой зависимости явилась бы унитарность амплитуды рассматриваемых процессов при $Z_p \gg 1$ [8]. Очевидно, что такое предположение носит сугубо модельный характер и не объясняет физических причин наблюдаемых явлений. Кроме того, оно не объясняет уменьшения интегрального выхода резонансов [4] и сечения одноэлектронного возбужде-

^{*}E-mail: pbl@ibrae.ac.ru

 $^{{}^{**}}E\text{-mail: nrsenat@nrsenat.phys.msk.su}$

ния [12] с увеличением заряда налетающего иона. Взаимодействие налетающей частицы с атомом мишени приводит к нескольким эффектам, влияющим на зарядовую зависимость сечений: модификации механизма возбуждения электронов из начального состояния в конечное [13-16] за счет влияния промежуточных возбужденных состояний и состояний непрерывного спектра мишени, изменению кинематики рассеяния иона короткодействующим потенциалом, создаваемым нейтральной мишенью [17], увеличению энергии связи [18] электронов атома мишени при малых межъядерных расстояниях по сравнению с электронами изолированного атома. Вопрос о том, какие из этих эффектов приводят к насыщению зарядовой зависимости, в настоящее время остается открытым, поскольку большинство теоретических моделей учитывают интегральное влияние нескольких из перечисленных выше эффектов.

Влияние промежуточных состояний на механизм перехода электронов из начального состояния в конечное в явном виде учитывается в рамках теории возмущений по взаимодействию налетающего иона с мишенью [13-16] или методом сильной связи с одноцентровыми волновыми функциями [19, 20]. Эти подходы достаточно успешно описывают профиль автоионизационных резонансов, возбуждаемых в столкновениях с заряженными частицами $Z_p = \pm 1$ [15, 16]. Однако наблюдаемая зарядовая зависимость сечений возбуждения для ионов $Z_p \ge 2$ этими моделями не воспроизводится [20, 21]. Так, теория возмущений, используя разложение по степеням Z_p , дает даже более сильную зависимость, чем первое борновское приближение. Метод сильной связи также не может воспроизвести насыщение сечений двухэлектронного возбуждения [22], а также проинтергированных по углам эжекции электронов параметров выхода автоионизационных резонансов [20].

Для того чтобы учесть в разложении амплитуды возбуждения все члены ряда теории возмущений, необходимо использовать волновую функцию, наиболее полно учитывающую взаимодействие налетающей частицы с мишенью. Это обычно реализуется в теоретических моделях, использующих методы искаженных волн. Так, например, в эйкональном приближении [23] волновая функция строится в предположении, что налетающий ион взаимодействует с ядром атома мишени и неподвижными относительно этого ядра электронами независимо. При этом электроны атома мишени рассматриваются как бы находящимися в непрерывном спектре налетающего иона и его влиянием на энергию связи пренебрегается. Полученная таким образом волновая функция соответствует частичному суммированию ряда теории возмущений, для быстрых столкновений, $Z_p/V_i \ll 1$, переходит в волновую функцию первого борновского приближения, удовлетворяет не только корректным граничным условиям при $R \gg r$ для любого заряда ядра атома мишени, но и, в отличие от волновой функции в CDW-приближении [24], правильным условиям нормировки [23].

Однако существенным недостатком волновой функции в эйкональном приближении является использование при вычислении амплитуды дополнительных приближений, поскольку зависимость фазового множителя как от межъядерного расстояния \mathbf{R} , так и от $\mathbf{R} - \mathbf{r}$ (\mathbf{r} — радиус-вектор, определяющий положение электрона в атоме) не позволяет факторизовать шестимерный интеграл по переменным конфигурационного пространства. Обычно для вычисления амплитуды с волновой функцией в эйкональном приближении используются два приближения: в операторе перехода пренебрегается взаимодействием тяжелых частиц, несмотря на неортогональность используемых волновых функций, а для фазового множителя вводится приближенное соотношение

$$\operatorname{Ln}(V_i R + \mathbf{V}_i \cdot \mathbf{R}) \to \operatorname{Ln}(V_i |\mathbf{R} - \mathbf{r}| + \mathbf{V}_i \cdot (\mathbf{R} - \mathbf{r})).$$

Эти преобразования эквивалентны тому, что взаимодействием тяжелых частиц в амплитуде перехода сначала пренебрегается, а затем оно учитывается феноменологически фазовым множителем [23]. Такой подход позволяет факторизовать амплитуду по переменным $\mathbf{R} - \mathbf{r}$, \mathbf{r} аналогично первому борновскому приближению и вычислить ее аналитически. Очевидно, что такое преобразование применимо только для $R \gg 1$ и фактически сводит взаимодействие иона с электронами и ядром атома к взаимодействию налетающего иона с бесструктурной мишенью. Следствием этого является ухудшение соответствия результатов расчета по этой модели с экспериментальными данными прежде всего для оптически запрещенных переходов [25], которые происходят преимущественно при малых значениях R.

Теоретические расчеты дифференциальных характеристик в одноэлектронном возбуждении атомов водорода $1s \rightarrow 2p$ [26] и гелия $(1s^2)^1 S \rightarrow (1snp)^1 P$ [19,27] многозарядными ионами показали, что насыщение полных сечений для оптически разрешенных переходов является следствием изменения распределения вероятности в зависимости от прицельного параметра ρ . С увеличением Z_n положение максимума функции вероятности возбуждения $\rho P(\rho)$ сдвигается к большим значениям прицельного параметра и величина максимума функции $\rho P(\rho)/Z_p^2$ уменьшается [19, 26]. Экспериментально определить распределение вероятности от прицельного параметра не представляется возможным, и поэтому предложенное объяснение эффекта насыщения в одноэлектронных процессах имеет сугубо формальный характер. Для двухэлектронного возбуждения ситуация более сложная. При наличии сдвига максимума функции $\rho P(\rho)$ к большим ρ расчеты [20] не обнаружили насыщения интегрального выхода автоионизационных резонансов $(2s^2)^1 S$, $(2s2p)^1 P$ и $(2p^2)^1 D$ с увеличением заряда налетающего иона. Таким образом, в настоящее время нет работ, которые хотя бы качественно объясняли причины насыщения полных сечений двухэлектронных переходов в атомах.

Цель настоящей работы — создать теоретическую модель столкновений быстрых ионов с атомами, учитывающую роль промежуточных состояний при возбуждении автоионизационных резонансов, изменение кинематики рассеяния налетающего иона полем атома мишени, а также изменение энергии связи электронов в поле налетающего иона при малых межъядерных расстояниях; исследовать влияние этих эффектов на характер зарядовой зависимости дифференциальных и полных сечений возбуждения.

2. ТЕОРИЯ

2.1. Волновые функции

Рассмотрим систему из нейтрального атома, имеющего N_e электронов, и налетающей бесструктурной заряженной частицы с зарядом Z_p , массой M_p и импульсом $\mathbf{K}_i = M_p \mathbf{V}_i$, где \mathbf{V}_i — скорость частицы. Положение *j*-го электрона и налетающей частицы относительно ядра мишени с зарядом Z_t будем характеризовать соответственно векторами \mathbf{r}_j и \mathbf{R} , а совокупность всех \mathbf{r}_j , $j = 1, \ldots, N_e$, обозначим \mathbf{r} . Состояние электронов мишени в отсутствие налетающего иона характеризуется набором квантовых чисел τ_i . Будем искать волновую функцию такой системы в виде

$$\Psi_{\tau_i,\mathbf{K}_i}^+(\mathbf{r},\mathbf{R}) = \varphi_{\tau_i}(\mathbf{r},\mathbf{R})\xi_{\mathbf{K}_i}^+(\mathbf{R}), \qquad (1)$$

где функция $\xi_{\mathbf{K}_{i}}^{+}(\mathbf{R})$ описывает движение налетающей частицы в эффективном поле, создаваемом атомом в состоянии τ_{i} , а функция $\varphi_{\tau_{i}}(\mathbf{r},\mathbf{R})$ описывает движение электронов в поле двух кулонов-

ских центров. Подставляя (1) в уравнение Шредингера и интегрируя по **r** с $\varphi_{\tau_i}(\mathbf{r}, \mathbf{R})$, с точностью до членов $O(1/M_p)$ получим систему интегро-дифференциальных уравнений

$$\left(-\frac{1}{2M_p}\boldsymbol{\nabla}_{\mathbf{R}}^2 + \frac{Z_t Z_p}{R} + U_{\tau_i}(\mathbf{R}) - \frac{K_i^2}{2M_p}\right) \times \\ \times \xi_{\mathbf{K}_i}^+(\mathbf{R}) = 0, \quad (2)$$
$$\left(\hat{H}_A + V(\mathbf{r}, \mathbf{R}) - i\mathbf{V}_i \boldsymbol{\nabla}_{\mathbf{R}} \operatorname{Ln}(\varphi_{\tau_i}(\mathbf{r}, \mathbf{R})) - \right)$$

$$-U_{\tau_i}(\mathbf{R}) - \varepsilon_{\tau_i}(Z_t) \varphi_{\tau_i}(\mathbf{r}, \mathbf{R}) = 0, \quad (3)$$

где $U_{\tau_i}(\mathbf{R})$ — зависящий от скорости оптический потенциал, \hat{H}_A , $\varepsilon_{\tau}(Z_t)$ — соответственно гамильтониан и энергия электронов изолированной мишени,

$$V(\mathbf{r}, \mathbf{R}) = -\sum_{j} \frac{Z_{p}}{|\mathbf{R} - \mathbf{r}_{j}|}$$

 — оператор взаимодействия налетающей частицы с электронами атома.

В качестве первого приближения для решения системы (2), (3) в $U_{\tau_i}(\mathbf{R})$ вместо $\varphi_{\tau_i}(\mathbf{r}, \mathbf{R})$ может быть использована волновая функция изолированного атома мишени $\Phi_{\tau_i}^{Z_t}(\mathbf{r})$. Тогда, пренебрегая мнимой частью потенциала U_{τ_i} , получим

$$U_{\tau_i}(\mathbf{R}) \approx U'_{\tau_i}(R) = \langle \Phi_{\tau_i}^{Z_t}(\mathbf{r}) | V(\mathbf{r}, \mathbf{R}) | \Phi_{\tau_i}^{Z_t}(\mathbf{r}) \rangle.$$
(4)

В этом приближении система интегро-дифференциальных уравнений (2), (3) сводится к двум независимым дифференциальным уравнениям второго порядка. Поскольку

$$U_{\tau_i}'(R) \to -\frac{Z_p N_e}{R} \quad \text{при} \quad R \to \infty,$$

потенциал взаимодействия налетающего иона с нейтральной ($Z_t = N_e$) мишенью в (2) короткодействующий, и решение (2) для $M_p \gg 1$ может быть найдено в эйкональном приближении.

Рассмотрим сначала решение уравнения (3) для основного состояния атома гелия $\tau_i = (1s^2)^1 S$. Учитывая условия нормировки, будем искать решение (3) в виде разложения по электронным волновым функциям изолированного гелиеподобного иона

$$\varphi_{\tau_i}(\mathbf{r}, \mathbf{R}) = \left(\Phi_{\tau_i}^{Z_i(R)}(\mathbf{r}) + i \sum_{n,L} C_{n,L}(\rho, t) \times \\
\times \sum_M \sqrt{\frac{4\pi}{2L+1}} Y_{L,M}^*(\hat{R}) \times \\
\times \Phi_{nLM}^{Z_i(R)}(\mathbf{r})\right) \left(1 + \sum_{n,L} C_{n,L}^2(\rho, t)\right)^{-1/2}, \quad (5)$$

где $\Phi_{\tau_i}^Z(\mathbf{r})$, $\Phi_{nLM}^Z(\mathbf{r})$ — волновые функции соответственно основного и возбужденных $(1snL)^1L$ -состояний изолированного гелиеподобного иона с зарядом ядра Z, M — проекция полного орбитального момента L, $Y_{L,M}(\hat{R})$ — сферическая функция, ρ — прицельный параметр, t — время. Коэффициенты разложения $C_{n,L}(\rho, t)$ и эффективный заряд $Z_i(R)$ являются неизвестными вещественными функциями. Отметим, что волновую функцию (5) нельзя характеризовать определенной четностью, так как электроны движутся в поле двух кулоновских центров, которое не является центрально-симметричным.

Будем считать, что эффективный заряд $Z_i(R)$ — медленно меняющаяся функция, тогда получим уравнения относительно $Z_i(R)$ и $C_{n,L}(\rho,t)$

$$\langle \Phi_{\tau_i}^{Z_i(R)}(\mathbf{r}) | \hat{H}_A + V(\mathbf{r}, \mathbf{R}) | \Phi_{\tau_i}^{Z_i(R)}(\mathbf{r}) \rangle =$$

= $\varepsilon_{\tau_i}(Z_t) + U_{\tau_i}'(R),$ (6)

$$\frac{\partial C_{n,L}(\rho,t)}{\partial t} = V_{n,L}^{Z_{\tau_i}(R)}(R) \left(1 + \sum_{n,L} C_{n,L}^2(\rho,t)\right) \quad (7)$$

с граничными условиями

$$Z_i(R) \to Z_t \quad \text{при} \quad R \to \infty, C_{n,L}(\rho, t) \to 0 \quad \text{при} \quad t \to -\infty,$$
(8)

где $V_{n,L}^{Z_i(R)}(R)$ — приведенные матричные элементы. Выбор волновой функции в виде (5) позволяет выделить в явном виде зависимость волновой функции от **r**, а эффективный заряд центрально-симметричного поля $Z_i(R)$ искать при фиксированных значениях R и Z_p численно из условия минимума функционала (6). Увеличение эффективного заряда при малых R в (5) учитывает то, что с уменьшением R электроны атома попадают в более глубокую потенциальную яму, причем в пределе $R \to 0$ функционал (6) стремится к энергии в изолированном ионе с зарядом $Z = Z_t + Z_p$. В итоге с достаточно хорошей точностью эффективный заряд может быть аппроксимирован функцией

$$Z_i(R) = Z_t + Z_p \exp(-Z_t R).$$

Функционал (6) соответствует сумме энергии связи электронов в атоме мишени и энергии взаимодействия атома с налетающим ионом. Для того чтобы разделить эти величины, будем считать, что энергия связи электронов при фиксированном R совпадает с энергией связи в изолированном гелиеподобном ионе с зарядом ядра, равным эффективному заряду $Z_i(R)$, а разность функционала (6) и определенной таким образом энергии связи будет соответствовать энергии взаимодействия атома с налетающем ионом. Тогда зависимость энергии связи электронов в атоме мишени от межъядерного расстояния R и заряда налетающего иона Z_p будет определяться поведением эффективного заряда как функции R и Z_p : $\varepsilon_{\tau_i}(Z_i(R))$. Заметим, что вариационный метод для определения зависящего от межъядерного расстояния эффективного заряда в одноэлектронных функциях использовался также в [28]. После определения эффективного заряда $Z_i(R)$ могут быть вычислены матричные элементы $V_{n,L}^{Z_i(R)}$, входящие в (7). Далее, поскольку $|C_{n,L}(\rho,t)| < 1$, в (7) можно пренебречь квадратичными членами, тогда

$$C_{n,L}(\rho,t) = -\int_{-\infty}^{t} dt' V_{n,L}^{Z_i(R(t'))} \left(\sqrt{\rho^2 + V_i^2 t'^2}\right).$$
(9)

Этот же метод может быть использован для определения волновых функций возбужденных состояний атома мишени τ_f . Однако, поскольку необходимо учитывать условия ортогональности ко всем волновым функциям, соответствующим состояниям меньшей энергии, волновые функции для высоковозбужденных и автоионизационных состояний, полученные таким методом, оказываются достаточно громоздкими, так как

$$\langle \Phi_{\tau_i}^{Z_i}(\mathbf{r}) | \Phi_{\tau_f}^{Z_f}(\mathbf{r}) \rangle \neq 0$$
 при $Z_i \neq Z_f$.

Более удобным является приближение, описывающее все состояния атома мишени в едином эффективном центрально-симметричном поле. В этом случае эффективный заряд $Z_f(R)$ в возбужденных состояниях τ_f , а также в состояниях непрерывного спектра совпадает с эффективным зарядом в основном состоянии:

$$Z_f(R) = Z_i(R) = Z(R).$$
 (10)

Использование этого приближения, описывающего единым образом эволюцию всех атомных состояний, приводит к тому, что условия ортогональности начального и конечного состояний удовлетворяются автоматически в силу свойств волновых функций изолированных гелиеподобных ионов, определенных в одном заряде ядра. При этом с уменьшением межъядерного расстояния R электроны в любом состоянии τ атома мишени оказываются в более глубокой потенциальной яме, и чем больше заряд налетающего иона, тем глубже она становится. Следствием этого является увеличение энергии возбуждения

$$\Delta \varepsilon_{if}(Z(R)) = \varepsilon_{\tau_f}(Z(R)) - \varepsilon_{\tau_i}(Z(R))$$
(11)

при малых значениях R, что существенным образом влияет на динамику процессов, происходящих в области сильного взаимодействия.

2.2. Возбуждение атома мишени в столкновениях с многозарядными ионами

Рассмотрим сначала процесс возбуждения $\tau_i \to \tau_f$ при фиксированном угле рассеяния, т. е.

$$\mathbf{Q} = \mathbf{q}_{\perp}(R) + \mathbf{q}_{\parallel}(R) = \text{const},$$

где $\mathbf{Q} = \mathbf{K}_f - \mathbf{K}_i$ — переданный атому мишени импульс, \mathbf{K}_f — импульс рассеянного иона, а $\mathbf{q}_{\parallel}(R)$, $\mathbf{q}_{\perp}(R)$ — его проекции на направление падающего пучка и на направление, перпендикулярное падающему пучку налетающих ионов,

$$q_{\parallel}(R) = \Delta \varepsilon_{if}(Z(R)) / V_i.$$

В случае

$$Q \leq \Delta \varepsilon_{if}(Z(R))/V_i$$

переход атома мишени в состояние τ_f запрещен. При рассеянии налетающих ионов на достаточно малые углы,

$$\Delta \varepsilon_{if}(Z_t) \le QV_i \le \Delta \varepsilon_{if}(Z_t + Z_p), \qquad (12)$$

существует область межъядерных расстояний $R < R_{min}(Q)$, где переданной атому энергии QV_i оказывается недостаточно для перехода в конечное состояние τ_f . Другими словами, из-за увеличения энергии связи электронов при малых межъядерных расстояниях налетающий ион должен удалиться на достаточно большое расстояние $R \ge R_{min}(Q)$, чтобы процесс электронного перехода в мишени $\tau_i \rightarrow \tau_f$ стал энергетически возможным. При больших переданных импульсах $QV_i \ge \Delta \varepsilon_{if}(Z_t + Z_p)$ переход атома мишени в возбужденное состояние τ_f возможен при любых R.

Амплитуда возбуждения из начального состояния τ_i в конечное τ_f может быть записана в виде

$$T_{if}(\mathbf{Q}) = \int d\mathbf{R} \sqrt{\frac{4\pi}{2L_f + 1}} Y^*_{L_f M_f}(\hat{R}) V_{if}(\rho, t) \times \\ \times \exp\left(i\mathbf{Q} \cdot \mathbf{R} + i\alpha^+_{\tau_i}(\rho, t) - i\alpha^-_{\tau_f}(\rho, t)\right), \quad (13)$$

$$V_{if}(\rho, t) = \left(V_{L_f}^{Z(R)}(\tau_i \to \tau_f, R) + i \sum_{n,L} C_{n,L}(\rho, t) \times \sum_l \langle L0l0 | L_f 0 \rangle V_l^{Z(R)}(nL \to \tau_f, R) \right) \times \left(1 + \sum_{n,L} C_{n,L}^2(\rho, t) \right)^{-1/2}, \quad (14)$$

где $\langle L0l0|L_f0\rangle$ — коэффициент Клебша–Гордана, $V_{L_f}^{Z(R)}(\tau_i \rightarrow \tau_f,R)$ и $V_L^{Z(R)}(nL \rightarrow \tau_f,R)$ — приведенные матричные элементы, описывающие переходы из основного и $(1snL)^1L$ -состояний в автоионизационное состояние τ_f , $\alpha^-_{\tau_s}(\rho, t)$, $\alpha^+_{\tau_s}(\rho, t)$ — эйкональные фазы. Таким образом, амплитуда двухэлектронного возбуждения (13), (14) представляется в виде суммы, где первое слагаемое в (14) соответствует механизму возбуждения, когда только один из электронов атома взаимодействует с налетающей частицей, а второй электрон возбуждается за счет межэлектронных корреляций. Остальные слагаемые в (14) соответствуют механизму возбуждения автоионизационного состояния через промежуточные $(1snL)^{1}L$ -уровни, когда оба электрона атома взаимодействуют с налетающей частицей. Причем в дифференциальном сечении амплитуды, соответствующие этим двум механизмам возбуждения, не интерферируют между собой. Как и в теории возмущений, амплитуда возбуждения через промежуточные уровни имеет более сильную зарядовую зависимость, так как $C_{n,L}(\rho,t) \sim Z_p$ (9). Однако, в отличие от амплитуды во втором порядке теории возмущений, амплитуда (13), (14) содержит зависящий от Z_p нормировочный множитель

$$\left(1 + \sum_{n,L} C_{n,L}^2(\rho,t)\right)^{-1/2},$$

который может существенно скорректировать зарядовую зависимость сечения. Интегрирование в (13) проводится по всей области, где $QV_i \ge \Delta \varepsilon_{if}(Z(R))$. Таким образом, учет влияния налетающего иона на энергию связи электронов атома мишени приводит к тому, что не только изменяется оператор перехода в (13), но и часть конфигурационного пространства $R < R_{min}(Q)$ исключается из амплитуды.

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Нами были выполнены расчеты дифференциального и полного сечений возбуждения автоионизационных резонансов $(2s^2)^1 S$, $(2s^2p)^1 P$ и $(2p^2)^1 D$ гелия, возбуждаемых бесструктурными ионами с энергией 0.5 МэВ/нук и 1.5 МэВ/нук. Влияние вырожденного непрерывного спектра на автоионизационные состояния не учитывалось. Интегрирование по ρ и tв (13) в области $R \leq R_{max}$, где $R_{max} = 20$, выполнялось численно, а вклад области $|V_it| > R_{max}$, $\rho \leq R_{max}$ оценивался асимптотическими методами. Волновые функции изолированных гелиеподобных ионов с непрерывной зависимостью всех параметров от заряда ядра были получены вариационным методом [29, 30]. В сумме по промежуточным состояниям в (14) учитывались только состояния $(1snL)^1L$, где n = 2, 3.

Амплитуда возбуждения (13), (14) вычислялась в следующих приближениях:

1 — первое борновское приближение $(C_{n,L}(\rho, t) = 0, \alpha_{\tau_i}^+(\rho, t) = 0, \alpha_{\tau_t}^-(\rho, t) = 0, Z(R) = Z_t);$

2 — учитывались только переходы через промежуточные уровни ($C_{n,L}(\rho,t) \neq 0, \ \alpha_{\tau_i}^+(\rho,t) = 0, \ \alpha_{\tau_t}^-(\rho,t) = 0, \ Z(R) = Z_t$);

3 — учитывались переходы через промежуточные уровни и изменение кинематики налетающего и рассеянного ионов $(C_{n,L}(\rho,t) \neq 0, \alpha_{\tau_i}^+(\rho,t) \neq 0, \alpha_{\tau_i}^-(\rho,t) \neq 0, Z(R) = Z_t);$

4 — полный расчет с учетом влияния налетающего иона на энергию связи электронов мишени $(C_{n,L}(\rho,t) \neq 0, \alpha_{\tau_i}^+(\rho,t) \neq 0, \alpha_{\tau_f}^-(\rho,t) \neq 0, Z(R) \geq Z_t).$

В таблице приведены результаты расчетов параметра, определяющего зарядовую зависимость

$$n(Z_p) = \operatorname{Ln}\left(\frac{\sigma_{if}(Z_p)}{\sigma_{if}(Z_p = 1)}\right) / \operatorname{Ln}(Z_p)$$

сечений возбуждения автоионизационных резонансов, образующихся в столкновениях с бесструктурными ионами с энергией 0.5 МэВ/нук, которые сравниваются с параметром зарядовой зависимости проинтегрированного по углам эжекции экспериментального выхода резонансов из [2]. Отметим, что в первом порядке теории возмущений $n(Z_p) = 2$. Учет переходов через промежуточные уровни (второй вариант расчетов) приводит к увеличению $n(Z_p)$ для всех резонансов $2 \le n(Z_p) \le 4$, причем $n(Z_p)$ возрастает с увеличением Z_p . Наиболее сильно возрастает параметр $n(Z_p)$ для $(2p^2)^1 D$ -резонанса, поскольку переходы через промежуточные уровни

$$(1s^2)^1 S \rightarrow (1snL)^1 L \rightarrow (2p^2)^1 D$$

дают основной вклад в сечение возбуждения этого резонанса при рассматриваемой энергии столкновения. Наши результаты указывают также на слабое

5 ЖЭТФ, вып.3

Параметр зарядовой зависимости сечения возбуждения автоионизационных резонансов, образующихся в столкновениях с ионами с энергией 0.5 МэВ/нук

Z_p	$(2s2s)^1S$	$(2s2p)^1P$	$(2p2p)^1D$
Экспериментальные данные [2]			
2	1.6	2.1	3.4
3	1.3	1.7	2.9
Настоящая работа (расчет 2)			
2	2.1	2.3	3.6
3	2.2	2.4	3.7
5	2.3	2.5	3.7
Настоящая работа (расчет 3)			
2	1.5	2.0	3.7
3	1.6	2.0	3.7
5	1.8	1.8	3.6
Настоящая работа (расчет 4)			
2	1.3	2.0	3.8
3	1.6	1.9	3.8
5	1.9	1.7	3.6

Примечание. Результаты для различных вариантов расчета обозначены как 2 — учитываются только переходы через промежуточные уровни, 3 — учитываются переходы через промежуточные уровни и изменение кинематики налетающего иона, 4 — учитываются переходы через промежуточные уровни, изменение кинематики налетающего иона и его влияние на энергию связи электронов мишени.

влияние промежуточных состояний при возбуждении $(2s2p)^1P$ -резонанса в данной энергетической области. Учет влияния взаимодействия атома и налетающего иона на кинематику (третий вариант расчета) приводит к существенному уменьшению параметра $n(Z_p)$. Причем зарядовая зависимость сечения возбуждения резонансов $(2s^2)^1S$ и $(2s2p)^1P$ оказывается более слабой, чем в первом порядке теории возмущений $n(Z_p) < 2$, что качественно согласуется с экспериментальными данными. Влиянием двух противоположно действующих на зарядовую зависимость сечения возбуждения резонансов $(2s^2)^1S$ и $(2s2p)^1P$ оказывается бълена сечения возбуждения резонанов действующих на зарядовую зависимость сечения возбуждения факторов качественно объясняется различная зависимость $n(Z_p)$ для резонансов $(2s^2)^1S$ и $(2s2p)^1P$. Переходы через промежуточные уровни с увеличением Z_p ока-

зывают сильное влияние на сечение возбуждения $(2s^2)^1 S$ -резонанса и параметр $n(Z_p)$ для этого резонанса возрастает с увеличением Z_p . Параметр же зарядовой зависимости $(2s2p)^1P$ -резонанса, как и в эксперименте [2], с увеличением Z_p уменьшается. Для $(2p^2)^1 D$ -резонанса параметр $n(Z_p)$ изменяется слабо при учете изменения кинематики рассеянного иона, а, значит, зарядовая зависимость сечения возбуждения этого резонанса определяется преимущественно двухступенчатыми переходами. Учет влияния налетающего иона на энергию связи электронов атома в наиболее полном варианте расчетов приводит к уменьшению сечения возбуждения. Однако для резонансов $(2s2p)^1P$ и $(2p^2)^1D$ это уменьшение фактически не меняет параметра зарядовой зависимости этих резонансов. Потенциал (14) для резонансов $(2s2p)^1 P$ и $(2p^2)^1 D$ быстро убывает при уменьшении R:

$$V_{if}(\rho, t) \sim R^{L_f+1}$$
 при $R \to 0$

и медленно убывает при больших *R*:

$$V_{if}(\rho, t) \sim R^{-(L_f+1)}$$
 при $R \to \infty$.

В результате уточнение амплитуды (13) в области малых R при небольших Z_p оказывает слабое влияние на зарядовую зависимость сечения возбуждения. С другой стороны, зарядовая зависимость сечения возбуждения $(2s^2)^1 S$ -резонанса при учете влияния налетающего иона на энергию связи электронов атома сильно модифицируется. Возбуждение этого резонанса происходит только при малых R, так как потенциал $V_{if}(\rho, t)$ — короткодействующий $(V_{if}(\rho, t) \rightarrow 0$ при $R \rightarrow \infty$ и $V_{if}(\rho, t) \rightarrow$ const при $R \rightarrow 0$).

Дифференциальное возбуждения сечение $(2s^2)^1 S$ -резонанса при малых углах рассеяния бесструктурных трехзарядных ионов с энергией 0.5 МэВ/нук приведено на рис. 1. Учет переходов через промежуточные уровни увеличивает дифференциальное сечение возбуждения при малых углах рассеяния по сравнению с сечением в первом порядке теории возмущений. При изменении кинематики налетающего и рассеянного ионов происходит существенное уменьшение дифференциального сечения в области малых углов рассеяния. Короткодействующий потенциал с кулоновской сердцевиной в (2) приводит к быстрому изменению фаз рассеяния в (13) при малых ρ и, как следствие, к квазипериодическому изменению дифференциального сечения. Причем, чем больше Z_p , тем сильнее кулоновское отталкивание налетающего иона ядром атома мишени при малых R, тем быстрее изменяются фазы

Рис.1. Дифференциальное сечение возбуждения резонанса $(2s^2)^1S$ при малых углах рассеяния ионами с $Z_p = 3$ и энергией 0.5 МэВ/нук. Результаты для различных вариантов расчета: 1 — первое борновское приближение, 2 — учитываются только переходы через промежуточные уровни, 3 — учитываются переходы через промежуточные уровни и изменение кинематики налетающего иона, 4 — учитываются переходы через промежуточные уровни, изменение кинематики налетающего иона и его влияние на энергию связи электронов мишени

рассеяния при малых ρ , и тем слабее зарядовая зависимость дифференциального сечения. Другими словами, кулоновское отталкивание налетающего иона ядром атома мишени уменьшает вероятность нахождения налетающего иона в области малых межъядерных расстояний, а именно эта область и дает основной вклад в амплитуду возбуждения $(2s^2)^1 S$ -резонанса. Учет влияния налетающего иона на энергию связи электронов атома мишени модифицирует амплитуду возбуждения также при малых значениях *R*. Однако, в отличие от изменения кинематики рассеянного иона, этот эффект наиболее сильно проявляется при малых углах рассеяния, где переданной атому мишени энергии может оказаться недостаточно для перехода атома в возбужденное состояние при малых R. В результате в дифференциальном сечении как $(2s^2)^1S$ -, так и $(2s2p)^1 P$ и $(2p^2)^1 D$ -резонансов при малых углах рассеяния формируется максимум, которого нет в предыдущих вариантах расчета. Таким образом, наличие максимума в дифференциальном сечении возбуждения при малых углах рассеяния непосредственно связано с влиянием налетающего иона на энергию связи электронов атома мишени.

На рис. 2 приводятся результаты расчета сечения возбуждения $(2s^2)^1S$ -резонанса бесструктурны-

Рис. 2. Сечения возбуждения резонанса $(2s^2)^1S$ ионами с энергией 1.5 МэВ/нук. Результаты расчетов других авторов обозначены крестами [22] и кружками [31]. Остальные обозначения те же, что и на рис. 1

ми ионами с энергией 1.5 МэВ/нук. Сечение, вычисленное только с учетом переходов через промежуточные состояния, качественно и количественно воспроизводят результаты расчетов методом сильной связи каналов [22] и расчеты на основе теории возмущений [31] без учета влияния вырожденного непрерывного спектра. Уточнение кинематики налетающего и рассеянного ионов приводит к тому, что сечение возбуждения становится меньше, чем в первом порядке теории возмущений, и при малых Z_p сечение возрастает медленнее чем Z_p^2 , т. е. $\sigma_{if}(Z_p)/Z_p^2$ уменьшается при увеличении Z_p . Однако при дальнейшем увеличении Z_p функция $\sigma_{if}(Z_p)/Z_p^2$ начинает возрастать за счет более сильной зарядовой зависимости амплитуды возбуждения через промежуточные состояния. Отметим, что экспериментальные данные при этой энергии столкновения имеются только в очень узкой области углов эжекции [5], и процедура получения из этих данных проинтегрированного по углам эжекции выхода резонанса [5] представляется нам не вполне корректной.

4. ВЫВОДЫ

В настоящей работе предложена теоретическая модель двухэлектронного возбуждения, которая наряду с переходами через промежуточные состояния и изменением кинематики налетающего иона позволила впервые в явном виде учесть влияние кулоновского поля налетающего иона на энергию связи электронов атома мишени. Сечение возбуждения автоионизационных резонансов, вычисленное

только с учетом переходов через промежуточные состояния, возрастает с увеличением заряда налетающего иона быстрее, чем в первом порядке теории возмущений. Однако учет изменения кинематики налетающего иона и его влияния на энергию связи электронов атома мишени приводит к уменьшению сечения возбуждения и ослаблению зарядовой зависимости. При этом зарядовая зависимость сечений возбуждения резонансов $(2s^2)^1 S$ и $(2s2p)^1 P$ становится более слабой по сравнению с первым порядком теории возмущений, что качественно согласуется с экспериментальными данными. Модификация кинематики налетающего иона короткодействующим потенциалом взаимодействия с атомом и быстрое изменение фаз рассеяния могут привести к осцилляциям в дифференциальном сечении возбуждения в широком диапазоне углов рассеяния. С другой стороны, влияние поля налетающего иона на энергию связи электронов атома мишени приводит к уменьшению дифференциального сечения при малых углах рассеяния, которое связано с тем, что при малых передаваемых импульсах существует область межъядерных расстояний, где переходы электронов в возбужденное состояние запрещены законом сохранения энергии.

Данная работа выполнена при поддержке программы «Университеты России — фундаментальные исследования» (грант № 98-1-5247).

ЛИТЕРАТУРА

- 1. Л. П. Пресняков, В. П. Шевелько, Р. К. Янеев, Элементарные процессы с участием многозарядных ионов, Энергоиздат, Москва (1986).
- P. W. Arcuni and D. Shneider, Phys. Rev. A 36, 3059 (1987).
- J. O. P. Pedersen and P. Hvelplund, Phys. Rev. Lett. 62, 2373 (1989).
- N. Stolterfoht, Nucl. Instrum. Methods B 53, 477 (1991).
- J. P. Giese, M. Schulz, J. H. Swenson et al., Phys. Rev. A 42, 1231 (1990).
- A. Bordenave-Montesquieu, A. Gleizes et al., J. Phys. B 25, L367 (1992).
- A. Bordenave-Montesquieu, P. Moretto-Capelle, A. Gleizes et al., J. Phys. B 28, 653 (1995).
- J. H. McGuire, A. Muller, B. Schuch et al., Phys. Rev. A 35, 2479 (1988).

- D. Defleffsen, M. Anton, A. Werner, and K. H. Schartner, J. Phys. B 27, 4195 (1994).
- K. Reymann, K. H. Schartner, B. Sommer et al., Phys. Rev. A 38, 2290 (1988).
- B. Brendle, R. Gayet, J. P. Rozet, and K. Wohrer, Phys. Rev. Lett. 54, 2007 (1985).
- 12. R. K. Janev, Phys. Rev. A 53, 219 (1996).
- 13. J. H. McGuire and J. C. Stratton, Phys. Rev. A 46, 5514 (1992).
- 14. A. L. Godunov, N. V. Novikov, and V. S. Senashenko, J. Phys. B 24, L173 (1991).
- A. L. Godunov, J. H. McGuire, and V. A. Schipakov, J. Phys. B 30, 3227 (1997).
- 16. Н. В. Новиков, В. С. Сенашенко, ЖЭТФ 109, 1551 (1996).
- 17. Ш. Д. Куникеев, ЖЭТФ 109, 44 (1996).
- 18. N. Stolterfoht, D. Brandt, and M. Prost, Phys. Rev. Lett. 43, 1654 (1979).
- 19. F. Martin and A. Salin, J. Phys. B 28, 671 (1995).
- 20. F. Martin and A. Salin, J. Phys. B 28, 2159 (1995).
- A. L. Godunov and V. A. Schipakov, Nucl. Instrum. Methods B 98, 354 (1995).

- 22. W. Fritsch and C. D. Lin, Phys. Rev. A 41, 4776 (1990).
- 23. C. O. Reinhold and J. E. Miraglia, J. Phys. B 20, 1069 (1987).
- 24. D. S. F. Crothers, J. Phys. B 15, 2061 (1982).
- 25. A. Bugacov, J. M. Maidagan, R. D. Rivarola, and R. Shingal, Phys. Rev. A 47, 1052 (1993).
- 26. V. D. Rodriguez and A. Salin, J. Phys. B 25, L467 (1992).
- 27. V. D. Rodriguez, C. A. Ramirez, R. D. Rivarola, and J. E. Miraglia, Phys. Rev. A 55, 4201 (1997).
- Э. С. Парилис, Л. М. Кишиневский, В. И. Матвеев,
 Б. Г. Карков, Оже-процессы при атомных столкновениях, изд-во «Фан», Ташкент (1989).
- **29**. Н. В. Новиков, В. С. Сенашенко, Опт. и спектр. **86**, 371 (1999).
- 30. Н. В. Новиков, В. С. Сенашенко, Вестник МГУ, сер. 3, № 6, 37 (2000).
- 31. V. A. Sidorovich, Nucl. Instrum. Methods B 154, 131 (1999).