
ÆÝÒÔ, 2001, òîì 119, âûï. 2, ñòð. 321�330  2001
CONTACT EFFECTS ON THE MAGNETORESISTANCEOF FINITE SEMICONDUCTORSG. González de la Cruz, Yu. G. Gurevih*Departamento de Fisia, Centro de Investigaión y Estudios Avanzados del Instituto Politénio NaionalApartado Postal 14-740 Méxio, D.F.V. V. Kuherenko, E. Ramirez de ArellanoDepartamento de Matemátias ESFM del IPN;Departamento de Matematias, Centro de Investigaión y Estudios Avanzados del Instituto Politenio NaionalApartado Postal 14-740 Méxio, D.F.Submitted 8 February 2000We propose a new theoretial method to study galvanomagneti e�ets in bounded semiondutors. The generalidea of this method is as follows. We onsider the eletron temperature distribution and the eletri potentialas onsisting of two terms, one of whih represents the regular solution of the energy balane equation obtainedfrom the Boltzaman transport equation at steady-state onditions and the Maxwell equation respetively, andthe other is the e�et of the speimen size that is signi�ant near the ontats (the boundary layer funtion).With the distribution of the eletri potential at the ontats and the eletron temperature distribution at thesurfae of the sample taken into aount, we �nd that the magnetoresistane is di�erent from the one in thestandard theory of galvanomagneti e�ets in boundless media. We show that besides the usual quadratidependene on the applied magneti �eld B, the magnetoresistane an have a linear dependene on B underertain onditions. We obtain new formulas for the linear and quadrati terms of the magnetoresistane inbounded semiondutors. This linear ontribution of the magneti �eld to the magnetoresistane is essentialydue to the spatial dependene of the potential at the eletri ontats. We also disuss the possibility to obtainthe distribution of the eletri potential at the ontats from standard magnetoresistane experiments. Beausethe applied magneti �eld ats di�erently on arriers of di�erent mobilities, a redistribution of the eletronenergy ours in the sample and thus, the Ettingshausen e�et on the magnetoresistane must be onsideredin bounded semiondutors.PACS: 02.30.Jr, 72.15.Gd, 75.70.Ak1. INTRODUCTIONPhysially, the magnetoresistane phenomenon on-sists in an inrease of the eletri resistane of a metalor semiondutor subjet to an external magneti �eldapplied transversally to the eletri �eld diretion. Weobtain a omplete formula for the magnetoresistanein the bounded semiondutor involving several previ-ously unknown terms. Using the expression for themagnetoresistane in bounded semiondutors, it ispossible to obtain some information about the eletronenergy relaxation, the arrier density, and the eletrontemperature distribution in the semiondutor. Cur-*E-mail: gurevih��s.investav.mx

rently, the innovation of some sensitive magneti �elddetetors is based on the magnetoresistane e�et insemiondutors. This means that the linear ontribu-tion of the magneti �eld to the magnetoresistane ob-tained in this paper, whih arises due to the spatialdependene of the potential at eletri ontats, animprove the sensitivity of the devies. Furthermore,the experimental measurements of magnetoresistaneallow one to desribe the homogeneity of the eletripotential at the ontats and therefore also the homo-geneity of the urrent density in the sample, whih isvery important for semiondutor devies.Most of the theoretial works, as far as galvanomag-neti e�ets in bulk semiondutors are onerned, havebeen addressed to boundless media where the eletri7 ÆÝÒÔ, âûï. 2 321



G. González de la Cruz, Yu. G. Gurevih, V. V. Kuherenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001�eld is onstant in all diretions and the only ontri-bution to the magnetoresistane is related to the de-pendene of the eletri ondutivity on the magneti�eld [1; 2℄. However, this assumption impliitly involvesthe e�et of the sample surfae, beause the eletro-stati Hall �eld and thus the magnetoresistane annotbe found otherwise. It is worth mentioning that in real-ity, it is usual to �x some spei� boundary onditionsat the surfae of the sample; as a onsequene, in gen-eral, magnetoresitane depends on the eletri poten-tial, whih is a linear funtion of the oordinates [3℄.Moreover, this linear term an be only alulated ifthe surfae e�ets on the eletri potential are on-sidered through an additional funtion of oordinates.The oe�ients haraterizing the potential also de-pend strongly on these boundaries and as the result,they are di�erent from the oe�ients obtained in thestandard magnetoresistane theory.Size-dependent ontributions to the magnetoresis-tane of an isotropi semiondutor in a uniform ele-tri �eld Ex and a transverse magneti �eld B (in the y-diretion) have been disussed in [4�7℄. The disussionis given for systems bounded along only one diretion(the z-axis) and boundless in the diretion of the ele-tri �eld. The urrent density is taken to vanish at thesurfae of the sample, whih is viewed as a boundaryondition (i.e., jz = 0 at z = �b) in ontrast with thestandard magnetoresistane theory, where jz = 0 in thesemiondutor sample. In this ase, the eletron tem-perature gradient �Te=�z arises beause the magneti�eld ats in a di�erent way on arriers of di�erent mo-bilities (the Ettingshausen e�et) [8℄, whih leads to alinear dependene of the eletron temperature distribu-tion on the eletri �eld. The experimental evidene ofthese theoretial results has shown a strong in�uene ofthe semiondutor thikness on the magnetoresistane.When the Ettingshausen e�et in bounded semion-dutors is taken into aount, a size-dependent termappears in the magnetoresitane. However, when thetransverse dimensions of the semiondutor are verylarge ompared to the eletron�phonon energy relax-ation length (k�1) [9℄, the usual result of the onven-tional magnetoresistane theory is reovered, with theEttingshausen e�et bieng important if kb � 1. Onthe other hand, the size-dependent ontribution to themagnetoresistane does not disappear in the limit askb ! 0 [10℄ and is in fat of the same order as thephysial magnetoresistane term in the standard the-ory.As an be seen, the surfaes of the sample play animportant role in the theory of magnetoresistane inthin-�lm semiondutors. However, in real physial ex-

periments on magnetoresistane, besides the e�et ofthe size, the e�ets due to the inhomogeneity of thepotentials at the ontats must be onsidered.Magnetoresistane and the eletri potential distri-bution in a bounded metal (degenerate eletron gas)have been investigated in [11; 12℄; in [12℄, in partiular,it was studied using a onformal transformation in theomplex plane. This approah is only valid when theeletri potential is onstant at the ontats, i.e., is in-dependent of the oordinates; the approah annot beapplied to semiondutors where the urrent dependson the potential and the temperature and satis�es theHelmholtz equation.In the limit of small eletri and magneti �elds,size-dependent ontributions of the magnetoresistaneof an isotropi semiondutor have been disussedin [13; 14℄ using a perturbative method. The relevantdisussion is given for systems bounded in all dire-tions, with the urrent density vanishing at z = �b.It is found that magnetoresistane exists even if therelaxation time is independent of the eletron energy.However, when the distane between the ontats isvery large, the perturbative approah of Refs. [13; 15℄looses its appliability.Reently, magnetoresitane in bulk semiondutorsthat are bounded in all diretions was investigatedwithin a new mathematial approah [3℄ for a degener-ate eletron gas, the result being a simple analytial ex-pression. Moreover, it was shown in [7℄ that the arriertemperature distribution for a nondegenerate semion-dutor (the Ettingshausen e�et) plays an importantrole in the study of galvanomagneti e�ets.In this work, we analyze the magnetoresistane inbounded isotropi nondegenertate semiondutors andonsider the e�et of the inhomogeneous eletri poten-tials at the ontats and the thikness b and the lengtha of the thin-�lm semiondutor. This analysis is basedon representing the potential and the temperature asthe sum of a term that is regular (analytial) in thesmall parameters b=a and !H�0 and a term involvingthe boundary layer funtions orresponding to vortexurrents. The boundary layer funtions are essentialnear the ontats. They vanish as the magneti �eldB ! 0 for a onstant potential at the ontats, areregular in the small parameter !H�0, and deay expo-nentially along the sample. The analysis shows that itshould be possible to observe an interesting eletronitransport phenomenon aused by the eletri �eld andthe eletron temperature distributions; moreover, themagnetoresistane that we �nd is di�erent from theone in the standard theory.322



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Contat e�et on the magnetoresistane : : :2. THEORETICAL MODELWe assume that the semiondutor has the shapeof a parallelepiped bounded by the x = 0; a; y = 0; and z = 0; b planes and the eletri ontats with therespetive distributions '0(y; z) and 'a(y; z) are in thex = 0; a planes, while the applied uniform magneti�eld is direted along the y-axis. The normal ompo-nents of the urrent density vanish at the y = 0;  andz = 0; b planes of the sample (open iruit at thesesurfaes). If the potential distributions '0(y; z) and'a(y; z) are only funtions of z, the transport prob-lem is obviously two dimensional (all the physial pa-rameters depend only on x and z). We onsider thee�et that the redistribution of arriers aording totheir energy aross the sample has on the magnetore-sistane (the Ettingshausen e�et). Assuming that theeletri and magneti �elds are weak, and therefore,Te � T0 � jB, where T0 is the ambient temperature,we an use the Maxwell and the thermal balane equa-tions to �nd the eletron temperature distribution andthe eletrostati potential in the sample as funtionsof oordinates and the magneti �eld. At the steady-state onditions, the equations for the oupled eletrontemperature and the eletri potential an be writtenas [7; 14℄r2'(x; z) + q + 1e r2Te(x; z) = 0;r2Te(x; z)+ eq+2r2'(x; z) = k2 (Te(x; z)�T0) ; (1)where k�1 is the sale length of the eletron�phononenergy relaxation, referred to as the ooling length(k�1 � 10�3�10�4 m for nondegenerate semiondu-tors), and q is the parameter haraterizing the depen-dene of the momentum relaxation time � on the energy" via �(") = �0("=T0)q . The values of q for various mo-mentum relaxation mehanisms are given in [16℄ (it isimportant that jqj < 3=2). In this work, we assumethat the temperature of the phonon system is equal tothe ambient temperature T0.To arrive at Eqs. (1), we have assumed that the ele-tron gas is nondegenerate (satis�es the Maxwell statis-tis), the energy�momentum relation is quadrati andisotropi, and the urrent density is su�iently smallfor the nonlinear e�ets to be negligible, i.e., the kinetioe�ients do not depend on the eletri �eld. We alsoonsider a weak magneti �eld suh that !H�0 � 1,where !H is the ylotron frequeny.The ontinuity and the energy balane equationsfor the potential '(x; z) and the eletron temperatureTe(x; z) must be supplemented by boundary onditions

desribing the distribution of the potential at the ele-tri ontats and the normal omponents of the urrentdensity at the lateral surfaes:'(x; z)��x=0 = '0(z); '(x; z)��x=a = 'a(z);jz��z=0;b = 0: (2)The oupled equations for the potential and the ele-tron temperature must be supplemented by boundaryonditions desribing the absorption of the arrier en-ergy at the surfae of the sample. These onditions anbe written as [17℄Qn��s = �s(Te � T0)��s; (3)where Qn is the eletron normal omponent of the heat�ux at the surfae of the sample and the parameter �srepresents the inelasti sattering of eletrons at theboundaries (surfae heat ondutivity), with �s = 0orresponding to the absene of surfae mehanisms,that is, Qz��z=0;b = 0 (4)in our geometry, and with the in�nite �s orrespondingto a good thermal ondutivity aross the surfae. Weonsider this latter boundary ondition for the eletrontemperature at the ontats, i.e.,Te��x=0;a = T0: (5)Under the above assumptions, we see from the ex-pressions for j and Q given in [18℄ that the poten-tial and the temperature distributions satisfy the fol-lowing equations at the surfae of the sample, wherejz jz=0;b = Qzjz=0;b = 0:�'�z + q + 1e �Te�z + �(2q + 5=2)�(q + 5=2) �� (!H�0)��'�x + 2q + 1e �Te�x �����z=0;b = 0;�'�z + q + 2e �Te�z + �(2q + 7=2)�(q + 7=2) �� (!H�0)��'�x + 2q + 2e �Te�x �����z=0;b = 0; (6)
with �(x) being the Gamma funtion.Assuming the potential di�erene at the ontatsto be small, whih means restriting to the trans-port e�ets that are linear in the eletri �eld, wesee from [14; 19℄ that in the theory of galvanomagnetiphenomena with the eletron temperature distribution323 7*



G. González de la Cruz, Yu. G. Gurevih, V. V. Kuherenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001taken into aount, the x omponent of the urrentdensity is given byjx = ��0 �'�x � (q + 1)�0e �Te�x + �0(!H�0)�� �(2q + 5=2)�(q + 5=2) ��'�z + (2q + 1)e �Te�z �++ �0(!H�0)2�(3q + 5=2)�(q + 5=2) ��'�z + (3q + 1)e �Te�z � ; (7)where �0 = 4�(q + 5=2)3p� ne2�0m :The �rst term in (7) orresponds to the usual ur-rent; the seond term orresponds to the thermoeletriurrent; the third term orresponds to the Hall e�etand the transverse Nernst�Ettingshausen e�et. Thelast term in Eq. (7) desribes the longitudinal Nernst�Ettingshausen e�et.3. ASYMPTOTIC APPROXIMATION FORMAGNETORESISTANCEFor small magneti �elds suh that (!H�0)2 � 1,we naturally seek solutions of Eqs. (1) in the form'(x; z) = '0(x; z) + '1(x; z)(!H�0) ++ '2(x; z)(!H�0)2 + : : : ;Te(x; z) = T0 + T1(x; z)(!H�0) ++ T2(x; z)(!H�0)2 + : : : (8)To alulate the terms 'j(x; z) and Tj(x; z), we proposea new nonstandard perturbation theory with respet tothe small magneti �eld. This theory is uniform withrespet to the small parameter b=a. Inserting Eqs. (8)in Eq. (7), we an write the x omponent of the urrentdensity to the seond order of the magneti �eld asjx(x; z) = j0(x; z) + j1(x; z)(!H�0) ++ j2(x; z)(!H�0)2 + : : : ; (9)wherej0(x; z) = ��0 �'0�x ;j1(x; z) = ��0��'1�x +q+1e �T1�x � �(2q+5=2)�(q+5=2) ;j2(x; z) = ��0��'2�x +q+1e �T2�x ��(2q+5=2)�(q+5=2) �� ��'1�z +2q + 1e �T1�z ���(3q+5=2)�(q+5=2) �'0�x � : (10)

The average value of the urrent density over the semi-ondutor ross-setion that is signi�ant for the mag-netoresistane is given byj = 1b bZ0 jx(x; z)dz: (11)Beause div j = 0, j is x-independent.It is lear from the above that a detailed analysisof j is a very ompliated problem. As we see in whatfollows, however, an analytial expression for the aver-age urrent density an be obtained in the limit whereb=a �1. This ondition allows us to study galvano-magneti e�ets in semiondutors; depending on theresults, we an deide whether it is possible to talkabout the e�ets of the �nite dimension of the sampleon the magnetoresistane.We now restrit ourselves to thin-�lm semiondu-tors with a � b. Beause the ooling length is of theorder 1 �m, we an use the relationa� k�1; b: (12)Alternatively, if the geometry of the sample is suh thata� b, the distribution of the urrent density jz orre-sponds to the losed Hall ontats [19℄.We introdue the average potential at the ontatsx = 0 and x = a as'0 = 1b bZ0 '0(z)dz; 'a = 1b bZ0 'a(z)dz: (13)We note that if the distribution of the potential is on-stant at the ontats of the sample, we have '0(z) = '0and 'a(z) = 'a, otherwise it depends on the z-oordi-nate.For a onstant potential at the ontats and in thepresene of a weak magneti �eld, the magnetoresis-tane an be de�ned asÆ = �j � j0� a�'a � '0��0 :In the ase where '0(z) = '0 and 'a(z) = 'a, themagnetoresistane is given byÆ = �Æ0 � ba (K + F (kb))� (!H�0)2 (14)324



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Contat e�et on the magnetoresistane : : :(the proof of this formula is given in Se. 6). It followsthatÆ0 = �(5=2 + q)�(5=2 + 3q)� �2(5=2 + 2q)�2(5=2 + q) �� q25=2 + q �2(2q + 5=2)kb2 (q + 2)1=2�2(q + 5=2) th h(q + 2)1=2kb=2iis the magnetoresistane for samples suh that the di-mension along the x diretion is in�nite (a ! 1) andthe transverse dimension b is �nite. The formulas forthe oe�ient K and the funtion F (kb) have not beenknown previously. We obtain thatK = �2(2q + 5=2)�2(q + 5=2) 16�3 1Xl=0 1(2l + 1)3 ; (15)F (kb) = 8q2q + 5=2 �2(2q + 5=2)�2(q + 5=2) �� 1Xl=0 ��2(2l + 1)2 + (kb)2(q + 2)��3=2 : (16)It follows from Eqs. (14)�(16) that when the distribu-tion of the potential is uniform at the ontats, theorretion term to the magnetoresistane depends onthe ratio b=a � 1 linearly rather than exponentiallyvia exp(�a=b), as is assumed in the standard theoryof galvanomagneti e�ets in semiondutors. On theother hand, if the eletri potential is inhomogeneousat the ontats, the magnetoresistane is given byÆ = � 4�b �'a�'0� 8<: bZ0 �'0(z)+'a(z)�'0�'a� �� 1Xl=0 os [(2l+1)�z=b℄2l+1 dz) �(2q+5=2)�(q+5=2) (!H�0) (17)(the proof of this formula is given in Se. 5). In thisase, the magnetoresistane depends on the magneti�eld linearly rather than quadratially as in the usualtheory of galvanomagneti e�ets in semiondutors.In addition, it hanges sign when the magneti �eld isreversed. Thus, the resistane in the sample dereaseswith the magneti �eld before reversing its sign. Wenote that the sign in Eq. (17) strongly depends on thepotential distribution at the ontats and is indepen-dent of the length a of the sample in the �rst approx-imation with respet to the magneti �eld. Size ef-fets on the magnetoresistane our in the seond-or-der approximation with respet to B. For example, if

'0(z) + 'a(z)� '0 � 'a = C(z � b=2), it follows fromEq. (17) thatÆ = 8C!H�0�3 �'a � '0� �(2q + 5=2)�(q + 5=2) 1Xl=0(2l + 1)�3:We note that Eq. (14) gives the magnetoresis-tane with the preision [(!H�0)3 + e(��a=2b)(!H�0)2℄,and Eq. (17) with the preision (!H�0)2. There-fore, Eq. (14) gives the orret results in ase where!H�0 � 1 and b=a� e(��a=2b); this does not neessar-ily imply the onstraint b=a� 1. Equation (17) is ap-pliable in the ases where !H�0 � 1 and !H�0 � jÆj.We see that for the potential that is homogeneous atthe ontats, we have Æ0 = 0 for the degenerate ele-tron gas, that is, for q = 0. This implies that thestandard mehanisms of reating magnetoresistane donot work and the magnetoresistane is the result onlyof the mehanism proposed in this paper. However, ifthe linear part of magnetoresistane in the magneti�eld does not vanish, it does not vanish for all valuesof q. This means that inhomogeneity of the potentialat the ontat plane is a new mehanism of reatingmagnetoresistane. The linear dependene oe�ientin (17) is a produt of two fators. The �rst fator de-pends only on the potential distributions at the ontatplanes. The seond fator results in the Ettingshausene�et and is independent of the potential distribution.It follows from Eq. (17) that if we know the potentialdistributions at the ontats, we an alulate the pa-rameter q of the relaxation mehanism using the mag-netoresistane.It is worth mentioning that if the magnetoresistaneis alulated in all orders in the magneti �eld, the po-tential distribution at the ontats an be evaluatedexpliitly. The solution in the form of a Taylor expan-sion has been exatly obtained only for the degenerateeletron gas (metals) [15; 20℄. Thus, experimental mea-surements of magnetoresistane allow one to shed somelight on the distribution of the potential at the ontats.4. MAGNETORESISTANCE CALCULATIONFOR RECTANGULAR SAMPLESWe now proeed to desribe a method of solvingthe two-dimensional potential and eletron tempera-ture distribution for magnetoresistane in the preseneof a weak magneti �eld. The geometry onsidered isagain that of a retangular semiondutor. We intro-due a new funtion � depending on the potential andthe eletron temperature distribution suh that the ur-325



G. González de la Cruz, Yu. G. Gurevih, V. V. Kuherenko, E. Ramirez de Arellano ÆÝÒÔ, òîì 119, âûï. 2, 2001rent Jx is expressed through this funtion up to theorder (!H�0)2 (see Eq. (7)) as� = '+ q + 1e Te; T = Te � T0 (18)and the dimensionless variables x0 = x=b and z0 = z=bare suh that 0 < x0 < ��1 and 0 < z0 < 1, where� = b=a. With these new funtions, Eq. (1) an bewritten as (we omit the prime on the variables)r2� = 0; r2T � (q + 2)(kb)2T = 0 (19)and the boundary onditions in Eqs. (4)�(6) beome���x=��1;0 = 'a(z) + q + 1e T0; T ��x=0;��1 = 0;���z + �(!H�0)���x + �qe (!H�0) �T�x ����z=0;1 = 0;�T�z + �(!H�0)�T�x + (!H�0) ���x ����z=0;1 = 0; (20)
� = �(2q + 5=2)�(q + 5=2) ;� = (q + 1)�(2q + 5=2)�(q + 7=2) � q�(2q + 5=2)�(q + 5=2) ; = e ��(2q + 7=2)�(q + 7=2) � �(2q + 5=2)�(q + 5=2) � : (21)In most of the theoretial works related to galvano-magneti e�ets in bulk semiondutors, solutions ofEqs. (19) are represented as in�nite series in !H�0for weak magneti �elds; to obtain approximations forthe oe�ients �k and Tk of the orders k = 0; 1; : : : ,the authors neglet the terms (!H�0)��k=�x and(!H�0)�Tk=�x in boundary onditions (20). However,the exat solutions for the degenerate eletron gas [15℄demonstrate that this series diverges for large samples,i.e., for a � b. For this reason, we now seek solutionsof Eqs. (19) in the form� = �0(x; z; !H�0) + �1(x; z; !H�0)(!H�0)1 ++�2(x; z; !H�0)(!H�0)2 +O �(!H�0)3� ;T = T1(x; z; !H�0)(!H�0)1 ++ T2(x; z; !H�0)(!H�0)2 +O �(!H�0)3� : (22)The funtions �j and Tj with j = 0; 1; : : : satisfyEqs. (19). The boundary onditions for �0 and T0 inthe planes x = 0; ��1 are the same as for the funtions� and T , and we have �j jx=0;��1 = 0, Tj jx=0;��1 = 0for j � 1. The boundary onditions for �j(x; z; !H�0)

and Tj(x; z; !H�0) on the planes z = 1; 0 were obtainedfrom boundary onditions (20) using perturbation the-ory with one exeption. For �j , we keep the term(!H�0)�Tj=�x in boundary ondition (20) and omit theterm (!H�0)��j=�x. For Tj , on the ontrary, we keepthe term (!H�0)�Tj=�x in boundary ondition (20) andomit the term (!H�0)��j=�x. The terms �Tj�1=�xand ��j�1=�x enter the boundary onditions for therespetive funtions Tj and �j and make them het-erogeneous. We then see that the zero-order term T0satis�es Eq. (19) and zero boundary onditions in theplanes x = 0; ��1; z = 0; 1. Therefore, T0 = 0, whih iswhy we started with the term T1 in Eq. (22). The fun-tions �j and Tj are analytial in !H�0 and an also beexpressed in terms of the natural low-�eld expansion for!H�0 � 1. Within this approximation, we an obtainthe solution of Eq. (19) and, thus, the magnetoresis-tane. The equations and boundary onditions for theoe�ients in Eq. (22) are formulated in what follows.Sine the average urrent in Eqs. (7), (9), and (10) de-pends on �0, �1, �2, and T1 and is independent of T2with the auray up to the (!H�0)3 terms, it is notneessary to alulate it. We then onsider the bound-ary problems for �0, �1, �2, and T1. Similarly to theabove, we obtain the following boundary problem for�0 and T1:r�0 = 0; �0��x=0 = '0(z) + q + 1e T0;�0��x=��1 = 'a(z) + q + 1e T0;��0�z + �!H�0 ��0�x ����z=0;1 = 0; (23)
r2T1 � (q + 2)(kb)2T1 = 0; T1��x=0;��1 = 0;�T1�z + �!H�0 �T1�x +  ��0�x ����z=0;1 = 0: (24)With T0 = 0, the funtion �1 satis�es Eq. (19) withzero boundary onditions, and hene, �1 = 0. Thefuntion �2 satis�es the boundary problemr2�2 = 0; �2��x=0;��1 = 0;��2�z + �!H�0 ��2�x + �qe �T1�x ����z=0;1 = 0: (25)5. THE WEAK-FIELD �0 SOLUTIONTo derive the �rst term of the expansion of (23) for aweak magneti �eld, we represent the solution �0 with326



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Contat e�et on the magnetoresistane : : :the preision O(e��=�) as the sum of a regular and aboundary layer funtions�0 = �reg +�0 +�1 +O(e����1); (26)where �reg = C0 + (x� �!H�0z)C1 (27)satis�es the boundary ondition��reg�z + �!H�0 ��reg�x ����z=0;1 = 0;and �i (with i = 0; 1) are two boundary layer funtionsthat are exat solutions of the problemr2�i = 0 and ��i�z + �!H�0 ��i�x ����z=0;1 = 0suh that �0 and �i exponentially derease as x!1and x ! �1 respetively. Separating the variables,we an write solutions for the last equations as�0 = p2 1Xn=1An(os�nz+�!H�0 sin�nz)�� e��nx;�1 = p2 1Xn=1Bn(os�nz��!H�0 sin�nz)�� e��n(��1�x): (28)
As noted above, the boundary layer funtions �0 and�1 orrespond to the vortex urrent, and therefore,do not ontribute to the magnetoresistane. We nowdemonstrate this. We know that average urrent (11)is x-independent. Therefore, we an alulate it at thepoint x = ��1=2. But the exponentials in the bound-ary layer funtions (28) are less than or equal to e��=2�at that point. We also havebZ0 os(�nz)dz = 0; n = 1; 2; : : :Hene, the boundary layer ontributions to average ur-rent (7) and to the magnetoresistane have the order!H�0e��=2� . We an sharp this estimate and demon-strate that this ontribution is smaller and has the or-der (!H�0)2e��=2� . Indeed, it follows from (7) that theontribution of �i (with i = 0; 1) to the average ur-rent with the preision (!H�0)2e��=2� is equal to theintegral�0 bZ0 �� ��x�i(x; z) + �!H�0 ��z�i(x; z)� �z����x=1=2� :

This is easy to verify for the funtionse��x=b �os �nzb � �!H�0 sin �nzb � ;in view of deompositions (28) for �i, the above in-tegral is zero for all x. The boundary layer ontri-butions to the average urrent and the magnetoresis-tane is therefore of the order (!H�0)2e��=2�. InsertingEqs. (26)�(28) in boundary onditions (23) and neglet-ing terms of the order exp(����1), we obtainp2 1Xn=1An(os�nz + �!H�0 sin�nz) == '0(z) + �!H�0zC1 � C0;p2 1Xn=1Bn(os�nz � �!H�0 sin�nz) == 'a(z)� (��1 � �!H�0z)C1 � C0: (29)
Equation (29) an be solved using the expansion in!H�0 � 1. A solution in the zero- and �rst-order ap-proximation for An and Bn exists only if both C0 andC1, whih depend on !H�0, satisfy speial onditionswith respet to the potential distribution at the on-tats. We, thus, assume thatAn = A0n+A1n!H�0+ : : : ; Bn = B0n+B1n!H�0+ : : : ;C0 = C00+C10!H�0+ : : : ; C1 = C01+C11!H�0+ : : :Inserting these series in Eq. (29) and keeping the termsof the zero order in !H�0, we obtainp2 1Xn=1A0n os�nz = '0(z)� C00 ;p2 1Xn=1B0n os�nz = '1(z)� (C00 + ��1C01 ):It is well known that the system of funtions 1,p2 os�nz, n = 1; 2; : : : , is omplete and orthogonalon the segment [0; 1℄. Therefore, every funtion thatis orthogonal to the onstant on [0; 1℄ an be uniquelyexpanded in the Fourier series with respet to the fun-tionsp2 os�nz, n = 1; 2; : : : Hene, to solve the abovesystem for A0n and B0n, it is neessary and su�ient thatC00 = 1Z0 '0(z)dz = '0;��1C01 + C00 = 1Z0 'a(z)dz = 'a:327
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It follows that system (31) has a solution if and onlyif the average of its right-hand side on [0; 1℄ is equal tozero. These onditions give C10 , C11 and A1n, B1n. Asan be seen from Eqs. (9)�(11), the magnetoresistanedepends only on the parameter C1 given byC1 = C01 + C11�!H�0 + C21 (�!H�0)2 +O �(�!H�0)3� ;where C01 = � �'a � '0� ;C11 = � 1Z0 �'0(z) + 'a(z)� '0 � 'a	 I1(z)dz;I1(z) = 4� 1Xm=0 os [(2m+ 1)�z℄(2m+ 1)� ;I2(z) = 2 1Xn=1 os�nz 1Z0 sin(�n�)I1(�)d�; (32)
C21 = �� 1Z0 �'0(z)� 'a(z)� '0 + 'a	 I2(z)dz �� 16�2�3 1Xm=0 1(2m+ 1)3 :

Using Eqs. (26)�(28) and realling Eqs. (32), we nowwrite the solution for as a power series expansion in!H�0 � 1, i.e.,�0 = �00 +�10�!H�0 +�20(�!H�0)2 ++O �(�!H�0)3� ; (33)with�00 = q + 1e T0 + '0 + � �'a � '0�x+�00 +�01; (34)where �00 and �01 are the zero-order approximations in!H�0 of the respetive funtions �0 and �1 given byEqs. (28) and�10 = �C11x+� �'0�'a� (z�1=2)�+�10+�11+te; (35)where �10 and �11 are the �rst-order approximationsof �0 and �1. The orresponding solutions are notgiven here beause the magnetoresistane equations donot depend on them. Finally, the oe�ient in the se-ond-order approximation to �0 in the magneti �eldis written as�20 = C21 (x� z + 1=2) + �20 +�21 + te;where �20 and �21 represent the seond-order approxi-mations of the funtions in Eqs. (28) in the magneteti�eld; in this ase, the magnetoresistane is also inde-pendent of them. Using all these approximations inEqs. (10), we obtain the magnetoresistane given byEq. (17), whih depends linearly on the magneti �eldas a onsequene of the z-dependene of the potentialat the ontats. It is important to note that when thepotential distribution is onstant at the ontats, thelinear term vanishes. In this ase, the seond-order on-tribution in the magneti �eld must be onsidered in Æ(see Eq. (14)).6. MAGNETORESISTANCE AND THEHOMOGENEOUS POTENTIALDISTRIBUTION AT THE CONTACTSProeeding to the alulation of the oe�ientT1(x; z; !H�0), we begin with the expliit equationsthat determine this quantity in the approximation of aonstant potential at the ontats, i.e., for '0(z) = '0and 'a(z) = 'a. As an be seen, Eqs. (24) dependon the magneti �eld, and hene, T1(x; z; !H�0) also isa funtion of this parameter. It follows from Eqs. (10)that the magnetoresistane depends only on T1(x; z; 0),whih implies that it is only neessary to onsiderT1(x; z; !H�0) in the zero-order approximation in the328



ÆÝÒÔ, òîì 119, âûï. 2, 2001 Contat e�et on the magnetoresistane : : :magneti �eld in Eqs. (25) and (10). With these ap-proximations, we write the zero-order term of the po-tential �00 instead of �0 in Eqs. (24). We an thenwrite T1(x; z; !H�0) as a regular term and two bound-ary layer terms similar to �0 in Eq. (26). In this spei�ase, it is possible to obtain the exat expression forT1(x; z; !H�0) if the term �!H�0�T1=�x is taken intoaount in the boundary onditions. We an then ex-press T1(x; z; !H�0) as a series in !H�0 � 1; however,the only signi�ant term is T 01 (the zero-order approx-imation) that is given byT 01 = � �'a � '0�kbpq + 2 sh �kbpq + 2 (z � 1=2)�h�12kbpq + 2� ++ 1Xn=1A0n os�nz hexpn�p�2n2 + k2b2(q + 2)xo++ expn�p�2n2 + k2b2(q + 2)(��1 � x)oi ; (36)whereA0n = 8><>: �2� �'a � '0��2n2 + k2b2(q + 2) if n = 2m+ 1;0 if n = 2m;m = 1; 2; 3; : : :We now derive the seond-order approximation inthe magneti �eld for �2, see Eqs. (25). We set�2 =  1 +  2, where the funtion 	2 satis�es the het-erogeneous boundary onditions� 2�z + �!H�0 � 2�x = � �qe �T 01�x ����z=0;1and � 2 = 0. It is therefore equal to 2 = �qe 1Xn=1 hexpn�p�2n2 + k2b2(q + 2)xo �� expn�p�2n2 + k2b2(q + 2) (��1 � x)oi�� �D1n sinn��2n2 + k2b2(q + 2)�1=2 zo++ D2n osn��2n2 + k2b2(q + 2)�1=2 zo� ; (37)whereD1n =8><>: �2� �'a � '0��2n2 + k2b2(q + 2) if n = 2m+ 1;0 if n = 2m;m = 1; 2; 3; : : : ;

D2n ==8>><>>:D1n 1+os ��2n2+k2b2(q+2)�1=2sin [�2n2+k2b2(q+2)℄1=2 if n = 2m+1;0 if n = 2m;m = 1; 2; 3; : : :For  1, we obtainr2 1 = 0;  1��x=0;��1 = � 2��x=0;��1 ;� 1�z + �!H�0 � 1�x ����z=0;1 = 0: (38)The latter system of equations an be solved in thezero-order approximation in the magneti �eld simi-larly to what was done in Se. 5. The solution for �2in the zero-order approximation in the magneti �eldis then�02 = �8�q�2xe �'a � '0���( 1Xl=0 ��2(2l + 1)2 + k2b2(q + 2)��3=2)++�20 +�01 + te;where the funtions �00 and �01 are the dereasing expo-nential funtions of the distane � 1 from the ontatsat x = 0 and x = ��1 � 1. It is important to note thatthe sum �00 + �01 + te gives a negligible ontributionto the magnetoresistane of the order e��=2�(!H�0)2.However, these funtions must be onsidered, otherwisethe regular funtion in �02 annot be alulated. Insert-ing �02 in Eq. (10) and taking Eqs. (20) for � and  intoaount, we obtain expression (16).7. CONCLUSIONSWe have shown that when the eletri potential isinhomogeneous at the ontats, the magnetoresistanehas a linear dependene on the magneti �eld and itis possible to mathematially derive the eletri poten-tial distribution on the ontats from the experimentalmeasurements of the magnetoresistane. The magne-toresistane hanges its sign when the magneti �eldis reversed, i.e., the resistane in the sample dereaseswith the magneti �eld before it hanges its diretion.It is important to note that the sign in Eq. (17) stronglydepends on the potential distribution at the ontatsand is independent of the length of the sample in the�rst-order approximation in the magneti �eld.We emphasize that the orret evaluation of the ur-rent ontats for the onstant potentials at the ontats329
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