РАЗДЕЛЕНИЕ МАГНИТНЫХ ФАЗ В МАНГАНИТАХ La $_{1-x}$ Ca $_x$ MnO $_3$ ПРИ $0.6 \le x \le 0.9$

Т. И. Арбузова^{*}, И. Б. Смоляк, С. В. Наумов, А. А. Самохвалов, А. В. Королев

Институт физики металлов Уральского отделения Российской академии наук 620219, Екатеринбург, Россия

Поступила в редакцию 30 мая 2000 г.

Исследованы магнитные свойства твердых растворов La_{1-x}Ca_xMnO₃ в широкой области температур T = 2-600 K и магнитных полей $H \le 50$ кЭ. Для полупроводниковых составов с 0.6 < x < 0.9 обнаружено необычное температурное поведение намагниченности и восприимчивости с хорошо выраженными температурами Кюри и Нееля. Проявление одновременно ферромагнитных и антиферромагнитных свойств является подтверждением сосуществования двух коллинеарных магнитных фаз. Показано сильное влияние содержания примесных ионов на значения T_C и T_N , а условий термообработки — на соотношение объемов ферро- и антиферромагнитных фаз. На основе модели разделения фаз можно объяснить магнитные свойства всего ряда твердых растворов La_{1-x}Ca_xMnO₃.

PACS: 75.25.+z, 75.30.-m

1. ВВЕДЕНИЕ

Интерес к перовскитоподобным манганитам на основе LaMnO₃ обусловлен открытием в них эффекта колоссального магнитосопротивления и перспективностью этих материалов для практического применения, в частности, в различных переключающихся устройствах, в магнитозапоминающей и записывающей технике и т. д. Известно, что легирование антиферромагнитного полупроводника LaMnO₃ двухвалентными немагнитными ионами A=Sr, Ва и Са приводит к увеличению электропроводности и ферромагнитному упорядочению ионов Mn. Наиболее высокие значения T_C , электропроводности и магнитосопротивления имеют твердые растворы La_{1-x}A_xMnO₃ в области 0.2 < x < 0.4, поэтому основное внимание уделяется этим составам.

Комплекс таких свойств манганитов, как переход металл—изолятор, колоссальное магнитосопротивление, ферромагнитный порядок и образование магнитных поляронов, объясняют либо механизмом двойного обмена [1], либо моделью пространственного разделения фаз [2]. Оба механизма предсказывают качественно подобную картину для проводящих составов, хорошо согласующуюся с эксперименталь-

ными данными. Однако в случае реализации механизма двойного обмена составы с малым содержанием ионов A, x < 0.2, должны иметь однородное магнитное состояние. В составах с x > 0.5 механизм двойного обмена не должен играть важную роль из-за малой электропроводности. При реализации механизма пространственного разделения фаз магнитное состояние твердых растворов с 0.2 < x < 0.5должно быть однородным и ферромагнитным, а при x < 0.2 и x > 0.5 — неоднородным с коллинеарным упорядочением спинов в ферро- и антиферромагнитных областях. Составы с большими и малыми значениями х должны различаться в основном соотношением объемов ферро- и анитиферромагнитных областей. Для системы LaMnO₃-CaMnO₃ в отличие от других систем существует непрерывный ряд твердых растворов, что позволяет изучать магнитные свойства составов с большими значениями x. В предыдущей работе [3] мы исследовали всю систему $La_{1-x}Ca_xMnO_3$ при $0 \le x \le 1$ и обнаружили необычные магнитные свойства для составов с x > 0.5. В этой работе основное внимание уделено твердым растворам с x в области $0.6 \le x \le 0.9$. Изучено влияние магнитного поля на температурное поведение намагниченности и восприимчивости, а также влияние технологических условий приготовления образцов на магнитные свойства манганитов.

^{*}E-mail: magsemi@ifm.e-burg.su

2. ОБРАЗЦЫ И МЕТОДИКА ИЗМЕРЕНИЙ

Поликристаллические образцы La_{1-x}Ca_xMnO₃ с $0 \leq x \leq 1$ приготовлены из исходных порошков La₂O₃ (99.9%), Mn₃O₄ и CaCO₃ марки ОСЧ. Синтез образцов проходил в несколько этапов. Вначале исходная смесь порошков отжигалась на воздухе при 1300°С в течение 30 часов с одной промежуточной перетиркой. Затем образцы вновь перетирались, из порошков прессовались таблетки, которые отжигались в течение 50 часов также при 1300°С. Рентгенофазный анализ проводился на рентгеновском дифрактометре ДРОН-2.0 в K_{α} -излучении Cr. Полученные образцы являлись однофазными. Все составы, кроме LaMnO₃ и La_{0.2}Ca_{0.8}MnO₃, имели кристаллическую структуру перовскита кубической симметрии, а образцы с x = 0 и x = 0.8 — орторомбической симметрии. При увеличении х параметры решетки уменьшались [3]. Известно, что отклонения состава от стехиометрического как в катионной, так и в анионной подрешетках могут оказывать сильное влияние на физические свойства манганитов. Образцы La_{1-x}Ca_xMnO₃ в области концентраций $0.6 \le x \le 0.9$, в которых проявились необычные магнитные свойства, были подвергнуты дополнительному отжигу при температурах 1200-1400 °C с последующей закалкой на воздухе. Закалка образцов от высоких температур должна приводить к уменьшению содержания кислорода. В табл. 1 приведены параметры решетки для закаленных образцов La_{0.2}Ca_{0.8}MnO₃. Отжиг с закалкой не изменил симметрию кристаллической решетки. Параметры решетки уменьшались с ростом температуры закалки, что может указывать на приближение состава к стехиометрическому по сравнению с исходным образцом.

Магнитные измерения в широкой области температур T = 2-600 К проводились на трех установках — вибрационном магнитометре, магнитных весах Фарадея и СКВИД-магнитометре (Quantum Desing Model 1822).

Некоторые исследованные образцы являлись магнитно-неоднородными и имели размытые магнитные переходы. Определение температуры Кюри методом Белова—Горяги в этом случае является некорректным. Для выявления тенденций изменения температур Кюри и Нееля с изменением концентрации ионов Са и условий термообработки мы оценивали значения T_C экстраполяцией наиболее резкого уменьшения величин $\sigma(T)$ и $\chi(T)$ в малом магнитном поле H < 10 'Э, а T_N — по максимуму зависимостей $\sigma(T)$ и $\chi(T)$ в поле H = 9 кЭ.

Рис. 1. Температурные зависимости намагниченности для La_{0.4}Ca_{0.6}MnO₃ в разных магнитных полях: 1 - H = 50 Э (масштаб 1 : 3), 2 - H = 5 кЭ, 3 - H = 10 кЭ

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Перовскитоподобные манганиты LaMnO3 и CaMnO₃ образуют непрерывный ряд твердых растворов. В системе La_{1-x}Ca_xMnO₃ крайние стехиометрические составы с x = 0 и x = 1 имеют полупроводниковый характер проводимости и антиферромагнитное упорядочение магнитных моментов ионов Mn^{3+} (S = 2) или Mn^{4+} (S = 3/2) ниже T_N. Их магнитные свойства определяются сверхобменным взаимодействием между ионами Mn через 3р-волновые функции кислорода. Замещение части ионов La³⁺ в LaMnO₃ на ионы Ca²⁺ приводит к увеличению электропроводности и появлению ферромагнетизма [4]. Наши образцы La_{1-x}Ca_xMnO₃ при x < 0.5 имели магнитные характеристики, типичные для ферромагнетиков [3]. При низких температурах величина намагниченности довольно высокая, что указывает на ферромагнитное упорядочение магнитных ионов. Повышение температуры приводит к резкому уменьшению намагниченности в области T_C. В этой же области температур имеют место переход металл-изолятор и максимум магнитосопротивления. В парамагнитной области *T* > *T_C* намагниченность линейно увеличивается с повышением напряженности магнитного поля. В табл. 2 приведены значения температур Кюри и Нееля, характеризующие магнитные свойства исследованных образцов La_{1-x}Ca_xMnO₃.

Для твердых растворов в области концентраций

Температура закалки, °С	Параметры решетки		етки	Объем элементарной ячейки
	$a, \mathrm{\AA}$	$b, \mathrm{\AA}$	$c, \mathrm{\AA}$	$V, \mathrm{\AA}^3$
1200	5.334	7.542	5.334	214.984
1350	5.339	7.547	5.330	214.764
1400	5.320	7.523	5.326	213.159

Таблица 1. Параметры кристаллической решетки для закаленных образцов La0.2 Ca0.8 MnO3

Таблица 2. Значения температур Кюри и Нееля для La_{1-x}Ca_xMnO₃

Состав, х	Закалка, °С	T_C, K	T_N, \mathbf{K}
0.1	_	170	_
0.3	_	205	_
0.4	1350	172	—
0.6	_	111	260
	1400	115	264
0.7	1400	Переход размыт	260
0.8	_	93	183
	1200	95	200
	1350	93	215
	1400	98	205
0.9	1400	98	129
1	_	115	_

 Πp имечание. Величина T_C определялась кинк-методом в малом магнитном поле, T_N — по положению максимума σ в поле H = 9 кЭ.

 $0.6 \le x \le 0.9$ зависимости намагниченности от температуры и внешнего магнитного поля ведут себя более сложно. На рис. 1 представлены температурные зависимости намагниченности для La_{0.4}Ca_{0.6}MnO₃, снятые в разных магнитных полях, а на рис. 2 аналогичные зависимости $\sigma(T)$ для La_{0.2}Ca_{0.8}MnO₃. Видно, что в малом поле H < 100 Э зависимости $\sigma(T)$ имеют характерный для ферромагнетиков вид с резким уменьшением σ вблизи $T_C = 115$ К для x = 0.6 и вблизи $T_C = 98$ К для x = 0.8. Увеличение напряженности поля приводит к появлению максимума намагниченности в области $T > T_C$, который с ростом H становится более выраженным. Наиболее ярко эти особенности проявляются для состава с x = 0.8.

На рис. 3 приведены температурные зависимо-

сти восприимчивости $\chi(T)$ и обратной восприимчивости $1/\chi(T)$ в области высоких температур для La_{0.2}Ca_{0.8}MnO₃ в полях H = 4.45 кЭ и H = 8.9 кЭ. Вблизи T = 200 К наблюдается максимум восприимчивости, причем в большем поле восприимчивость меньше, как в коллинеарных антиферромагнетиках NiO и MnF₂ [5]. В области высоких температур T > 320 К образец находится в парамагнитном состоянии, так как восприимчивость не зависит от величины внешнего магнитного поля и подчиняется закону Кюри—Вейсса $\chi = N\mu_{eff}^2/3k(T - \Theta)$ с $\Theta = 142$ К и значением $\mu_{eff} = 3.93\mu_B$, близким к расчетному значению $\mu_{eff} = 4.10\mu_B$.

Наличие максимума восприимчивости $\chi(T)$ характерно для коллинеарных антиферромагнетиков вблизи температуры Нееля T_N , для ферримагне-

Рис. 2. Температурные зависимости намагниченности для La_{0.2}Ca_{0.8} MnO₃ в разных магнитных полях: 1 - H = 13 Э (масштаб 1 : 10), 2 - H = 2 кЭ, 3 - H = 5 кЭ, 4 - H = 8 кЭ, 5 - H = 10 кЭ

Рис. 3. Температурные зависимости восприимчивости и обратной восприимчивости для La_{0.2}Ca_{0.8}MnO₃ в полях $H = 4.45 \text{ к} \Im (1)$ и $H = 8.9 \text{ к} \Im (2)$

тиков с двумя и более магнитными подрешетками, у которых $T_N > T_C$ [6], а также для состояния спинового стекла вблизи температуры замерзания T_f . Для проверки реализации состояния спинового стекла мы провели температурные измерения намагниченности и восприимчивости в области 100 К < T < 300 К в двух режимах: образец охлаждался без поля и в магнитном поле. Никаких гистерезисных явлений, типичных для спинового стекла, в $\sigma(T)$ и $\chi(T)$ не наблюдалось.

В манганитах $La_{1-x}Ca_xMnO_3$ теоретически возможна реализация ферримагнетизма, так как ионы Mn^{3+} и Mn^{4+} имеют разные магнитные моменты, их концентрации различаются для всех составов, кро-

Рис. 4. Температурные зависимости намагниченности для La_{0.1}Ca_{0.9}MnO₃ в разных магнитных полях: $1 - H = 1.7 ext{ } ext{ }$

ме x = 0.5, и они могут располагаться в узлах двух или нескольких магнитных подрешеток. Однако, если бы наши образцы с $0.6 \le x \le 0.9$ являлись ферримагнетиками с $T_N > T_C$, т. е. при понижении температуры Т от высоких значений они переходили бы из парамагнитного состояния в антиферромагнитное вблизи T_N , а при дальнейшем уменьшении температуры вблизи T_C — из антиферромагнитного состояния в ферримагнитное, то экстраполяция температурной зависимости обратной восприимчивости из области высоких $T\,>\,320$ К давала бы отрицательное значение асимптотической температуры Кюри Θ , а сама зависимость $1/\chi(T)$ имела бы нелинейный вид с вогнутостью к оси температур. На рис. 3 видно, что Θ является положительной величиной, а зависимость $1/\chi(T)$ выпуклая к оси Т в критической области температур при переходе из парамагнитного состояния в магнитоупорядоченное. Она имеет вид характерный для ферромагнетиков, в которых дальний порядок разрушен, но ближний еще сохраняется. Поэтому нет оснований предполагать наличие нескольких неэквивалентных магнитных подрешеток, в которых намагниченность в области $T_C < T < T_N$ компенсируется, либо одна магнитная подрешетка выше T_C переходит в парамагнитное состояние, а во второй подрешетке сохраняется антиферромагнитное упорядочение вплоть до Т_N. Мы полагаем, что максимумы зависимостей $\sigma(T)$ и $\chi(T)$ связаны с температурой Нееля антиферромагнитной коллинеарной фазы. Большая положительная величина Θ , резкий рост намагниченности при понижении $T < 110 \,\mathrm{K}$ и ее нелинейные полевые зависимости указывают на важную роль ферромагнитных взаимодействий в области низких температур $T < T_C$. В промежуточной области температур $T_C < T < 300$ К преобладают, по-видимому, антиферромагнитные взаимодействия. В результате манганиты La_{1-x}Ca_xMnO₃ в области концентраций $0.6 \le x \le 0.9$ имеют свойства как ферромагнетиков, так и антиферромагнетиков с ярко выраженными температурами Кюри T_C и Нееля T_N . Они являются магнитно-неоднородной системой из-за пространственного разделения фаз на ферромагнитную и антиферромагнитную [2] со своими значениями T_C и T_N . На магнитную неоднородность этих образцов указывает также некоторая размытость фазового перехода вблизи T_C по сравнению с аналогичным переходом при 0.2 < x < 0.4.

В области больших x > 0.5 увеличение содержания ионов Ca²⁺ приводит к смещению значений T_C и T_N в сторону меньших температур. С ростом x уменьшение температуры Нееля происходит намного быстрее уменьшения температуры Кюри, поэтому разница между T_C и T_N сокращается. На рис. 4 представлены температурные зависимости намагниченности в разных магнитных полях для La_{0.1}Ca_{0.9}MnO₃. Для этого образца $T_C = 98$ K, а температура Нееля $T_N = 129$ K близка к значениям $T_N = 131$ K и $T_N = 139$ K для стехиометрических CaMnO₃ [7] и LaMnO₃ [8].

На магнитные свойства манганитов могут влиять не только специально введенные примеси, но и собственные дефекты. Составы с x = 0.6 и x = 0.8были подвергнуты термообработке, в результате которой содержание кислорода в образцах уменьшилось. На рис. 5 представлены температурные зависимости намагниченности в поле H = 9 кЭ для La_{0.4}Ca_{0.6}MnO₃ до и после отжига при 1400 °C с закалкой. На рис. 6 приведены аналогичные зависимости $\sigma(T)$ в поле H=10 кЭ для La_{0.2}Ca_{0.8}MnO₃. Видно, что термообработка слабо влияет на максимум намагниченности и, соответственно, на антиферромагнитную фазу, но сильно подавляет ферромагнитный вклад. Зависимость $\sigma(T)$ для закаленного образца La_{0.2}Ca_{0.8}MnO₃ уже имеет вид типичный для коллинеарного антиферромагнетика. Однако результаты измерений намагниченности в малом магнитном поле указывают на присутствие ферромагнитной фазы с температурой Кюри, близкой к T_C исходного образца.

Дополнительную информацию о присутствии ферромагнитной и антиферромагнитной фаз могут дать магнитные измерения при низких температурах, поэтому для закаленного при 1350 °C образца La_{0.2}Ca_{0.8}MnO₃ с помощью СКВИД-магнитометра

Рис. 5. Температурные зависимости намагниченности в поле $H = 10 ext{ кЭ для } La_{0.4}Ca_{0.6} ext{ MnO}_3 ext{ до (кривая 1)}$ и после (кривая 2) отжига при 1400 °C с закалкой. На вставке изображена зависимость $\sigma(T)$ в поле H = 60 Э для закаленного образца

Рис. 6. Температурные зависимости намагниченности в поле $H = 9 ext{ к} \exists ext{ для } La_{0.2} Ca_{0.8} ext{ MnO}_3 ext{ до} (кривая 1) и после (кривая 2) отжига при 1400 °C с закал$ $кой. На вставке изображена зависимость <math>\sigma(T)$ в поле $H = 30 ext{ } \exists ext{ для } закаленного образца}$

были сняты полевые и температурные зависимости намагниченности. На рис. 7 и 8 представлены зависимости $\sigma(T)$ для этого образца в полях H = 100 Э и H = 10 кЭ. В малом поле намагниченность при понижении температуры резко возрастает вблизи T = 100 К, что хорошо согласуется с рис. 2 и теорией фазового перехода парамагнетик—ферромагнетик. В поле H = 10 кЭ в области 210 К наблюдается максимум намагниченности (см. рис. 2 и 6). Ниже 100 К намагниченность начинает возрастать и до-

Рис.7. Температурная зависимость намагниченности в поле H = 100 Э для закаленного от 1350 °C образца La_{0.2}Ca_{0.8} MnO₃. Шкала справа — увеличенный масштаб для $\sigma(T)$

стигает величины $\sigma = 0.99$ Гс·см³/г при T = 2 К. Такую намагниченность могут обеспечить приблизительно 1% ионов марганца от их общего числа, упорядоченных ферромагнитно. Отметим, что значение намагниченности при низких температурах 2 К < T < 40 К и около $T_N = 207$ К довольно близки.

Виды полевых зависимостей намагниченности для ферромагнетиков и антиферромагнетиков различаются. На рис. 9 приведены зависимости $\sigma(H)$ в полях до 50 кЭ для закаленного от 1350°C поликристалла La_{0.2}Ca_{0.8}MnO₃ при низкой температуре и в промежуточной области температур. При T = 2 К наблюдается нелинейный ход зависимости $\sigma(H)$ и гистерезис намагниченности. Ненулевое значение намагниченности при H = 0 связано с тем, что петля гистерезиса при T = 2 К снималась после охлаждения образца в поле H = 10 кЭ, т.е. образец находился в неразмагниченном состоянии. При $T = 150 \text{ K} (T_C < T < T_N)$ парамагнитное состояние ферромагнитной фазы, как и антиферромагнитно упорядоченная фаза, должны иметь линейную зависимость $\sigma(H)$ с экстраполяцией к нулю, что согласуется с экспериментом. Таким образом, полученные результаты магнитных измерений показывают, что в системе La_{1-x}Ca_xMnO₃ при больших концентрациях ионов Ca^{2+} (x > 0.5) ферромагнитные свойства проявляются в области низких температур T < 100 K, а антиферромагнитные свойства — в области температур 100 K < T < 300 K.

Рис. 8. Температурная зависимость намагниченности в поле $H = 10 \ \kappa \Im$ для закаленного от 1350 °C образца La_{0.2}Ca_{0.8}MnO₃

4. ОБСУЖДЕНИЕ

Манганиты AMnO₃ из серии Рудлесдена—Поппера имеют трехмерную структуру перовскита, состоящую из взаимопроникающих октаэдров MnO₆ и блоков A₂O₂ со структурой NaCl. Магнитные ионы марганца расположены в центре октаэдров, в вершинах которых находятся ионы кислорода. Прямой обмен между ионами марганца невозможен из-за малого ионного радиуса (около 0.7 Å). Магнитные взаимодействия между ионами Mn в непроводящих манганитах осуществляются путем 180-градусного сверхобмена через ионы кислорода. Знак и величи-

Рис.9. Полевые зависимости намагниченности при T=2 K (1) и T=150 K (2) для закаленного при 1350 °C образца La_{0.2}Ca_{0.8}MnO₃

на сверхобменного взаимодействия зависят от параметров решетки, угла связи Mn–O–Mn и перекрытия 3d-2p-волновых функций [9,10]. Степень ковалентности оказывает сильное влияние на обменное взаимодействие и проводимость *p*-типа. Чем меньше степень ионности, тем сильнее сверхобменное взаимодействие.

В стехиометрическом составе LaMnO₃ все ионы марганца должны находиться в трехвалентном состоянии (Mn³⁺ — ян-теллеровский ион). При замещении части ионов La³⁺ двухвалентными ионами и при отклонениях состава от стехиометрического появляются ионы Mn^{4+} . В перовскитоподобных соединениях взаимодействия Mn³⁺-O₂-Mn³⁺ в кубическом окружении и $Mn^{4+}-O_2-Mn^{4+}$ являются антиферромагнитными, а взаимодействия ${\rm Mn^{3+}-O_2-Mn^{3+}}$ в октаэдрическом окружении и Mn³⁺-O₂-Mn⁴⁺ — ферромагнитными. При наличии разновалентных ионов Mn возможна делокализация 3*d*-электрона ионов Mn³⁺ и перенос заряда путем перескока электрона между ионами Mn³⁺ и Mn⁴⁺. Манганиты в этом случае становятся проводящими, а ферромагнитное упорядочение магнитных моментов обусловлено механизмом двойного обмена [11]. В случае большой концентрации подвижных носителей заряда косвенный обмен типа Рудермана-Киттеля-Касуя-Иосида также должен приводить к ферромагнетизму. Магнитный порядок в манганитах определяется конкуренцией

между ферромагнитными и антиферромагнитными взаимодействиями.

На основе теории 180-градусного сверхобмена и экспериментальных данных по магнитным, электрическим и кристаллографическим свойствам перовскитов Гуденаф построил полуэмперическую фазовую диаграмму для системы $La_{1-x}Ca_xMnO_3$ [9], согласно которой составы с x < 0.2 должны обладать неколлинеарным антиферромагнетизмом, составы с 0.2 < x < 0.4 должны быть ферромагнетиками, а с 0.5 < x < 0.9 — антиферромагнетиками. В работе [12] методом тяжелых фермионов получена фазовая диаграмма при T = 0 для системы La_{1-x}Ca_xMnO₃. Конкуренция между двойным ферромагнитным обменом и антиферромагнитным сверхобменом при увеличении концентрации во всем диапазоне 0 < *x* < 1 приводит к ряду магнитных фазовых переходов: антиферромагнетик-спиральная структура-ферромагнетик-скошенный антиферромагнетик-антиферромагнетик. При повышении температуры необходимо учитывать кинетическую энергию. В результате учета электрон-фононного взаимодействия спиральная магнитная структура при 0.2 < x < 0.4 становится менее устойчивой по сравнению со скошенным антиферромагнетиком. В антиферромагнетиках с неэквивалентными магнитными ионами даже слабые магнитные поля при низких температурах могут нарушить коллинеарность магнитных моментов. Именно скошенным антиферромагнетизмом часто объясняют ненасыщенный магнитный момент для составов с x < 0.2.

Для описания магнитных свойств и эффекта колоссального магнитосопротивления в манганитах в настоящее время предложены два альтернативных механизма — модифицированный механизм двойного обмена [1] и модель Нагаева пространственного разделения магнитных фаз [2]. Согласно работе [2], разделение фаз связано с тем, что для свободных носителей энергетически выгоднее ферромагнитное упорядочение магнитных моментов по сравнению с антиферромагнитным. При недостаточно высокой концентрации носителей заряда они стремятся собраться в отдельных областях кристалла и установить там ферромагнитный порядок. В результате кристалл разбивается на проводящие ферромагнитные и изолирующие антиферромагнитные области. По мере роста концентрации носителей заряда объем ферромагнитной фазы увеличивается. При критической концентрации, соответствующей порогу протекания, происходит концентрационный переход металл-изолятор и весь кристалл становится ферромагнитным. Механизмы двойного обмена и пространственного разделения фаз качественно подобны и хорошо объясняют эффект колоссального магнитосопротивления и ферромагнетизм в проводящих манганитах при $0.2 \le x \le 0.4$. Однако в полупроводниковых системах с x < 0.2 и x > 0.5 в случае реализации двойного обмена и неколлинеарного упорядочения магнитных моментов магнитное состояние должно быть однородным по всему кристаллу, а при реализации механизма Нагаева — неоднородным (двухфазным) с коллинеарным расположением магнитных моментов в этих фазах.

Полученные экспериментальные данные по магнитным свойствам манганитов La_{1-x}Ca_xMnO₃ можно объяснить на основе модели пространственного разделения фаз. Именно с разделением фаз связано одновременное проявление как ферромагнитных, так и антиферромагнитных свойств в образцах с концентрацией 0.6 < x < 0.9. Эти составы имеют полупроводниковую проводимость, так как большая часть кристалла находится в изолирующем антиферромагнитном состоянии. Ферромагнитные проводящие области образуются вблизи дефектов, которыми могут служить примесные ионы и вакансии в катионной или анионной подрешетках. Полная намагниченность образцов складывается из намагниченностей от ферромагнитных и антиферромагнитных областей. Вид температурных зависимостей намагниченности и восприимчивости

определяется соотношением объемов ферро- и антиферромагнитных фаз. Опыты по закалке указывают на уменьшение объема ферромагнитных областей. Магнитные свойства самих ферромагнитных и антиферромагнитных областей сохраняются, о чем свидетельствует практически неизменность температур Кюри и Нееля после отжига. Наши образцы, по-видимому, имеют избыток кислорода. При закалке от высоких температур уменьшается содержание кислорода и составы приближаются к стехиометрическим. Подтверждением этого может служить уменьшение параметров решетки после термообработки (см. табл. 1). Закалка от низких температур слабо влияет на ферромагнитный вклад и параметры решетки.

Известно, что в магнитоупорядоченной области намагниченность ферромагнетиков как минимум на два-три порядка больше намагниченности антиферромагнетиков, поэтому в области низких температур T < T_C полная намагниченность образцов La_{1-x}Ca_xMnO₃ в основном определяется намагниченностью ферромагнитных областей. Вблизи T_C намагниченность ферромагнетиков резко уменьшается. Разный вид температурных зависимостей намагниченности в слабых полях (H = 100 Э) и средних полях (H = 10 кЭ) связан с малой величиной восприимчивости антиферромагнетиков. При увеличении масштаба зависимости $\sigma(T)$ явно проявляется антиферромагнитный максимум σ вблизи T_N в поле H = 100 Э (см. рис. 7). В области промежуточных температур $T_C < T < T_N$ вклады феррои антиферромагнитных фаз становятся сопоставимыми. При высоких температурах $T > T_N$ обе фазы переходят в парамагнитное состояние. Следует отметить, что асимптотическая температура Кюри Θ, полученная из экспериментальных зависимостей $1/\chi(T)$, является фиктивной величиной. Она не характеризует дальний магнитный порядок, поскольку это суперпозиция значений $\Theta_a < 0$ для антиферромагнитной и $\Theta_p > T_C$ для ферромагнитной фаз. Большая положительная величина Θ указывает только на сильные ферромагнитные связи в твердых растворах. Критические температуры T_C и T_N не связаны со структурными фазовыми переходами, так как составы с x = 0.6 и x = 0.8 имеют качественно подобный вид зависимостей $\sigma(T)$, но разную симметрию кристаллической решетки. В работе [13] показано, что для состава La_{0.35}Ca_{0.6}5MnO₃ не наблюдается изменений параметров решетки вблизи *T*_N=160 К. В пользу модели неоднородного магнитного состояния говорят следующие факты. В случае реализации неколлинеарного антиферромагнетизма

(слабый ферромагнетизм или магнитная спираль) намагниченность в области $T < T_N$ должна уменьшаться, а не возрастать с понижением температуры. Полевые зависимости намагниченности должны следовать закону $\sigma = \sigma_s + \chi H$, где χ — не зависящая от поля восприимчивость, а σ_s — самопроизвольная намагниченность малой величины ($\leq 0.1 \mu_B$), или иметь резкий скачок σ при критическом поле. Эти закономерности не выполняются в твердых растворах La_{1-x}Ca_xMnO₃ (0.6 < x < 0.9).

В ферромагнетиках вблизи Т_С дальний магнитный порядок разрушается, но сохраняется ближний порядок. Магнитное поле способствует ферромагнитному упорядочению спинов и сдвигает Т_С в сторону более высоких температур. В антиферромагнетиках влияние магнитного поля несколько иное: а именно, оно способствует разрушению магнитного порядка. Значения восприимчивости в разных полях должны совпадать при $T = T_N$. По мере уменьшения температуры разность между ними возрастает, так как спины стремятся к перпендикулярной полю ориентации. В антиферромагнетиках температура T_N остается неизменной или даже сдвигается в область более низких температур в сильном магнитном поле [5]. Такое поведение T_N наблюдалось в большинстве наших твердых растворов $La_{1-x}Ca_xMnO_3$ при 0.6 < x < 0.9. Подавление магнитным полем антиферромагнитного порядка для составов с 0.50 < x < 0.68 обнаружено также в работе [14]. Увеличение поля от H = 1 Тл до H = 2 Тл привело к уменьшению T_N приблизительно на 20 К. Однако в некоторых образцах мы наблюдали смещение максимумов σ и χ в сторону больших T при увеличении магнитного поля (см. рис. 2, 3, 7, 8). Причина увеличения T_N в поле, также как и разных значений восприимчивости при T_N , не совсем ясна. Возможно, это связано с изменением неоднородного магнитного состояния под действием поля и, соответственно, изменением вкладов от ферро- и антиферромагнитных фаз.

Разделение магнитных фаз не исключено и в твердых растворах при x < 0.2, однако свойства антиферромагнитной фазы могут быть завуалированы ферромагнитной фазой. Для одновременного проявления ферро- и антиферромагнитных свойств необходимо, чтобы температура T_C была ниже T_N и объем ферромагнитной фазы составлял всего несколько процентов. Именно такая ситуация реализуется в составах с 0.6 < x < 0.9. Как отмечалось выше, при уменьшении концентрации ионов Ca²⁺ температура Нееля понижается и становится меньше T_C . Например, монокристалл La_{0.9}Ca_{0.1}MnO₃

имеет значения $T_N = 118$ К и $T_C = 138$ К [15]. Подтверждением неоднородности магнитного состояния и разделения фаз в манганитах могут служить данные работ [16–18]. В работе [16] с помощью нейтронографических исследований показано, что LaMnO_{3+ δ} в зависимости от величины δ может быть антиферромагнетиком, ферромагнетиком или иметь смешанное состояние — ферромагнитные кластеры в антиферромагнитной матрице. Объем ферромагнитных областей зависит от концентрации дефектов, а концентрация дефектов δ определяется условиями закалки, что согласуется с нашими данными по термообработке образцов $La_{1-x}Ca_xMnO_3$ при 0.6 < x < 0.9. Авторы работы [17] магнитные свойства LaMnO_{3+δ} также объясняют смешанным двухфазным магнитным состоянием. В работе [18] обнаружено присутствие ферромагнитных кластеров на фоне антиферромагнитной матрицы в другом предельном составе — в закаленных образцах $CaMnO_{3-\delta}$.

5. ЗАКЛЮЧЕНИЕ

Необычное температурное поведение намагниченности и восприимчивости с ярко выраженными температурами Кюри и Нееля манганитов $La_{1-x}Ca_xMnO_3$ в области 0.6 < x < 0.9 связано с пространственным разделением магнитной системы на коллинеарные антиферромагнитную и ферромагнитную фазы. Объем ферромагнитной фазы определяется концентрациями как специально введенных примесей, так и собственных дефектов. Магнитные свойства всей системы $La_{1-x}Ca_xMnO_3$ могут быть объяснены в рамках единой модели разделения фаз.

Работа выполнена при поддержке INTAS (грант 97-30253) и Российской федеральной программы «Поверхностные атомные структуры» (проект 2.4.99).

ЛИТЕРАТУРА

- 1. X. Wang and A. F. Freeman, JMMM 171, 103 (1997).
- Э. Л. Нагаев, УФН 166, 833 (1996); ФТТ 40, 2069 (1998).
- Т. И. Арбузова, И. Б. Смоляк, С. В. Наумов и др., ЖЭТФ 116, 1664 (1999).
- A. P. Ramirez, J. Phys: Condens. Matter 9, 8171 (1997).

- 5. Антиферромагнетизм, под ред. С. В. Вонсовского, Изд-во иностр. лит., Москва (1956).
- 6. Я. Смит, Х. Вейн, *Ферриты*, Изд-во иностр. лит., Москва (1962).
- E. O. Wollan and W. C. Kochler, Phys. Rev. 100, 545 (1955).
- 8. G. J. Matsumoto, J. Phys. Soc. Jap. 29, 606 (1970).
- 9. Д. Гуденаф, *Магнетизм и химическая связь*, Металлургия, Москва (1968).
- 10. J. B. Goodenough, Phys. Rev. 100, 564 (1955).
- 11. C. Zener, Phys. Rev. 82, 403 (1951).
- Jie Jiang, Jinming Dang, and D. J. Hing, Phys. Rev. B 55, 8973 (1997).

- M. R. Ibarra, J. M. De Teresa, J. Blasco et al., Phys. Rev. B 56, 8252 (1997).
- 14. P. Shiffer, A. P. Ramirez, W. Bao et al., Phys. Rev. Lett. 75, 3336 (1995).
- G. Biottean, M. Hennion, F. Moussa et al., Physica B 259–261, 826 (1999).
- 16. А. Н. Пирогов, А. Е. Теплых, В. И. Воронин и др., ФТТ 41, 103 (1999).
- I. O. Troyanchuk, H. Szymczak, N. V. Kosper et al., J. Solid State Chem. 130, 171 (1997).
- 18. Z. Zeng, M. Greenblatt, and M. Croft, Phys. Rev. B 59, 8784 (1999).