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QUANTUM-CLASSICAL CORRESPONDENCE ANDNONCLASSICAL STATES GENERATION IN DISSIPATIVEQUANTUM OPTICAL SYSTEMSK. N. Alekseev*, N. V. AlekseevaKirensky Institute of Physis of Russian Aademy of Sienes660036, Krasnoyarsk, RussiaJan Pe°ina**Department of Optis and Joint Laboratory of Optis, Palaký University77207, Olomou, Czeh RepubliSubmitted 3 September 1999We develop a semilassial method for the determination of the nonlinear dynamis of dissipative quantumoptial systems in the limit of large number of photons N ; it is based on the 1=N -expansion and the quantum-lassial orrespondene. The method is used to takle two problems: to study the dynamis of nonlassialstate generation in higher-order anharmoni dissipative osillators and to establish the di�erene between thequantum and lassial dynamis of the seond-harmoni generation in a self-pulsing regime. In addressing the�rst problem, we obtain an expliit time dependene of the squeezing and the Fano fator for an arbitrary degreeof anharmonism in the short-time approximation. For the seond problem, we analytially �nd a harateristitime sale at whih the quantum dynamis di�ers insigni�antly from the lassial one.PACS: 05.45.-a, 03.65.Sq, 42.50.Dv1. INTRODUCTIONThe situation when nonlinear interations involve alarge number of photons, N , is quite typial of manyproblems in quantum and nonlinear optis [1�3℄. Hied-mann et al. suggested [4℄ to use the 1=N -expansionmethod [5℄ to desribe the nonlinear dynamis of themean values and seond-order umulants of a quan-tum system in the N � 1 limit. Following the generalsheme of that method [5℄, an exat or approximatesolution an be found in terms of the oherent staterepresentation in the lassial limit as N !1 and anthen be adjusted by adding the quantum orretions.The method proves to be partiularly onvenient whenthe dynamis of nonlassial state generation must bedetermined [4℄. We have reently developed the methodfurther to study the enhaned squeezing at the transi-tion to quantum haos [6�8℄.Papers [4, 6, 7℄ are onerned with the problems*E-mail: kna�tnp.krasiene.rssi.ru**E-mail: perina�optnw.upol.z

of nondissipative quantum systems only. In this pa-per, we extend the method to dissipative quantum sys-tems. For quantum systems without dissipation, thelowest order of the 1=N -expansion is equivalent to thelinearization in terms of the lassial solution [6, 7℄,whereas in dissipative systems, as is demonstrated inwhat follows, the solution of the equations of motionfor variations near the lassial trajetory annot pro-vide omplete information on the dynamis of quantum�utuations even in the lowest order of 1=N . We showthat the in�uene of the reservoir on the dynamis ofexpetation values and dispersions, whih is di�erentfrom the energy dissipation, always exists; it has thequantum nature and annot be negleted even in thesemilassial limit. However, spei� manifestations ofthe e�et depend on the type of the attrator in theunderlying lassial dynami system. For systems witha simple attrator in the lassial limit, the �quantumdi�usion� assoiated with the quantum �utuations ofthe reservoir do not lead to any new physial e�etsin the dynamis of the main system, at least in the682



ÆÝÒÔ, òîì 117, âûï. 4, 2000 Quantum-lassial orrespondene : : :short-time limit. For a stable limit yle, on the otherhand, suh a di�usion appears to be the main meha-nism responsible for the di�erene between the lassialand quantum dynamis for N � 1.Along with the presentation of a general formal-ism, we onsider two typial examples of quantum op-tial systems with a simple attrator and a stable limityle in the lassial limit as N ! 1: the dissipa-tive higher-order anharmoni osillator and the self-pulsing regime of intraavity seond-harmoni genera-tion (SHG). We show how the 1=N -expansion methodan be used to investigate the dynamis of the non-lassial state generation and to determine the timesale for a orret lassial desription of the dissipa-tive quantum dynamis.The quantum anharmoni osillator with a Kerr-ty-pe nonlinearity is one of the simplest and most popularmodels used in the desription of quantum statistialproperties of light interating with a nonlinear medium[1, 9℄. The Kerr osillator model with a third-ordernonlinearity yields an exat solution in both the nondis-sipative [10℄ and dissipative limits [9℄. However, be-ause of the omplexity of the solution in the dissipa-tive ase, numerial methods or speial approximateanalytial methods must be used to determine statis-tial properties of the radiation in the most relevantexperimental ase involving a large number of photons.Moreover, there are no exat solutions available for themodel of the anharmoni osillator with a higher-ordernonlinearity.In this paper, we analytially obtain a simple andexpliit time dependene of the degree of squeezing andthe Fano fator in the anharmoni osillator model ofan arbitrary order for the most interesting experimen-tal situation featuring higher intensities (N � 1) andshort-time interations. As another example of applia-tion of the 1=N -expansion, we onsider the self-pulsingin SHG [11℄. Suh an osillatory regime orrespondingto the limit yle was observed experimentally in [12℄.There are several papers dealing with the developmentof approximate analytial and numerial methods withthe purpose of desribing di�erent dynami regimes inSHG in terms of quantum mehanis [13�17℄. In par-tiular, Savage [14℄ alulated the Gaussian approxima-tion of the Q distribution funtion about the lassiallimit yle. He demonstrated numerially that in thelassial limit, the initial rapid ollapse of the Q dis-tribution in the neighbourhood of the limit yle is fol-lowed by the di�usion around the limit yle. However,the author did not o�er any analytial solution of theproblem or an explanation of the physis of the e�etobserved.

In this paper, we show that the di�usion around thelassial limit yle an be obtained as a solution of theequations of motion for low-order umulants by usingthe 1=N -expansion tehnique. This enables us to �ndthe time sale t � t� with t� ' 2N�1 (where  is adamping onstant) for a orret lassial desription ofself-osillations in SHG. The resultant estimate is on-sistent with that obtained for t� numerially in [14℄.Finally, we interpret the quantum di�usion around thelimit yle as a di�usion aused by the e�et of thereservoir vauum on the SHG dynamis.This paper is organized as follows. In Se. 2, wedesribe a general formalism of the 1=N -expansion ap-pliable to an arbitrary single-mode quantum dissipa-tive system and present the solution of the equationsof motion for mean values and seond-order umulantsobtained in the �rst order of 1=N . In Ses. 3 and 4, wedeal with the nonlassial state generation dynamisin higher-order anharmoni osillators and the quan-tum-lassial orrespondene for the self-pulsing regimein SHG, respetively. The �nal setion ontains a sum-mary and onluding remarks.2. 1=N -EXPANSION ANDQUANTUM-CLASSICALCORRESPONDENCEWe begin with generalizing the approah of [7℄ tosystems with dissipation. As an illustrative example,we onsider a quantum anharmoni osillator with theHamiltonian in the interation pitureH = �byb+ �ll + 1 �byb�l+1 ; [b; by℄ = 1; (1)where the operators b and by desribe a single quan-tum �eld mode and the onstant �l is proportional toa (2l + 1)-order nonlinear suseptibility of a nonlinearmedium (l is an integer), � is the light frequeny de-tuning from the harateristi quantum transition fre-queny, and ~ � 1. Everywhere in this paper, we usethe normal ordering of operators. The osillator inter-ats with an in�nite linear reservoir at a �nite tempe-rature. The Hamiltonians of the reservoir and of theosillator-reservoir interation are de�ned asHr = Xj  j(dyjdj + 1=2);Hint = Xj ��jdjby +H. .� ; (2)where the Bose operator dj ([dj ; dyk℄ = Æjk) desribesan in�nite reservoir with the harateristi frequenies683



K. N. Alekseev, N. V. Alekseeva, Jan Pe°ina ÆÝÒÔ, òîì 117, âûï. 4, 2000 j and �j are the oupling onstants between reservoirmodes and the osillator. We introdue new saled op-erators a = b=N1=2 and j = dj=N1=2 and their Hermi-tian onjugates satisfying the ommutation relations[a; ay℄ = 1=N; [j ; yk℄ = Æjk=N: (3)In the lassial limit as N ! 1, we obtain ommu-ting lassial -numbers instead of operators. The fullHamiltonian H = H0 +Hr +Hintan be rewritten as H = NH;where H is as in (1) and (2) but with the replaementsb! a; by ! ay; dj ! j ;dyj ! yj ; �l ! gl(N) � �N l: (4)It an be shown that the photon-number dependentonstant gl(N) provides a orret time sale of osilla-tions for nonlinear osillator (1) in the lassial limit(for the Kerr nonlinearity with l = 1, see, e.g., [18℄).We note that H an have an expliit time dependenein the general ase [7℄. Within a standard Heisenberg�Langevin approah, the equation of motion has theform ([1℄, hap. 7)_a = �i��� i2�a+ V + L(t); (5)where V = �H0=�ay,  = 2�j�(!)j2�(!) is the damp-ing onstant, with �(!) being the density funtion ofreservoir osillators whose spetrum is onsidered to be�at. The Langevin fore operator L(t) is in a standardrelation to the operators fjg of the reservoir [1℄. In ournotation (4), the properties of L(t) [1℄ an be rewrittenas hL(t)iR = hLy(t)iR = 0;hLyaiR + hayLiR =  hndiN ;hLaiR + haLiR = 0: (6)Here the averaging is performed over the reservoir vari-ables and hndi is a single-mode mean number of thereservoir quanta (phonons) related to temperature T ashndi = hexp� !kT �� 1i�1 ;

where k is the Boltzmann onstant and ! is the har-ateristi phonon frequeny. From the Heisenberg�Langevin equations for a, a2 and the Hermitian on-jugated equations, using Eqs. (5) and (6), we obtaini ddt h�i = hV i � i2 h�i;i ddt h(Æ�)2i = 2hV Æ�i+ hW i � ih(Æ�)2i; (7)i ddthÆ��Æ�i = �hV �Æ�i+ hÆ��V i �� ihÆ��Æ�i+ i hndiN ;where W = (1=N)�V=�ay; z � hai;h(Æ�)2i = ha2i � z2; hÆ��Æ�i = hayai � jzj2;and the averaging is performed over both the reservoirvariables and the oherent statej�i = exp(N�ay �N��a)j0iorresponding to the mean photon number ' N . Inderiving Eq. (7), we neglet the insigni�ant additionaldetuning introdued to � by the interation with thereservoir [1℄. In the absene of damping,  = 0, ourequations for the mean values and the seond-order u-mulants (7) are redued to the orresponding equationsin [4, 7℄.The set of equations (7) is not losed and is basi-ally equivalent to the in�nite dynamial hierarhy sys-tem for the umulants of a di�erent order. To trunatethe system to the seond-order umulants, we make thesubstitution a ! z + Æ�, where, at least initially, themean value is z ' 1 and the quantum orretion arejÆ�(t = 0)j ' N�1=2 � 1:Using the Taylor expansion of the funtions V and Wand after some algebra analogous to that used in [7℄, weobtain from (7) in the �rst order of 1=N the followingself-onsistent system of equations for the mean valueand the seond-order umulants (for details see [19℄):i _z = �i2 z + hV iz + 1NQ(z; z�; C; C�; B); (8)i _C = 2��V���z C + 2� �V����z B � iC; (9)684



ÆÝÒÔ, òîì 117, âûï. 4, 2000 Quantum-lassial orrespondene : : :i _B = ���V ��� �z C+� �V����z C��i �B�B(0)� :(10)The orresponding equation for C�(t) an be obtainedfrom Eq. (9) by omplex onjugation. The quantumorretion to the lassial motion Q in Eq. (8) has theform Q = 12 ��2V��2 �z C + 12 � �2V���2�z C� ++� �2V������z �B � 12� : (11)In Eqs. (8)�(11), the subsript z means that the val-ues of V and its derivatives are alulated for the meanvalue z; we have introduedB = NhÆ��Æ�i+ 1=2; C = Nh(Æ�)2i: (12)The initial onditions for system (8)�(10) are of theform B(0) = 1=2; C(0) = 0; (13)and an arbitrary z(0) � z0 whih is of the order ofunity. The equilibrium value of the umulant B inEq. (10) is determined by the mean number of the reser-voir quanta and its zero-point energy asB(0) = hndi+ 1=2: (14)We note that the zero-point energy of the reservoir ap-pears in the equations of motion for the umulants,though it is not present in the Heisenberg equations ofmotion and an even be dropped from the Hamiltonianby rede�ning a zero of energy. Suh a �reappearane�of a zero-point �eld energy is quite ommon in otherquantum theory problems where the vauum is respon-sible for physial e�ets [20℄.The equations of motion for the seond-order umu-lants B and C [Eqs. (9), (10)℄ are linear inhomogeneousequations. Their solution onsists of two parts: a gen-eral solution of the homogeneous set of equations (i.e.,without the term +iB(0) in Eq. (10)) that we denoteas �B(t); C(t)�, and the partiular solution of the in-homogeneous equations(B(t); C(t)) = �B(t); C(t)�+ �B(0)t; 0� : (15)To �nd �B(t); C(t)�, we use the perturbation theoryfor N � 1 and as a �rst step, neglet the quantumorretion Q=N in Eq. (8). It is easy to see that thehomogeneous equations of motion for umulants (9)

and (10) an be obtained from the lassial equation(i.e., from (8) with Q=N ! 0) by linearization aroundz (whih goes by substituting z ! z+Æz, jÆzj � jzj), ifone writes the dynami equations for the variables (Æz)2and jÆzj2. The only di�erene between the linearizationof the lassial equations of motion and equations forquantum umulants (9), (10) lies in the impossibility toobtain the initial onditions (13) for C and B from onlythe initial onditions for the linearized lassial equa-tions of motion (see also the disussion of this problemin [7℄). Hene, we �rst need to know the lassial solu-tion zl(t), �nd the di�erentials dzl and dz�l, and thenuse the substitution�B(t); C(t)�! �jdzj2; (dz)2� :Thus, it has beome apparent that assuming theatual �eld deviations from the oherent state to besmall and treating the small deviation as a �rst-orderorretion is not equivalent to the diret linearizationaround the lassial trajetory. Even in the limit asN !1, we always deal with the e�et of reservoir onthe dynamis of the quantum system via the seond-order umulant B, whih has the form of the quantumdi�usion B(t) = B(t) + (hndi+ 1=2)t; (16)where B is obtained by linearizing around a large mean�eld. In partiular, as follows from Eq. (16), the quan-tum di�usion also exists for a quiet reservoir hndi = 0.We now disuss the validity range of the 1=N -expansion and the role of the quantum di�usion in dif-ferent lassial dynamial regimes. The validity rite-rion of the 1=N -expansion an be represented in twoforms. First, the 1=N -expansion works well, providedthe di�erene between the lassial and quantum solu-tions is small,����z(t)� zl(t)zl(t) ���� ' 1N ���R tQ(t0)dt0���jz(t)j � 1; (17)where zl(t) is the solution of Eq. (8) for N ! 1.To write the seond form of the validity riterion ofthe 1=N -expansion, we follow [6, 7℄ in introduing the�onvergene radius�R = �[Re(Æ�)℄2 + [Im(Æ�)℄2	1=2 :The expansion is then orret over a time interval whenR(t)jz(t)j ' B1=2(t)N1=2jz(t)j � 1: (18)685



K. N. Alekseev, N. V. Alekseeva, Jan Pe°ina ÆÝÒÔ, òîì 117, âûï. 4, 2000As a rule, both onditions (17) and (18) determine thesame time interval for the validity of the 1=N -expan-sion [6, 7℄. (For a physially interesting exeption, theproblem of SHG, see Se. 4.)For dissipative systems with a simple attrator, thelassial �eld intensity jzl(t)j2 as well as the umu-lants B(t), C(t) and the quantum orretion Q(t) areproportional to the fator exp(�t); therefore, as fol-lows from Eqs. (17) and (18), with Eq. (16) taken intoaount, the 1=N -expansion is well-de�ned only in thetime interval of the order of several relaxation times:t� ' �1(see [19℄). Moreover, during this time interval, the ef-fet of quantum di�usion on the system dynamis issmall.A quite di�erent behavior is harateristi of thestable limit yle. Here, a variation near the lassialtrajetory ollapses to zero (Æ�! 0), hene,B(t) ' jÆ�j2 ! 0; C(t) ' (Æ�)2 ! 0:However, jzl(t)j ' 1 for the limit yle and, as a result,the time interval of the validity of the 1=N -expansionis rather large, t� ' N�1:It is important that the di�usion is a major physialmehanism responsible for the di�erene between thelassial and quantum dynamis for a stable limit yle.In the following two setions, we onsider two typialexamples of dissipative optial systems with a simpleattrator and a limit yle.3. NON-CLASSICAL STATES GENERATION INHIGHER-ORDER ANHARMONICOSCILLATORSWe start by de�ning the squeezing and the Fanofator. We de�ne the general �eld quadrature asX� = a exp(�i�) + ay exp(i�);where � is the loal osillator phase. A state is alledsqueezed if there exists a value of � for whih the vari-ane of X� is smaller than the variane for the oherentstate or the vauum [1, 9℄. Minimizing the variane ofX� over �, we obtain the ondition of the so-alled prin-ipal squeezing [1, 9, 10℄ in the formS � 1+2N(hjÆ�j2i�jh(Æ�)2ij) = 2(B�jCj)<1: (19)The determination of the prinipal squeezing S is veryuseful beause it gives the maximum squeezing mea-surable by the homodyne detetion [1, 9℄.

Another important harateristi of non-lassialproperties of light is the Fano fatorF = (hn2i � hni2)=hnithat determines the deviation of the probability distri-bution from the Poisson distribution [1, 9℄. After thesubstitution a! z + Æ� in the expressionshni = Nhayaiand hn2i = N2hayaayai = N2hay2a2i+ hni;and after the Talor expansions to the �rst order of 1=N ,we obtain F = 2B +�z�z C + ..� : (20)We see that in order to determine the time dependeneof the prinipal squeezing S in (19) and the Fano fa-tor (20) for nonlinear osillators, we must �nd the timedependene of z, C, and B in Eqs. (8)�(10) for Hamil-tonian (1). Following the general proedure desribedin previous setion, we �rst neglet the quantum or-retion Q=N in Eq. (8). In this ase, equation (8) hasthe exat solutionz(t) = z0 exp [(�i�� =2)t℄�� exp ��igljz0j2l�l(t)� ;�l(t) � [1� exp(�lt)℄ =l: (21)We �nd the di�erentials dz and dz� of lassial solu-tion (21), and using the substitutions jdzj2 + ~B ! Band (dz)2 ! C, we obtainC(t) = �lz20 jz0j2(l�1)gl�l(t) �ljz0j2lgl�l(t)+i��� exp �(��i2�)t�i2jz0j2lgl�l(t)� ;B(t) = exp(�t) �1=2 + l2jz0j4lg2l �2l (t)�++ (hndi+ 1=2) t; (22)where we took the initial onditions for B and C,Eq. (13), into aount. Inserting (22) in Eq. (19), weobtain in the limits � � gl(N)t� 1 and t� 1 a verysimple time dependene of S,S(t) = 1� �lx2l0 � (=gl)hndi� 2� < 1; (23)where for the sake of simpliity we assume that the ini-tial value z0 is real, x0 = Re z0, and only the termsthat are linear in � and t are taken into aount. Theshort-time approximation � � 1 and the limit of alarge photon number N � 1 are quite realisti for a686



ÆÝÒÔ, òîì 117, âûï. 4, 2000 Quantum-lassial orrespondene : : :nonlinear medium modelled by the anharmoni osilla-tors (for numerial estimates, see [1, hap. 10℄ and [10℄).It should be noted that our formula (23) oinides withthe orresponding formula for S(t) in [10℄ for the Kerrnonlinearity (l = 1) with zero loss ( = 0). In the asewhere  = 0, our formula (23) shows that the rate ofsqueezing is determined by the fator2lx2l0 �lN l � 2lP(2l+1):Sine �l is proportional to the (2l+ 1)-order nonlinearsuseptibility, the fator P(2l+1) has a physial mean-ing of nonlinear polarization. Therefore, the strongeris the nonlinear polarization indued by light in themedium, the more e�etive squeezing of light is pos-sible. For a �nite dissipation  6= 0, the squeezing isdetermined by an interplay between the polarizationof nonlinear medium modelled by the anharmoni os-illator and the thermal �utuations of the reservoir.As follows from (23), there exists a ritial number ofphonons hndi(r) = (l=)P(2l+1)suh that the squeezing is no longer possible forhndi � hndi(r).In the same approximation, we obtain from (20) thefollowing time dependene of the Fano fatorF (t) = 1 + 2hndit: (24)Thus, the statistis is super-Poissonian for any  6= 0and is independent of the degree of nonlinearity l. Thisis in a good agreement with the earliest result of [9℄ fora dissipative Kerr osillator (l = 1), where the impos-sibility of sub-Poissonian statistis and antibunhingwere found from the exat solution.We now disuss the validity ranges of our approah.It is easy to see that in terms of our approah, the timedependene of the number of quanta for l = 1 ishni(t) + 1=2 = N jzj2 +B �� N jz0j2(1� t) + hndit;t� 1; glt� 1; (25)where we have used Eqs. (22) for umulants B and C.It is instrutive to ompare Eq. (25) with the exatsolution for hni(t) for the Kerr nonlinearity [9℄,hni(t) = hn0i exp(�t) + [1� exp(�t)℄hndi: (26)Equations (25) and (26) both desribe the evolutionof an initially oherent state to a �nal haoti statethat is harateristi of the reservoir. It is evidentthat Eqs. (26) and (25) oinide when t � 1 and

hn0i ' N � 1. A more aurate analysis of the va-lidity ondition of the 1=N -expansion should inlude aomparison of the solution of quantum motion equa-tion (8), whih takes into aount the quantum orre-tion Q=N given by (11), with the solution of lassialmotion equation (21). It may be shown after some al-gebra, that if t � 1 and � � 1, the e�et of thequantum orretion Q=N on the dynamis of the meanvalue z is of the order of 1=N and, therefore, our u-mulant expansion is well-de�ned for N � 1. The sameonlusion ould be obtained from another riterion ofvalidity (18).4. QUANTUM-CLASSICALCORRESPONDENCE IN SELF-PULSINGREGIME OF SECOND-HARMONICGENERATIONWe now onsider another example of a quantumoptial system, namely intraavity SHG. The Hamilto-nian desribing two interating quantum modes in theinteration piture has the form [11, 14℄H = 2Xj=1�jbyjbj + iEN1=2(by1 � b1) ++ i�2 (by21 b2 � b21by2); (27)where the boson operators bj (j = 1; 2) desribe thefundamental and seond-harmoni modes, respetively,�j is the avity detuning of mode j, EN1=2 is the lassi-al �eld driving �rst mode (E is of the order of unity),� is a seond-order nonlinear suseptibility. The li-near reservoir and its interation with a seond-ordernonlinear medium are desribed by Hamiltonians (2).Now we an rewrite full Hamiltonian of the problem asH = NH, where H has the same form as (27) and (2)with replaements analogous to (4) taking into aountand with the new oupling onstant de�ned byg = �pN; (28)whih is of the order of unity. Formally, the 1=N -expan-sion proedure developed in Se. 2 annot be applied tothe problem of SHG, however its straightforward gen-eralization to two interating modes gives in the �rstorder of 1=N the following self-onsistent set of equa-tions _z1 = �12 z1 +E + gz�1z2 + 1N gB12; (29)_z2 = �22 z2 � g2z21 � 1N g2C1; (30)687



K. N. Alekseev, N. V. Alekseeva, Jan Pe°ina ÆÝÒÔ, òîì 117, âûï. 4, 2000_B1 = �1(B1 �B(0)) + gB�12z1 ++ gB12z�1+C�1z2+C1z�2 ; (31)_B2 = �2(B2 �B(0))� gB�12z1 � gB12z�1 ; (32)_C1 = �1C1 + 2g(C12z�1 +B1z2); (33)_C2 = �2C2 � 2gC12z1; (34)_C12 = �0:5(1+2)C12+gB12z2�C1z1+C2z�1 ; (35)_B12 = �0:5(1+2)B12+gC12z�2+gz1(B2�B1); (36)wherezj � haji = N1=2hbji; Bj = NhÆ��j Æ�ji+ 0:5;Cj = Nh(Æ�j)2i (j = 1; 2);B12 = NhÆ��1Æ�2i; C12 = NhÆ�1Æ�2i;and B(0) is de�ned in Eq. (14). The initial onditionsfor system (29)�(36) areBj(0) = 1=2; Cj(0) = C12(0) = B12(0) = 0;z2(0) = 0; z1(0) = z0;where z0 is of the order of unity. In this work, we limitourselves by the values of the �eld strength z0 orre-sponding to self-osillations [11℄ and �1 = �2 = 0.It is easy to see that in the limit as N ! 1 andfor g = onst ' 1, we obtain from Eqs. (29) and (30)the orret lassial equations of motion for the saled�eld amplitudes. The solution of equations of motion(31)�(36) for the seond-order umulants has the formX(t) = X(t) + �B(0)t; B(0)t; 0; 0; 0; 0� ;X(t)� [B1(t); B2(t); C1(t); C2(t); B12(t); C12(t)℄ ; (37)where the vetor X desribes the part of X that anbe obtained by linearization around the lassial tra-jetory. Variations near a stable limit yle rapidlyapproah zero and, therefore, X(t) ! 0. As a re-sult, we have only a di�usive growth of umulants Bj(j = 1; 2) as Bj(t) = 0:5jt; (38)where we onsidered the ase of a quiet reservoir hndi.This result indiates that the e�et of reservoir ze-ro-point energy on the dynamis of the nonlinear sys-tem is prinipal physial mehanism responsible for the

di�erene between the lassial and quantum dynam-is in the semilassial limit. A time sale t� for aorret desription of the quantized SHG dynamis interms of lassial eletrodynamis an be found usingriterion (18). Taking into aount that jz(t)j ' 1, weobtain t� ' 2N�1.We note that the quantum orretions to the lassi-al equations of motion (29) and (30) do not inlude theumulants B1;2. Therefore, in the �rst order of 1=N ,there is no di�erene between the evolution of quantummean values and the lassial limit yle dynamis. Inother words, the quantum orretionQ! 0, and there-fore, riterion (17) of the 1=N -expansion validity doesnot work. In this respet, the quantized SHG is a some-what singular problem. In other quantum optial sys-tems, for instane, for a nonlinear osillator with l � 1,both validity riteria (18) and (17) typially give thesame result.Over a deade ago, Savage addressed the samequantum-lassial orrespondene problem for self-os-illations in SHG numerially [14℄. He alulated theQ distribution funtion in the Gaussian approximationentered at a deterministi trajetory orresponding toa limit yle. He worked in a large �eld and smallnonlinearity limits, �=1;2 ! 0, whih orrespond tothe lassial limit [14℄. It is easy to see that the on-dition �=1;2 ! 0 is onsistent with our onditionN � 1, if one additionally onsiders the natural ondi-tion of a not very strong dissipation in Eqs. (29)�(36),1;2=g < 1 together with g ' 1 (Eq. (28)). In otherwords, Savage's small parameter �= orresponds toour large parameter N as �= ! N�1=2. To estab-lish the di�erene between the lassial and quantumdynamis, the equations of motion for low-order umu-lants were obtained in [14℄ and solved numerially forpartiular values of the parameters [21℄. Based on theresults of numerial simulations, Savage onluded thatit is a quantum di�usion that is mostly responsible forthe di�erene between the lassial and quantum dy-namis in the semilassial limit. Moreover, his numeri-al estimate for a harateristi time for the lassial de-sription sales as (=�)2, whih is in a good agreementwith our analytial result t� = 2�1N . In summary,our analytial results for the quantum-lassial orre-spondene at self-pulsing in SHG are onsistent withthe previous numerial investigation of same problemin [14℄.
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ÆÝÒÔ, òîì 117, âûï. 4, 2000 Quantum-lassial orrespondene : : :5. CONCLUSIONWe developed the 1=N -expansion method to on-sider the nonlinear dynamis and nonlassial proper-ties of light in dissipative optial systems in the limitof a large number of photons. The method was appliedto the investigation of squeezing in higher-order dissi-pative nonlinear osillators. We would like to note thatour method an also be diretly applied to an impor-tant ase of the generation of nonlassial states in amedium involving ompeting nonlinearities [22℄.We found a time sale of validity of the 1=N -ex-pansion for a lassial desription of the dynamis ofnonlinear optial systems with a simple attrator andwith a limit yle. For systems with a simple attrator,this time sale is of the order of unity, and for thelimit yle, is proportional to large N . Qualitatively,this result an be understood as follows. For timeof the order of unity, the trajetory spirals around astable stationary point with a small amplitude, andtherefore, by virtue of the unertainty priniple, theontribution of quantum orretions to the lassialequations of motion beomes very important. Unlikethe previous ase, the osillations orresponding to thelimit yle are often lose to harmoni and, thus, theirquantum and lassial desriptions an oinide for asu�iently long period of time. The basi di�erenebetween the lassial and quantum dynamis in thelatter ase originates from the in�uene of reservoirzero-point �utuations, whih in our notations are ofthe order of 1=N . This result is in a good agreementwith the result of earlier numerial simulations ofself-osillations in the quantized seond-harmonigeneration [14℄. Finally, it should be noted that our�ndings are of a rather general nature and an beapplied to the investigations of self-osillations in otheroptial systems, for example, in those involing optialbistability [23�25℄.We would like to thank Antoine Heidmann, EvgenyBulgakov and Zdenek Hradil for useful disussions. Thework was partially supported by Czeh Grant Ageny(grant � 202/96/0421) and Czeh Ministry of Edua-tion (grant �VS96028).REFERENCES1. J. Pe°ina, Quantum Statistis of Linear and Nonli-near Optial Phenomena, Kluwer Aademi Publish-ers, Dordreht (1991).2. C. Fabre, Phys. Rep. 219, 215 (1992).
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