ОСНОВНОЕ СОСТОЯНИЕ ФЕРМИ-СИСТЕМ С СИЛЬНЫМ БЛИЖНИМ ПОРЯДКОМ

Ю. Б. Кудасов*

Всероссийский федеральный ядерный центр — ВНИИЭФ 607190, Саров, Россия

Поступила в редакцию 21 мая 1999 г.

Разработан новый вариационный метод расчета энергии основного состояния системы фермионов с сильным ближним порядком. Пробная волновая функция гутцвиллеровского типа кроме внутриузельных корреляций включает в себя в явном виде корреляции по ближайшим соседям решетки. При вычислении полной энергии системы фермионов использован метод псевдоансамбля Кикучи. Выполнены расчеты для парамагнитной и антиферромагнитной фаз модели Хаббарда при половинном заполнении. Показано, что для дву- и трехмерных решеток ближний порядок в парамагнитной фазе сильно влияет на энергию основного состояния, а в антиферромагнитной фазе он малосущественный.

PACS: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.28.+d

1. ВВЕДЕНИЕ

Сильный ближний порядок является одной из наиболее важных проблем в теории сильнокоррелированных фермионов. Главную трудность здесь представляет построение основного состояния с сильным ближним порядком и определение его энергии. Основные аспекты проблемы ближнего порядка можно исследовать на примере базовой модели сильнокоррелированных фермионов модели Хаббарда [1–3]. Простейший вариант этой модели, когда имеется одна невырожденная зона и фермионы со спином 1/2 способны перескакивать только на ближайший узел решетки, может быть сформулирован в виде следующего гамильтониана:

$$H = t \sum_{\langle ij \rangle, \sigma} \left(a_{i\sigma}^+ a_{j\sigma} + \text{h.c.} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow}, \quad (1)$$

где $a_{i\sigma}^+(a_{i\sigma})$ — оператор рождения (уничтожения) фермиона со спином $\sigma = \uparrow, \downarrow$ на *i*-ом узле решетки. Угловые скобки обозначают суммирование только по ближайшим соседям, $n_{i\sigma} = a_{i\sigma}^+ a_{i\sigma}$.

Известны несколько точных решений гамильтониана (1): однородная одномерная (1D) цепочка [4] и некоторые специальные случаи (см., например, [5,6]). В пределе бесконечномерной решетки

 $(D = \infty)$ возникают существенные упрощения проблемы и решение методом Гутцвиллера для основного состояния системы становится практически точным [2,7]. С другой стороны, для решеток промежуточных размерностей, особенно 2D и 3D, которые имеют важное практическое значение, точные решения отсутствуют. Поэтому большое число работ посвящено их аналитическому и численному исследованию [8-13]. В частности, пробная волновая функция Гутцвиллера, точная при $D = \infty$, использовалась в численном вариационном методе Монте-Карло [10, 11] и в аналитической процедуре разложения по степеням $1/D + 1/D^2$ динамической теории среднего поля [8, 12, 13]. В последнем случае приходилось использовать типичное для методов теории возмущений предположение о том, что структура волновой функции на решетках конечной размерности не сильно отличается от структуры в пределе бесконечномерной решетки, т. е. фактически эти решения справедливы только для слабого ближнего порядка. По этой причине они не могут быть применены во многих интересных с практической точки зрения случаях, где ближний порядок заведомо сильный: кондо-системы, плоскости CuO₂ в высокотемпературных сверхпроводниках и т. д. [8]. Таким образом, основная трудность при исследовании решеток конечной размерности заключается как раз в необходимости учета сильных пространственных

^{*}E-mail: kudasov@ntc.vniief.ru

корреляций малого радиуса. В рамках феноменологической теории почти антиферромагнитной ферми-жидкости было показано [14], что во многих сильнокоррелированных соединениях ближний порядок оказывает заметное влияние на статические и динамические характеристики вещества. Поэтому необходимо развитие микроскопической теории систем с сильным ближним порядком.

В данной работе развивается вариационный микроскопический метод вычисления энергии основного состояния систем фермионов с сильным ближним порядком, выполнены расчеты основного состояния гамильтониана Хаббарда (1) на различных решетках в случае полузаполненной исходной зоны в парамагнитной (ПМ) и антиферромагнитной (АФМ) фазах.

2. ПРОБНАЯ ВОЛНОВАЯ ФУНКЦИЯ

Пробную волновую функцию Гутцвиллера можно представить в виде [15]

$$|\psi\rangle = g_0^X |\varphi_0\rangle, \qquad (2)$$

где $\hat{X} = \sum_{i} n_{i\uparrow} n_{i\downarrow}, g_0$ — вещественный параметр, лежащий в пределах [0,1] для $U > 0, |\varphi_0\rangle$ — исходная *N*-частичная волновая функция некоррелированных электронов, которую, например, можно построить на блоховских функциях

$$\prod_{\mathbf{k}<\mathbf{k}_{F\uparrow}} a^+_{\mathbf{k}\uparrow} \prod_{\mathbf{k}<\mathbf{k}_{F\downarrow}} a^+_{\mathbf{k}\downarrow} |0\rangle, \qquad (3)$$

где \mathbf{k} — волновой вектор фермиона, $\mathbf{k}_{F\sigma}$ — волновой вектор Ферми для фермионов со спином σ . Предполагается, что число частиц системы большое, но конечное.

Смысл пробной волновой функции (2) состоит в уменьшении амплитуды конфигураций фермионов в зависимости от числа двукратно занятых узлов в конфигурации [2]. Следует заметить, что *N*-частичная пробная функция (2) остается антисимметричной. Более того, поскольку оператор в правой части выражения (2) трансляционно инвариантен, эта пробная волновая функция сохраняет трансляционную симметрию исходной волновой функции. Чтобы учесть в пробной волновой функции пространственные корреляции малого радиуса, обобщим волновую функцию (2) как [16]

$$|\psi\rangle = \prod_{\lambda} g_{\lambda}^{\hat{P}_{\lambda}} |\varphi_0\rangle, \qquad (4)$$

11 ЖЭТФ, вып. 3

Таблица 1.

Оператор	Конфигурация		Кратность вырождения	
	Узел і	Узел ј		
\hat{Y}_1			1	
\hat{Y}_2	↑↓	↑↓	1	
\hat{Y}_3	↑↓		2	
\hat{Y}_4	\uparrow		2	
\hat{Y}_5	\downarrow		2	
\hat{Y}_6	\uparrow	↑	1	
\hat{Y}_7	1	↓	2	
\hat{Y}_8	↑↓	↑	2	
\hat{Y}_9	↑↓	↓	2	
\hat{Y}_{10}	\downarrow	\downarrow	1	

где в произведении кроме сомножителя из выражения (2) может входить набор проекционных операторов \hat{P}_{λ} на все возможные конфигурации состояния узла решетки и пары соседних узлов. Вещественные параметры g_i лежат в диапазоне $[0, \infty]$, что позволяет как уменьшать, так и увеличивать амплитуды различных конфигураций пары узлов.

Построим пробную волновую функцию для ПМ фазы полузаполненной зоны. Имеются четыре проекционных оператора, выделяющих определенное состояние узлов решетки:

$$\hat{X}_{1} = \sum_{i} (1 - n_{i\uparrow})(1 - n_{i\downarrow}),$$

$$\hat{X}_{2} = \sum_{i} n_{i\uparrow}(1 - n_{i\downarrow}),$$

$$\hat{X}_{3} = \sum_{i} (1 - n_{i\uparrow})n_{i\downarrow},$$

$$\hat{X}_{4} = \sum_{i} n_{i\uparrow}n_{i\downarrow},$$
(5)

и десять проекционных операторов на состояния пар ближайших узлов, например

$$\hat{Y}_{1} = \sum_{\langle ij\rangle} (1 - n_{i\uparrow})(1 - n_{i\downarrow})(1 - n_{j\uparrow})(1 - n_{j\downarrow}),$$

$$\hat{Y}_{2} = \sum_{\langle ij\rangle} n_{i\uparrow} n_{i\downarrow} n_{j\uparrow} n_{j\downarrow}$$
(6)

и т. д. (см. табл. 1).

625

Далее ограничим наше рассмотрение решетками, у которых полное число пар ближайших соседей равно zL/2, где z — число ближайших соседей узла, L — полное число узлов решетки. Определим нормированные собственные значения операторов (5) и (6) как

$$\begin{aligned} x_{\lambda} |\Phi\rangle &= L^{-1} \hat{X}_{\lambda} |\Phi\rangle, \\ y_{\lambda} |\Phi\rangle &= (zL/2)^{-1} \hat{Y}_{\lambda} |\Phi\rangle. \end{aligned}$$
(7)

Тогда собственные значения оказываются связанными условиями нормировки [17]

$$\sum_{\lambda} x_{\lambda} = 1, \quad \sum_{\lambda} \beta_{\lambda} y_{\lambda} = 1, \tag{8}$$

где β_{λ} — кратность вырождения, и условиями самосогласованности [17]

$$y_{1} + y_{3} + y_{4} + y_{5} = x_{1},$$

$$y_{2} + y_{3} + y_{8} + y_{9} = x_{4},$$

$$y_{4} + y_{6} + y_{7} + y_{8} = x_{2},$$

$$y_{5} + y_{7} + y_{9} + y_{10} = x_{3}.$$
(9)

Поскольку концентрации фермионов каждого спина считаются фиксированными, как и в приближении Гутцвиллера имеется только один независимый параметр x_{λ} . Семь параметров y_{λ} являются независимыми. В случае половинного заполнения зоны в ПМ фазе при нулевом полном спине системы появляются дополнительные условия:

$$y_1 = y_2, \quad y_6 = y_{10}, \quad y_4 = y_5 = y_8 = y_9,$$
 (10)

после введения которых число независимых параметров y_{λ} уменьшилось до трех. Примем $x = x_1 = x_4, y_3, y_4$ и y_7 в качестве независимых параметров. Далее, учитывая дополнительное вырождение, возникающее в результате условий (10), получаем окончательный вид пробной волновой функции ПМ фазы с половинным заполнением

$$|\psi\rangle = g_0^{\hat{X}} g_3^{\beta_3 \hat{Y}_3} g_4^{\beta_4 \hat{Y}_4} g_7^{\beta_7 \hat{Y}_7} |\varphi_0\rangle = \hat{F} |\varphi_0\rangle.$$
(11)

Отметим основные свойства пробной волновой функции (11). Оператор \hat{F} является полиномом от $n_{i\sigma}$, поэтому пробная волновая функция антисимметрична по отношению к перестановкам. Кроме того, оператор \hat{F} инвариантен по отношению к операциям, преобразующим решетку саму в себя — трансляциям, вращениям и отражениям. Поэтому все эти симметрии переносятся с исходной волновой функции на пробную. И, наконец, эта пробная волновая функция позволяет управлять структурой ближнего порядка.

3. ОСНОВНОЕ СОСТОЯНИЕ ПАРАМАГНИТНОЙ ФАЗЫ

Прежде всего необходимо вычислить норму пробной волновой функции (11). Следуя работам [15, 18], представим ее как

$$\langle \psi | \psi \rangle = \sum_{\{x, y_3, y_4, y_7\}} W_{\{x, y_3, y_4, y_7\}} g_0^{2Lx} g_3^{2zLy_3} g_4^{8zLy_4} g_7^{2zLy_7} = = \sum_{\{x, y_3, y_4, y_7\}} R_{\{x, y_3, y_4, y_7\}}.$$
(12)

Здесь опущен постоянный множитель, не существенный для дальнейших вычислений. Суммирование выполняется по всем наборам $\{x, y_3, y_4, y_7\}$. Одному и тому же набору независимых переменных может соответствовать некоторое число конфигураций. Величина $W_{\{x,y_3,y_4,y_7\}}$ — число конфигураций, соответствующих фиксированному набору $\{x, y_3, y_4, y_7\}$, или вес этого набора. Для его вычисления будем использовать метод псевдоансамбля Кикучи [17, 19, 20]. Заметим, что этот метод является точным на решетках Бете [17]. Для решеток, имеющих замкнутые пути, он дает лишь приближенное решение. Согласно гипотезе Кикучи, вес набора может быть выражен через произведение:

$$W = \Gamma Q. \tag{13}$$

Здесь для простоты опущены нижние индексы. Величина

$$Q = \frac{(zL/2)!}{\prod_{\lambda} \left[(zy_{\lambda}L/2)! \right]^{\beta_{\lambda}}}$$
(14)

является числом размещений десяти элементов, соответствующих конфигурациям пар Y_{λ} , по zL/2 связям, а

$$\Gamma = \frac{L! \prod_{\lambda} (x_{\lambda} z L)!}{(zL)! \prod_{\lambda} (x_{\lambda} L)!}$$
(15)

— доля правильных размещений в псевдоансамбле. В выражениях (14) и (15) зависимые параметры x_{λ} и y_{λ} должны быть выражены через независимые как

$$x_{2} = x_{3} = 1/2 - x,$$

$$y_{1} = y_{2} = x - y_{3} - 2y_{4},$$

$$y_{6} = y_{10} = 1/2 - x - y_{7} - 2y_{4}.$$
(16)

В термодинамическом пределе $L \to \infty$, как обычно [2, 17–20], мы можем ограничиться суммированием только тех членов ряда, которые близки к максимальному, т. е. для которых выполняется условие $\{x, y_3, y_4, y_7\} \to \{x, y_3, y_4, y_7\}_{max}$. Оставшиеся

члены ряда оказываются экспоненциально малыми. Поскольку функция R положительна, удобно искать максимум ее логарифма вместо самой функции. Преобразуем все факториалы, входящие в R, при помощи асимптотической формулы Стирлинга. Затем логарифмируем полученное выражение и удерживаем только главные по L члены. Можно показать, что такая процедура равносильна замене $(zL/2)! \rightarrow (L!)^{z/2}$, использованной в работах [17, 19, 20]. После прямых вычислений получаем

$$L^{-1} \ln W = 2(z-1) \left[x \ln x + (1/2 - x) \ln(1/2 - x) \right] - z \left(y_2 \ln y_2 + y_3 \ln y_3 + 4y_4 \ln y_4 + y_6 \ln y_6 + y_7 \ln y_7 \right),$$
(17)

где y_2 и y_6 выражаются через (16). Область определения функции $L^{-1} \ln R$ ограничена условиями (8) и (9). При ненулевых конечных параметрах g_i ее градиент на границах направлен внутрь этой области, поэтому глобальный максимум функции $L^{-1} \ln R$ является ее внутренним максимумом. В этом случае необходимыми условиями максимума будут уравнения $\partial(\ln R)/\partial \eta_{\lambda} = 0$, где $\eta_{\lambda} = x, y_3, y_4, y_7$. Используя их, мы можем выразить параметры g_i через x, y_3, y_4, y_7 :

$$g_{0} = \left(\frac{1/2 - x}{x}\right)^{z-1} \left(\frac{x - y_{3} - 2y_{4}}{1/2 - x - y_{7} - 2y_{4}}\right)^{z/2},$$

$$g_{3}^{2} = \frac{y_{3}}{x - y_{3} - 2y_{4}},$$

$$g_{4}^{4} = \frac{4y_{4}^{2}}{(1/2 - x - y_{7} - 2y_{4})(x - y_{3} - 2y_{4})},$$

$$g_{7}^{2} = \frac{y_{7}}{1/2 - x - y_{7} - 2y_{4}}.$$
(18)

Следует обратить внимание на то, что функция $L^{-1} \ln R$ является строго выпуклой вверх по переменным y_3 , y_4 , y_7 при фиксированном значении x. Это означает, что в действительности мы ищем максимум функции не четырех переменных, а одной неявно заданной переменной.

Для вычисления энергии основного состояния гамильтониана (1) нам необходимо вычислить матрицу плотности первого порядка на пробной функции, полученной в разд. 2:

$$\rho_1 = L^{-1} \frac{\langle \psi | \sum_{\langle ij \rangle, \sigma} (a^+_{i\sigma} a_{j\sigma} + \text{h.c.}) | \psi \rangle}{\langle \psi | \psi \rangle}.$$
(19)

Здесь возникает существенное усложнение по сравнению с методом Гутцвиллера, так как при перескоке фермиона с узла i на узел j изменяется не только конфигурация пары i-j, но и смежных пар узлов

Рис.1. Фрагмент решетки z = 4. При перескоке фермиона с узла i на узел j конфигурации смежных пар также изменяются

i-k и j-l решетки (рис. 1). Зафиксируем некоторую конфигурацию фрагмента решетки, состоящего из связи i-j и ее смежных связей (рис. 1) и вычислим функцию W оставшейся решетки, используя выражения (13)–(15). Тогда доля конфигураций, содержащих заданный фрагмент, может быть представлена в виде

$$\frac{W'}{W} = y_{(ij)} \prod_{k} \left(\frac{y_{(ki)}}{x_{(i)}}\right) \prod_{l} \left(\frac{y_{(jl)}}{x_{(j)}}\right), \qquad (20)$$

где под $y_{(\alpha\beta)}$ подразумевается значение y_{λ} , соответствующее конфигурации связи $\alpha\beta$. Теперь вклад в матрицу плотности от перехода из конфигурации 1 в конфигурацию 2 примет форму

$$\frac{\prod_{\alpha} g_{\alpha}}{\prod_{\beta} g_{\beta}} \frac{W'(1)}{W},$$
(21)

где первый сомножитель является отношением амплитуды конфигурации 1 к амплитуде конфигурации 2, т. е. g_{α} соответствует тем связям конфигурации 2, которые отсутствовали в конфигурации 1 (и наоборот для g_{β}). Если конфигурации 1 и 2 отличаются на несколько одинаковых связей, то параметры g_{α} и g_{β} записываются в (21) в соответствующих степенях. В целом процедура аналогична методу Гутцвиллера [2], где в выражение (21) входил только один параметр g_0 .

При помощи выражений (20) и (21) выполним прямое суммирование всех конфигураций и вычислим матрицу плотности (19):

$$\rho_1 = 4 \left(2y_4 (a_1 a_2)^{z-1} + \frac{y_3 g_7}{g_0 g_3} a_1^{2(z-1)} + \frac{y_7 g_0 g_3}{g_7} a_2^{2(z-1)} \right),$$
(22)

где

$$a_{1} = \frac{y_{2}g_{4} + y_{3}g_{4}/g_{3} + y_{4}(g_{7} + 1)/g_{4}}{x},$$

$$a_{2} = \frac{y_{6}g_{4} + y_{7}g_{4}/g_{7} + y_{4}(g_{3} + 1)/g_{4}}{1/2 - x}.$$

Здесь и ниже мы используем y_2 и y_6 вместо выражений (16) для сокращения записи. Так же как и в

 11^{*}

Рис.2. Энергии основного состояния фермионов в ПМ фазе: на одномерной цепочке (a): 1 — решение Гутцвиллера [2], 2 — данная работа, 3 — точное решение [4]; а также на плоской квадратной (б) и простой кубической (б) решетках: 1 — решение Гутцвиллера, 2 — метод ВМК [10]; 3 — данная работа. На вставке увеличенный фрагмент графика вблизи U_C

методе Гутцвиллера, в матрице плотности мы имеем три члена, первый из которых описывает движение фермиона в хаббардовской подзоне, а второй и третий — переходы между подзонами. Исключим параметры g_i из формулы (22) при помощи (18) и после прямых преобразований получим

$$\rho_{1} = 8 \left(y_{4} + \sqrt{y_{3}y_{7}} \right) \times \left[\frac{y_{4}}{x(1/2 - x)} \left(\sqrt{y_{2}} + \sqrt{y_{3}} + \sqrt{y_{6}} + \sqrt{y_{7}} \right)^{2} \right]^{z-1}.$$
(23)

Окончательно полную энергию системы фермионов удобно представить в гутцвиллеровской форме [2]:

$$E = \frac{1}{L} \frac{\langle \psi | H | \psi \rangle}{\langle \psi | \psi \rangle} = q \varepsilon_0 + xU, \qquad (24)$$

где $q = \rho_1/\rho_1^0$, ρ_1^0 — значение матрицы плотности некоррелированных электронов, т.е. при U = 0, а ε_0 — средняя энергия некоррелированных электронов. Теперь определим энергию основного состояния минимизацией функции (24) по четырем переменным: x, y_3, y_4, y_7 . Поиск глобального минимума осуществлялся численно (усовершенствованным симплекс-методом Нелдера—Мида) и не представлял трудности, потому что выражение (24) — это гладкая дифференцируемая функция без особенностей внутри области определения.

На рис. 2*а* представлены результаты расчетов энергии основного состояния ПМ фазы для линейной однородной цепочки (z = 2) с законом дисперсии $\varepsilon_{\mathbf{k}} = -2\cos k_x$, на рис. 26 — для плоской квадратной решетки (z = 4), $\varepsilon_{\mathbf{k}} = -2(\cos k_x + \cos k_y)$, и на рис. 26 — для простой кубической решетки (z = 6), $\varepsilon_{\mathbf{k}} = -2(\cos k_x + \cos k_y + \cos k_z)$. На рис. 3 показана детальная структура основного состояния для плоской квадратной решетки. На рис. 4 приведены симметричная и антисимметричная корреляционные функции пары ближайших узлов для различных решеток:

$$G_s = \langle n_{\uparrow} n_{\uparrow} \rangle' + \langle n_{\downarrow} n_{\downarrow} \rangle' = 2(y_2 + 2y_4 + y_6),$$

$$G_a = \langle n_{\uparrow} n_{\downarrow} \rangle' + \langle n_{\downarrow} n_{\uparrow} \rangle' = 2(y_2 + 2y_4 + y_7).$$
(25)

Штрих в выражениях (25) обозначает усреднение по ближайшим соседям.

Таблица 2.

Рис. 3. Детальная структура основного состояния для простой квадратной решетки

Рис. 4. Симметричная G_s (штриховые линии) и антисимметричная G_a (сплошные линии) корреляционные функции (25) для 1D-цепочки (1), плоской квадратной (2) и простой кубической (3) решеток

Для исследования предела $D = \infty$ в ПМ фазе мы выполнили расчеты энергии основного состояния для гиперкубических решеток z = 50, 100, 200,400, 1000. При увеличении размерности решетки энергия основного состояния стремилась к решению Гутцвиллера, точному при $D = \infty$. Для z=1000 оба решения совпадали с точностью 0.1% при U, лежащем в диапазоне $[0, U_C/2]$ и с точностью 1% в диапазоне $[U_C/2, 0.8U_C]$, где $U_C = 8\varepsilon_0$ — критическое значение U в теории Гутцвиллера.

4. АНТИФЕРРОМАГНИТНАЯ ФАЗА

Чтобы пробная волновая функция для AΦM фазы отвечала необходимым трансляционным свойствам, следует выбрать исходную волновую функ-

	Конфи		
Оператор	Узел	Узел	Кратность
	подрешетки	подрешетки	вырож-
	A	В	дения
\hat{Y}_1			1
\hat{Y}_2	↑↓	↑↓	1
\hat{Y}_3	↑↓		2
\hat{Y}_{4A}	¢		1
\hat{Y}_{4B}		↑	1
\hat{Y}_{5A}	\rightarrow		1
\hat{Y}_{5B}		\downarrow	1
\hat{Y}_6	↑	\uparrow	1
\hat{Y}_{7A}	Ť	\downarrow	1
\hat{Y}_{7B}	\rightarrow	↑	1
\hat{Y}_{8A}	≁→	↑	1
\hat{Y}_{8B}	Ť	↑↓	1
\hat{Y}_{9A}	$\uparrow\downarrow$	\downarrow	1
\hat{Y}_{9B}	\downarrow	$\uparrow\downarrow$	1
\hat{Y}_{10}	↓	\downarrow	1

цию так, чтобы она обладала этими свойствами. Поэтому, как обычно [11,21], выберем волновую функцию $|\varphi_0^{AFM}\rangle$ АФМ металла (в теории Хартри—Фока) [11,21] в качестве исходной волновой функции. Тогда энергетический спектр исходной волновой функции и магнитный момент подрешеток примут вид [21]

$$\varepsilon_{\mathbf{k}}^{AFM} = \frac{\varepsilon_{\mathbf{k}}}{\sqrt{1 + (\delta/\varepsilon_{\mathbf{k}})^2}},$$

$$m = \int \frac{\delta d\mathbf{k}}{\sqrt{\varepsilon_{\mathbf{k}}^2 + \delta^2}},$$
(26)

где $\varepsilon_{\mathbf{k}}$ — энергетический спектр некоррелированных фермионов ПМ фазы, δ — параметр АФМ порядка, интегрирование выполняется по уменьшенной зоне Бриллюэна [21], $m = (\langle n_{\uparrow} \rangle_A + \langle n_{\downarrow} \rangle_B - \langle n_{\downarrow} \rangle_A - \langle n_{\uparrow} \rangle_B)/2$. В последнем выражении усреднение проводится по узлам подрешеток A и B.

В АФМ фазе частично снимается вырождение операторов \hat{Y}_{λ} и их число возрастает (табл. 2). Для

собственных значений операторов \hat{X}_{λ} справедливы следующие выражения:

$$\begin{aligned} x'_2 &= x_2^A = x_3^B = 1/2 + m/2 - x, \\ x'_3 &= x_3^A = x_2^B = 1/2 - m/2 - x. \end{aligned} \tag{27}$$

Тогда условия нормировки (8) остаются справедливыми. При половинном заполнении зоны имеем дополнительные условия, аналогичные (10):

$$y_1 = y_2, \quad y_6 = y_{10}, y_4 = y_{4A} = y_{5B} = y_{8B} = y_{9A}, \quad (28) y_5 = y_{4B} = y_{5A} = y_{8A} = y_{9B}.$$

Условия самосогласованности для AФM фазы запишем как

$$x_{1} = y_{1} + y_{3} + y_{4} + y_{5},$$

$$x_{4} = y_{2} + y_{3} + y_{4} + y_{5},$$

$$x'_{2} = 2y_{4} + y_{5} + y_{6},$$

$$x'_{3} = 2y_{5} + y_{5} + y_{6}.$$

(29)

Используем выражения (28) и (29) для выделения независимых параметров в АФМ фазе. Их оказывается шесть. Примем в качестве независимых параметров следующие: $x = x_1 = x_4$, y_3 , y_4 , y_5 , y_6 и mи выразим через них зависимые параметры:

$$y_{2} = x - y_{3} - y_{4} - y_{5},$$

$$y_{7} = \frac{1}{2} + \frac{1}{2}m - x - y_{6} - 2y_{4},$$

$$y_{11} = \frac{1}{2} - \frac{1}{2}m - x - y_{6} - 2y_{5}.$$
(30)

Теперь пробную волновую функцию AФM фазы представим в виде

$$|\psi^{AFM}\rangle = g_0^{\hat{X}} g_3^{\beta_3 \hat{Y}_3} g_4^{2\beta_4 \hat{Y}_4} g_5^{2\beta_5 \hat{Y}_5} g_7^{\beta_6 \hat{Y}_6} g_m^{\hat{M}} |\varphi_0^{AFM}\rangle,$$
(31)

где

$$\hat{M} = \frac{1}{2} \left[\sum_{i}^{A} \left(n_{i\uparrow} - n_{i\downarrow} \right) + \sum_{i}^{B} \left(n_{i\downarrow} - n_{i\uparrow} \right) \right]$$

- оператор, соответствующий параметру *m*.

Вычисление энергии основного состояния выполняется аналогично расчетам в ПМ фазе. При вычислении функции $L^{-1} \ln R$ получаем следующее выражение для веса набора независимых переменных:

$$L^{-1} \ln W = (z - 1) \left[2x \ln x + x'_2 \ln x'_2 + x'_3 \ln x'_3 \right] - \frac{z}{2} \left(2y_2 \ln y_2 + 2y_3 \ln y_3 + 4y_4 \ln y_4 + 4y_5 \ln y_5 + 2y_6 \ln y_6 + y_7 \ln y_7 + y_{11} \ln y_{11} \right).$$
(32)

Здесь и далее x'_2 , x'_3 , y_2 , y_7 , y_{11} используются как сокращенная запись выражений (27) и (30). Дифференцирование функции $L^{-1} \ln R$ по независимым параметрам приводит к условиям

$$g_{0} = \left(\frac{\sqrt{x_{2}'x_{3}'}}{x}\right)^{z-1} \left(\frac{y_{2}}{\sqrt{y_{7}y_{11}}}\right)^{z/2},$$

$$g_{3}^{2} = \frac{y_{3}}{y_{2}}, \quad g_{4}^{2} = \frac{y_{4}}{y_{7}y_{2}},$$

$$g_{5}^{2} = \frac{y_{5}}{y_{2}y_{11}}, \quad g_{6}^{2} = \frac{y_{6}}{y_{7}y_{11}},$$

$$g_{m}^{2} = \left(\frac{x_{3}'}{x_{2}'}\right)^{(z-1)/2} \left(\frac{y_{7}}{y_{11}}\right)^{z/4}.$$
(33)

Вычисляем матрицу плотности (19) для пробной волновой АФМ функции $|\psi^{AFM}\rangle$. Исключаем параметры g_i при помощи подстановки (33) и выражаем матрицу плотности только через независимые параметры. Тогда ρ_1 можно представить в виде суммы двух слагаемых: $\rho_1 = \rho_{band} + \rho_{inter}$, где первый член отвечает за движение фермиона в подзонах Хаббарда, а второй — за переходы между подзонами. После прямых вычислений, аналогичных вычислениям в ПМ фазе, получаем

$$\rho_{band} = 4 \frac{L_1 L_2 \sqrt{y_4 y_5}}{x^{z-1}} \left[\left(\frac{y_7}{y_{11}} \right)^{z/4} \frac{1}{(x_2')^{z-1} g_m^2} + \left(\frac{y_{11}}{y_7} \right)^{z/4} \frac{g_m^2}{(x_3')^{z-1}} \right],$$
(34)

$$\begin{split} \rho_{inter} =& 2\frac{\sqrt{y_3}}{x^{z-1}} \times \\ & \times \left[\frac{y_7^{(2-z)/4} y_{11}^{z/4} L_1^2 g_m^2 + y_{11}^{(2-z)/4} y_7^{z/4} L_2^2 g_m^{-2}}{(x_2' x_3')^{(z-1)/2}} + \right. \\ & + \frac{y_7^{(z+2)/4} L_1^2}{y_{11}^{z/4} g_m^2} \left(\frac{x_3'}{(x_2')^3} \right)^{(z-1)/2} + \\ & + \frac{y_{11}^{(z+2)/4} L_2^2 g_m^2}{y_7^{z/4}} \left(\frac{x_2'}{(x_3')^3} \right)^{(z-1)/2} \right], \end{split}$$

где введены обозначения

$$L_1 = \left(\sqrt{y_2 y_4} + \sqrt{y_3 y_4} + \sqrt{y_5 y_6} + \sqrt{y_4 y_7}\right)^{z-1},$$

$$L_2 = \left(\sqrt{y_2 y_5} + \sqrt{y_3 y_5} + \sqrt{y_4 y_6} + \sqrt{y_5 y_{11}}\right)^{z-1}$$

Полную энергию фермионов в АФМ фазе можно также привести к форме Гутцвиллера:

$$E = \frac{1}{L} \frac{\langle \psi^{AFM} | H | \psi^{AFM} \rangle}{\langle \psi^{AFM} | \psi^{AFM} \rangle} = q \varepsilon_0^{AFM}(m) + xU. \quad (35)$$

Рис. 5. Энергия основного состояния фермионов в АФМ фазе на одномерной цепочке: 1 — решение Гутцвиллера [2]; 2 — данная работа; 3 — точное решение [4]

Средняя энергия некоррелированного фермиона $\varepsilon_0^{AFM}(m)$ вычисляется из энергетического спектра (26) и является функцией т. Эта зависимость неявно задается выражениями (26). По этой причине значение матрицы плотности для некоррелированных фермионов, $\rho_1^0(m)$, которое входит в фактор сужения зоны, $q = \rho_1 / \rho_1^0(m)$, также зависит от *m*, и его следует определять как значение ρ_1 при U = 0 и при некотором фиксированном *m*. Энергия основного состояния вычисляется минимизацией полной энергии (35) по переменным x, y_3, y_4, y_5, y_6 и m. Функция (35), несмотря на некоторую громоздкость, оказывается гладкой дифференцируемой функцией без особенностей внутри области определения, заданной выражениями (27)-(30). На рис. 5 приведены результаты расчета энергии основного состояния однородной цепочки. В случаях плоской и простой кубической решеток энергия основного состояния практически совпадает с результатами численного счета по методу ВМК.

5. ОБСУЖДЕНИЕ И ВЫВОДЫ

Полезно сравнить результаты расчетов энергии основного состояния, выполненных в настоящей статье, с результатами метода ВМК [10, 11] (см. рис. 2 и 5). В методе ВМК вычисления выполняются на базе пробной функции Гутцвиллера (2), т.е. нелокальные корреляции практически игнорируются. В данной работе найдена энергия основного состояния для пробной функции, включающей в явном виде корреляции ближайших соседей на решетке. Корреляции большего радиуса в нашей модели подчиняются суперпозиционной гипотезе [17]. Таким образом,

разница энергий основного состояния, полученных этими двумя методами, обязана короткодействующим корреляциям между фермионами в основном состоянии. Для одномерной цепочки (рис. 2a) разница в энергиях основного состояния незначительна, и результаты метода ВМК на рисунке не показаны. В случаях же плоской квадратной и простой кубической решеток в ПМ фазе (рис. 26, в) видно, что вблизи U_C энергия основного состояния пробной волновой функции (11) существенно ниже (в два-три раза) полученной методом ВМК, т. е. в ПМ фазе ближний порядок сильно понижает энергию основного состояния. Большое отличие наших результатов для ПМ фазы от разложения $1/D + 1/D^2$ [12, 13] также указывает на то, что ближние корреляции для 2D-и даже для 3D-решеток достаточно сильные, т. е. методы теории возмущений здесь вряд ли применимы. В АФМ фазе влияние ближнего порядка мало — энергии основного состояния по методу ВМК и по методу, представленному выше, практически совпадают. Расхождение находится в пределах 1%. Можно сказать, что АФМ порядок препятствует возникновению ближнего порядка.

Нами получена энергия основного состояния системы фермионов в аналитической форме, а численный расчет используется только при ее минимизации. Поэтому в предложенном нами методе нет неопределенности, которая присуща кластерным методам, например, методам типа Монте-Карло при переходе к пределу большого числа частиц. Следует также заметить, что метод псевдоансамбля Кикучи позволяет исследовать корреляции не только пары узлов, но и более высокого порядка: тройные и т. д. [17, 20]. При этом можно включать в рассмотрение замкнутые пути на решетке [17, 20] и постепенно приближаться к реальной решетке.

На рис. 4 видно формирование обменно-корреляционной дырки при увеличении U. При U = 0 антисимметричные по спину корреляции фермионов отсутствуют ($G_a = 0.5$), но имеются корреляции фермионов одного спина ($G_s < 0.5$), т.е. имеется обменная дырка для невзаимодействующих фермионов. Следует подчеркнуть, что в данном методе обменная дырка при U = 0 возникает естественным путем при минимизации энергии относительно параметров y_{λ} . При увеличении размерности решетки обменно-корреляционная дырка вокруг электрона постепенно исчезает и наше решение стремится к решению Гутцвиллера. Заметим, что корреляционные функции (25) не однозначно описывают основное состояние ферми-системы: для этого необходим полный набор независимых параметров (см. рис. 3).

В пределе $|t|/U \ll 1$ функции G_s и G_a стремятся к некоторому постоянному значению. Такое поведение связано с тем, что при больших U модель Хаббарда с половинным заполнением совпадает с моделью Гейзенберга для спина 1/2, которая содержит только один параметр $J \ (= 4t^2/U)$. Если перед вычислением корреляционных функций привести модель Гейзенберга к безразмерному виду $(H = \sum_{\langle ij \rangle} \mathbf{S}_i \mathbf{S}_j)$, то становится очевидным, что G_s и G_a должны быть постоянными при $|t|/U \ll 1$. Отметим также, что в отличие от известного решения Хаббард-III АФМ корреляции фермионов в этом пределе не исчезают даже при отсутствии дальнего порядка, что согласуется с результатами исследования основного состояния модели Гейзенберга [22].

Детальный анализ спектра элементарных возбуждений и термодинамических свойств выходит за рамки данной работы. Тем не менее, основываясь на выводах работы [23], можно предположить, что для ПМ фазы эффективная масса электрона будет перенормирована фактором q^{-1} , в АФМ фазе квазичастичный спектр будет перенормироваться за счет этого фактора и одновременно деформироваться при увеличении момента подрешеток m в результате изменения исходного спектра (26).

В заключение кратко обсудим характер перехода металл–диэлектрик при T = 0 К. В ПМ фазе энергия основного состояния как функция U не имеет каких бы то ни было особенностей. По мере увеличения U, по-видимому, происходит непрерывное сужение квазичастичной зоны. Аналогичные результаты были получены в динамической теории среднего поля [8, 12, 13] и методом ВМК [10, 11]. С другой стороны, этот сценарий расходится с решениями типа Хаббард-III, где энергия основного состояния имеет особую точку. К сожалению, довольно трудно проследить изменение состояния ПМ фазы экспериментально, поскольку при больших U эти изменения часто замаскированы переходами первого рода типа ПМ металл — АФМ диэлектрик, как, например, это происходит в твердом растворе $(V_{1-x}Ti_x)_2O_3$ при T = 0 К. Из теоремы Либа об основном состоянии гамильтониана (1) с половинным заполнением следует, что переход первого рода при T = 0 K вообще невозможен [24]. Иначе говоря, такие переходы не являются свойством модели Хаббарда. В последнее время появились примеры сильнокоррелированных соединений *d*-металлов, в которых квазичастичная зона в ПМ фазе чрезвычайно узкая (например, LiV₂O₄ [25]). Это свидетельствует в пользу предложенного выше сценария. В реальных веществах при конечных температурах переход металл—диэлектрик в ПМ фазе может происходить в результате потери когерентности в квазичастичной зоне. Так, время жизни квазичастицы должно быть $\tau \gg \hbar/q\varepsilon_0$. Видно, что по мере сужения зоны это условие становится все более жестким.

Энергия $A\Phi M$ фазы в расчетах, выполненных в данной работе, оказалась ниже энергии ПМ фазы во всех случаях. Однако в узкой области U < t разность энергий двух фаз мала и численные результаты не вполне надежны. Поэтому в дальнейшем желательно выполнить аналитический анализ энергии основного состояния ПМ и $A\Phi M$ фаз вблизи точки U = 0.

Автор признателен Дж. Бруксу (J. Brooks) и В. Левису (W. Lewis) за внимание к работе и неоценимую поддержку. Автор благодарен В. Н. Жаркову за ценные дискуссии. Автор признателен П. Фульде (P. Fulde) за гостеприимство во время пребывания в Институте комплексных систем Макса Планка (Дрезден).

Работа выполнена в рамках проекта № 829 Международного научно-технического центра.

ЛИТЕРАТУРА

- J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963).
- 2. M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).
- 3. J. Kanamory, Prog. Theor. Phys. 30, 275 (1963).
- 4. H. Lieb and F. Wu, Phys. Rev. Lett. 20, 1445 (1968).
- E. B. Kolomeinski and J. P. Straley, Rev. Mod. Phys. 68, 175 (1996).
- U. Brandt and A. Giesekus, Phys. Rev. Lett. 68, 2648 (1992).
- W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
- A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- 9. G. Senatore and N. H. March, Rev. Mod. Phys. 66, 445 (1994).
- H. Yokoyama and H. Shiba, J. Phys. Soc. Jap. 56, 1490 (1987).
- H. Yokoyama and H. Shiba, J. Phys. Soc. Jap. 56, 3582 (1987).
- 12. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1989).

- 13. F. Gebhard, Phys. Rev. B 41, 9452 (1990).
- 14. D. Pines and B. Stojkovic, Phys. Rev. B 55, 8576 (1997).
- 15. D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).
- 16. Yu. B. Kudasov, Phys. Lett. A 245, 153 (1998).
- 17. Дж. Займан, *Модели беспорядка*, Мир, Москва (1982).
- T. Ogawa, K. Kanda, and T. Matsubara, Prog. Theor. Phys. 53, 614 (1975).

- 19. R. Kikuchi, Phys. Rev. 81, 988 (1951).
- 20. R. Kikuchi and S. G. Brush, J. Chem. Phys. 47, 195 (1967).
- 21. P. J. des Cloizeaux, J. de Phys. 20, 606 (1959).
- 22. E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
- 23. W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
- 24. A. Auerbach, Interacting Electrons and Quantum Magnetism, New York, Springer-Verlag (1994).
- 25. S. Kondo, D. C. Johnston, C. A. Swenson et al., Phys. Rev. Lett. 78, 3729 (1997).