СПЕКТРОСКОПИЯ ЭЛЕКТРООТРАЖЕНИЯ, ЭЛЕКТРОННАЯ ЗОННАЯ СТРУКТУРА И МЕХАНИЗМ ВИДИМОЙ ФОТОЛЮМИНЕСЦЕНЦИИ АНИЗОТРОПНО ТРАВЛЕННОГО КРЕМНИЯ

Е. Ф. Венгер, Т. Я. Горбач, Л. А. Матвеева*, С. В. Свечников

Институт физики полупроводников Национальной академии наук Украины 252028, Киев, Украина

Поступила в редакцию 13 апреля 1999 г.

Приведены результаты исследования электроотражения в спектральной области 1.1-4.4 эВ, электронной оже-спектроскопии и электронографии фотолюминесцирующей системы Si-SiO₂, полученной анизотропным химическим травлением поверхности Si(100). Результаты объяснены на основе четырехслойной модели зонной структуры и схемы энергетических переходов для системы с квантовой ямой на поверхности кремния, поверхностными электронными состояниями на границе раздела и градиентом потенциала зон в переходном слое. Установлено, что светоизлучающий кремний остается непрямозонным полупроводником, а видимая фотолюминесценция обусловлена прямой рекомбинацией возбужденных светом электронов и дырок в квантовой яме в центре зоны Бриллюэна с участием зоны глубоких локализованных состояний, связанных с наличием кислорода на поверхности кремния.

PACS: 71; 71.25.Rk; 78.66.-w

1. ВВЕДЕНИЕ

Со времени обнаружения [1] в кремнии видимой фотолюминесценции при комнатной температуре этому неожиданному для непрямозонного полупроводника явлению уделялось достаточно большое внимание. Неугасающий фундаментальный и практический интерес к излучению кремния [2–5] обусловлен его специфическими оптическими и электронными свойствами, позволяющими регистрировать также электролюминесценцию при комнатной температуре [6, 7]. Это расширяет возможности применения одного из основных материалов электронной техники не только в микроэлектронике, но и в оптоэлектронике.

Обычно в кремнии прямая излучательная рекомбинация электронов в боковом минимуме зоны проводимости и дырки в вершине валентной зоны невозможна без участия фононов или нарушения правил отбора, поэтому эффективность свечения в нем очень низкая. Для увеличения эффективности фотолюминесценции электроны и дырки должны быть локализованы в одной и той же точке зоны Бриллюэна (k-пространства). Однако, как показали результаты многочисленных исследований, интенсивная фотолюминесценция при комнатной температуре наблюдалась после соответствующих обработок поверхности кремния: анодного электролитического травления [1], химического [8], фотохимического [9] или анизотропного химического [10] травления. Излучают

^{*}E-mail: matveeva@class.semicond.kiev.ua

при комнатной температуре при лазерном возбуждении кремниевые наносферы, осажденные на кварцевые или германиевые подложки и покрытые слоем диоксида кремния [11], а также сверхрешетки Si–SiO₂ [12].

Однозначно установлено, что независимо от метода получения светоизлучающего кремния энергия излучения фотонов превышает энергию непрямого перехода 1.12 эВ и не совпадает с энергиями известных прямых оптических переходов для кремния в критических точках зоны Бриллюэна. Поэтому вполне естественно, что большинство работ по исследованию светоизлучающего кремния направлено на определение природы и механизма излучения света в нем. Как правило, они устанавливались по спектральной зависимости интенсивности фотолюминесценции и результатам влияния на нее различных факторов: размера нанокристаллитов [13], термического отжига [14], ультрафиолетового [15], лазерного [16], электронного [17] или гамма [18] облучения, химического травления [19], электрического поля [20] и внешней среды [21]. Но несмотря на значительные успехи в исследовании свойств светоизлучающего кремния, физический механизм появления в нем видимой фотолюминесценции до сих пор остается дискуссионным.

Хотя наиболее признанной является модель экситонной аннигиляции на поверхностных состояниях квантово-размерных структур, общепринятого механизма видимой фотолюминесценции в кремнии пока еще не существует. Однозначно также не установлено, остается ли светоизлучающий кремний непрямозонным полупроводником, на что указывают результаты фотоиндуцированного поглощения в пористом кремнии [22], или, согласно теоретическим расчетам [23–26], он становится квазипрямозонным с увеличенной шириной запрещенной зоны и более слабыми правилами отбора из-за эффекта квантово-размерного ограничения в наноструктурах. Последнее существенно для увеличения эффективности свечения.

Понять природу эффективной видимой фотолюминесценции в непрямозонном полупроводнике должны помочь исследования электронной зонной структуры светоизлучающего кремния методом модуляционной спектроскопии. Высокая чувствительность этого метода к деталям зонной структуры хорошо известна [27]. Преимущество модуляционных спектров по сравнению с классическими заключается в том, что они позволяют выявить тонкую структуру, скрытую обычно бесструктурным фоном. При этом наиболее чувствительным оказался метод электроотражения, так как его сигнал формируется третьей производной оптических констант, а значит и отражения, по энергии. Сигнал существует только в критических точках зоны Бриллюэна в области прямых переходов, при удалении от них зануляется и определяется как оптическими, так и электронными свойствами тестируемой поверхности полупроводника [28]. Исследования светоизлучающего кремния этим методом до настоящего времени не проводились, и в литературе отсутствуют экспериментальные сведения по электроотражению и изменению энергетической структуры кремния при переходе его в светоизлучающее состояние.

В настоящей работе решается задача изучения энергетического спектра светоизлучающего кремния, полученного анизотропным травлением, методом электроотражения и сравнение его со спектром неизлучающего объемного кремния. При этом также рассматривались результаты электроннографических исследований и электронной оже-спектроскопии. На основе полученных данных сделана попытка интерпретации природы фотолюминесценции, отличающаяся от традиционно существующих.

2. ЭКСПЕРИМЕНТ

Слои фотолюминесцирующего кремния толщиной до 0.3 мкм формировались анизотропным химическим травлением зеркально-гладкой поверхности n-Si(100) в смеси HF : HNO₃ = 20 : 1 в течение 20–30 мин. Фотолюминесценция регистрировалась при комнатной температуре на стандартной установке, для возбуждения использовалась линия 514.5 нм аргонового лазера с плотностью мощности не более 0.1 Вт/см² [10].

Сущность метода электроотражения состоит в регистрации модуляции отражательной способности образца, возникающей при приложении к нему внешнего модулирующего электрического поля. Измеряемой величиной является относительная модуляция коэффициента отражения $\Delta R/R$. Спектры электроотражения измерялись в электролитической ячейке с 0.1-нормальным водным раствором KCl при комнатной температуре в спектральной области 1.1–4.4 эВ, которая включала область излучения фотонов в кремнии, прямые переходы в центре зоны Бриллюэна и на краю зоны в направлении волнового вектора (100), где расположен абсолютный минимум зоны проводимости кремния X_1 .

Измерения проведены на установке, созданной на основе монохроматора ДМР-4 с автоматической регистрацией спектра на экране дисплея в линейной шкале по энергии с разрешающей способностью 0.003 эВ. Чувствительность установки для измерения $\Delta R/R$ достигала 10^{-6} , точность измерения интенсивности сигнала составляла 2%. Сигнал электроотражения регистрировался при модулирующих напряжениях 0.2–0.7 эВ для обеспечения слабополевого режима измерения.

Анализ спектров электроотражения в конкретной области k-пространства зоны Бриллюэна для конкретного энергетического перехода позволял определить энергию перехода E_g , феноменологический лоренцевский параметр уширения Г, учитывающий диссипативные процессы при электронном переходе, и энергетическое время релаксации возбужденных светом носителей заряда, τ . Расчет проводился трехточечным методом [29] по энергетическому положению доминирующих пиков в спектре электроотражения с учетом их интенсивностей.

Морфология поверхности кремниевых пластин и ее модификация в результате анизотропного травления исследовались на растровом электронном микроскопе JEM-100 CX. Элементный состав поверхности определялся из оже-спектров для низкоэнергетических (LVV) и высокоэнергетических (KLL) переходов, полученных в микроанализаторе JEOL JAMP-10S с энергией электронов 10 кэВ при модулирующем напряжении 3 В. Для анализа химического состава светоизлучающего кремния по глубине использовалось *in situ* послойное травление поверхности ионами Ar⁺ с энергией 3 кэВ, плотностью тока 1–2 мкA/мм² и диаметром пятна 100 мкм. Скорость травления составляла 3 нм/мин. Совершенство кристаллической структуры на поверхности пластины оценивалось по электронограммам, полученным с помощью электронографа ЭМР-100 при ускоряющем напряжении 75 кэВ. При необходимости удаление поверхностного слоя кремния проводилось в водном растворе фтористоводородной кислоты HF : H₂O = 1 : 1.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

В процессе анизотропного травления поверхность кремниевой пластины тускнела, приобретала микрорельефную морфологию и покрывалась радужной окраской. При лазерном возбуждении такие образцы кремния излучали свет при комнатной температуре в спектральной области 600–800 нм с максимумом при 720 нм, полуширина полосы фотолюминесценции составляла 0.25 эВ. Спектр имел обычный вид, как и в большинстве опубликованных работ на пористом кремнии. Особенностью свечения являлись малая полуширина полосы излучения в отличие от известных для кремния (0.32–0.58 эВ) [2–4, 18–21] и то, что оно не деградировало при длительном хранении образцов (более года). Подробные результаты исследования фотолюминесценции, комбинационного рассеяния света и морфологии поверхности анизотропно травленного кремния приведены в [10]. После обработки светоизлучающего кремния в водном растворе фтористоводородной кислоты радужная окраска исчезала, поверхность становилась матовой, микрорельефная морфология поверхности сохранялась, но, как и в объемном исходном кремнии, фотолюминесценцию зарегистрировать не удавалось.

Анализ электронной дифракционной картины, полученной с помощью электронографа, указывал на различие в кристаллической структуре исходной и анизотропно травленной поверхностей. На электронограмме исходного кремния наблюдались четкие точечные рефлексы. Электронограммы от анизотропно травленной поверхности содержали кольца, свидетельствующие о наличии поликристаллической фазы. После удаления светоизлучающего слоя электронографом фиксировались линии Кикучи, свидетельствующие о высоком совершенстве кристаллической структуры микрорельефной поверхности кремния. Согласно [10, 30], при анизотропном травлении пластин Si(100) на поверхности образуется слой SiO₂ разновидности β -кристобаллита кристаллической модификации. В настоящей работе по данным электронограмм показано, что слой имел поликристаллическую структуру с тетрагональной решеткой.

Детальный анализ оже-спектров показал, что в исходной пластине кислород отсутствовал, и подтвердил образование оксидной фазы на поверхности кремния в результате его анизотропного травления. По интенсивности высокоэнергетических KLL-пиков оже-спектров для кислорода (500 эВ) и кремния (1590 эВ) были определены отношение O : Si и изменение его по мере приближения к границе раздела SiO₂-Si. Сначала это отношение не изменялось, а на расстоянии 100 нм от поверхности кремния наблюдался градиент состава с плавным переходом от SiO₂ к Si через фазы SiO_x (недоокисленные субоксидные состояния Si₂O₃, SiO, Si₂O). Для низкоэнергетического кремниевого LVV-перехода в оже-спектрах в переходном слое фиксировались большие сдвиги оже-электронов (-9 эВ), что характерно для связи Si в SiO₂.

Результаты измерения электроотражения исходной и фотолюминесцирующей поверхностей кремния представлены на рис. 1. На исходной поверхности сигнал электроотражения зарегистрирован в спектральных областях 3.2–3.55 эВ (кривая *1* на рис. 1*a*) и 3.9–4.25 эВ (кривая *1* на рис. 1*b*). Согласно электронной зонной структуре кремния [31], спектр электроотражения на рис. 1*a* соответствует прямым переходам Γ'_{25} – Γ'_{15} и Γ'_{25} – Γ'_{2} , которые происходят между валентной зоной и зоной проводимости в центре зоны Бриллюэна. В кремнии при k = 0 орбитально вырожденная зона Γ_{15} расположена ниже невырожденной зоны проводимости Γ'_{2} , поэтому последовательность появления в спектре структур E_0 и E'_0 обратна обычно наблюдаемой для других полупроводников (см. рис. 2). Низкоэнергетическая структура E'_0 соответствует переходам Γ'_{25} – Γ_{15} . Вследствие

Рис. 1. Спектры электроотражения исходной (1) и фотолюминесцирующей (2) поверхности кремния в областях E₀⁻- и E₀-переходов (точка Γ, рис. a) и E₂-переходов (точка X, рис. б)

уширения сигналы от E'_0 - и E_0 - переходов перекрываются и обычно не разрешаются при комнатной температуре. В спектральной области 3.9–4.25 эВ (рис. 16, кривая 1) сигнал электроотражения обусловлен переходами X_4 - X_1 на краю зоны (E_2 -переход). В соответствии с правилами отбора непрямой переход Γ'_{25} - X_1 с энергией 1.12 эВ в спектре электроотражения не проявился. Спектры электроотражения фотолюминесцирующей поверхности кремния представлены на рис. 1 (кривые 2) и 3. В сравнении с исходной поверхностью они показали:

1) инверсию полярности сигнала электроотражения в области E'_0, E_0 -переходов и отсутствие ее для E_2 -перехода;

2) уменьшение феноменологического параметра уширения, что позволило разрешить переходы E'_0 и E_0 ;

 наличие сигнала в спектральной области, в которой наблюдалась фотолюминесценция (рис. 3);

 появление периодических знакопеременных осцилляций в коротковолновой области каждого перехода;

5) дублетный характер доминирующих пиков с расстоянием между максимумами
40 мэВ;

6) удаление оксидного слоя приводило к исчезновению эффекта электроотражения в области существования фотолюминесценции, а также коротковолновых осцилляций и расщепления пиков, восстановлению полярности исходного сигнала.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При интерпретации полученных экспериментальных результатов мы исходили из того, что измерения отражения фотолюминесцирующих образцов кремния без модулирующего поля не показали наличия интерференционных эффектов, а спектроскопия электроотражения дает информацию о наличии прямых переходов в зонной структуре полупроводника и выявляет энергетическое распределение электронов в ней. Следовательно, отличия в поведении спектров электроотражения при переходе от объемного кремния со стандартно обработанной поверхностью к светоизлучающему кремнию обусловлены изменением электронных свойств и структуры энергетических зон

Рис. 2. Электронная зонная структура кремния

Рис. 3. Спектр электроотражения анизотропно травленного кремния в области существования фотолюминесценции

поверхности кремния в результате анизотропного травления. Особенности спектров электроотражения, появление фотолюминесценции в анизотропно травленном кремнии можно объяснить на основе четырехслойной модели зонной диаграммы, которая не противоречит также экспериментальным данным по электронной оже-спектроскопии. Модель предполагает существование в анизотропно травленном кремнии межфазных поверхностных электронных состояний, расположенных глубоко в запрещенной зоне кремния, переходного слоя SiO_x на границе Si–SiO₂ и поверхностного размерного квантования электронов зоны проводимости. Схематическое изображение предложенной зонной диаграммы приведено на рис. 4a.

Как показали результаты исследования электроотражения, на исходной поверхности подложки кремния, а также после удаления оксидного слоя с микрорельефной поверхности наблюдались истощающие изгибы зон, т. е. поверхность обеднена электронами, и зоны изогнуты вверх. В процессе анизотропного травления атомы кремния принудительно удаляются с поверхности подложки, на их месте адсорбируются атомы кислорода, как показали результаты исследования оже-спектров. При этом происходит упорядоченный рост кристаллического SiO₂, что приводит к изменению концентрации и спектра поверхностных электронных состояний в приповерхностном слое. На поверхности кремния под слоем SiO₂ (рис. 4*a*) потенциал — обогащающий, зоны изогнулись вниз. Поверхность обогатилась электронами из-за появления межфазных поверхностных электронных состояний на границе раздела и встроенного положительного заряда в окисле. Это привело к смене фазы сигнала электроотражения. Поскольку смена поверхностного потенциала от обедняющего к обогащающему наблюдалась лишь для Г-переходов и отсутствовала для X-переходов (фаза сигнала электроотражения сохранялась), можно утверждать, что межфазные поверхностные электронные состояния расположены в k-пространстве не в области минимума зоны проводимости кремния, а в центре зоны Бриллюэна.

Согласно правилам отбора эффект электроотражения наблюдается при условии [27]

$$\nabla k \left[E_c(k) - E_v(k) \right] = 0, \tag{1}$$

где E_c и E_v — энергии электрона соответственно в зоне проводимости и валентной зоне. По-видимому, условие (1) выполняется также для электронного перехода между основной зоной и зоной поверхностных электронных состояний с глубиной залегания E_{ss} :

$$\nabla k \left[E_c(k) - E_{ss}(k) \right] = 0. \tag{2}$$

С учетом (2) появление сигнала электроотражения в анизотропно травленном кремнии в спектральной области, представленной на рис. 3, можно объяснить прямыми переходами E_{ss} - Γ_{15} в центре зоны Бриллюэна аналогично переходам Γ'_{25} - Γ_{15} , для которых спектр электроотражения представлен на рис. 1*a*, кривая 2.

Дублетный характер пиков электроотражения в светоизлучающем кремнии объясняется эффектом поверхностного размерного квантования энергии электронов в обогащенном приповерхностном слое кремния. Как можно видеть из зонной диаграммы на рис. 4*a*, между слоем SiO_x и кремнием образовалась квантовая яма, т. е. латеральное движение электронов свободно, а перпендикулярно границе раздела система заквантована. Наличие двумерных электронов в зоне проводимости приводит к тому, что кроме переходов электронов между основными зонами имеют место также переходы между валентной зоной или зоной поверхностных электронных состояний и первым квантованным уровнем e_1 в двумерной квантовой яме (рис. 4*б*). Наличие двух переходов с энергиями E_q и $E_q + e_1$ приводит к расщеплению пиков в спектре электроотражения.

Экспериментально дискретный энергетический спектр, связанный с размерным квантованием в фотолюминесцирующем кремнии, впервые был зарегистрирован [32] в спектрах дифференциального пропускания и был объяснен наличием квантованных

энергетических уровней. Энергия оптических переходов в квантово-размерной системе для первого уровня квантования определяется выражением

$$E = E_g + \frac{\hbar^2 \pi^2}{2\mu L^2},$$
 (3)

где E_g — энергия межзонного перехода, μ — межзонная эффективная масса, L — ширина квантовой ямы. По экспериментально определенному из спектров электроотражения значению $e_1 = 0.04$ эВ в предположении, что эффективная масса дырки $m_p = 0.49m_0$ в точке Γ'_{25} (m_0 — масса свободного электрона), а эффективная масса электрона $m_e = 0.156m_0$ в точке Γ'_2 [31], и с учетом выражения (3) получено значение ширины квантовой ямы L = 4 нм.

При наличии квантовой ямы и слоя SiO_x наблюдаемые в спектрах электроотражения знакопеременные осцилляции выше края оптического поглощения можно объяснить проявлением эффекта Франца—Келдыша на прямых переходах в полупроводниковой структуре со-встроенным электрическим полем. Осцилляции Франца—Келдыша в однородном электрическом поле обычно наблюдаются при условии [33]

$$n\pi = \Phi + \frac{4}{3} \left(\frac{E_n - E_g}{\hbar \theta} \right)^{3/2}, \tag{4}$$

где n и E_n — соответственно порядковый номер экстремума осцилляции и его энергетическое положение, Φ — фазовый фактор, $\hbar\theta$ — электрооптическая энергия. Для энергетических переходов E_0 ($E_g = 3.42$ эВ) и E_2 ($E_g = 4.2$ эВ) экспериментальные зависимости (4) приведены на рис. 5a, а для перехода с участием поверхностных электронных состояний ($E_g = 1.6$ эВ) — на рис. 56. Определенные по наклонам зависимостей (4), представленных на рис. 5, значения $\hbar\theta$ для переходов E_0 , E_2 и E_{ss} составили соответственно 41, 27 и 58 мэВ. Электрооптическая энергия определяется полевым уширением спектра и следующим образом зависит от межзонной эффективной массы носителей заряда и электрического поля [28]:

$$(\hbar\theta)^3 = e^2 \hbar^2 F_e^2 / \mu, \tag{5}$$

где е — заряд электрона, F_s — поверхностное электрическое поле. По значению $\hbar\theta$ = = 41 мэВ и определенному по данным m_e и m_p значению μ = 0.119 m_0 для перехода Γ'_{25} - Γ'_2 с использованием выражения (5) была рассчитана величина встроенного электрического поля F_s = 1.5 · 10⁵ В/см. С учетом выражения (5) и $\hbar\theta$ = 27 мэВ для перехода E_2 определено значение межзонной эффективной массы μ = 0.432 m_0 . При продольной эффективной массе электронов m_e = 0.98 m_0 в точке X_1 [31] величина эффективной массы дырок в точке X_4 оказалась равной m_p = 0.824 m_0 .

Теоретически эффект Франца—Келдыша с участием локализованных состояний был рассмотрен Виноградовым [34], а экспериментально наблюдался нами впервые. Для энергетического перехода с участием минизоны по значению $\hbar\theta = 58$ мэВ при $F_s = 1.5 \cdot 10^5$ В/см из выражения (5) было определено значение межзонной эффективной массы для данного перехода: $\mu = 0.416m_0$. Большое количество осцилляций в спектрах электроотражения и выполнение условия (4) свидетельствуют об однородности встроенного электрического поля, что обусловлено переменной шириной запрещенной зоны слоя SiO_x. При толщине слоя d = 100 нм закрепление уровня Ферми на поверхности кремния у границы раздела, $E_{pin} = eF_s d = 1.5$ эВ, близко к энергии залегания минизоны поверхностных электронных состояний (1.6 эВ).

Электрооптический эффект Франца—Келдыша во встроенном электрическом поле наблюдался также в спектрах фотоотражения [35–37]. Для структур GaAlAs–GaAs с переменной шириной запрещенной зоны [35] и структур изолятор– n^+n -полупроводник [36] осцилляции наблюдались при $F_s = 3 \cdot 10^5$ В/см. В структурах CdTe/CdMnTe с одиночными квантовыми ямами встроенное поле достигало величины 7.5 · 10⁴ В/см при ширине квантовой ямы 5–15 нм [37].

Толщина слоя обогащения $l = 2kT/eF_s$ при комнатной температуре (kT = 25 мэВ) составила 3.3 нм для $F_s = 1.5 \cdot 10^5$ В/см, что близко к расчетному значению ширины квантовой ямы L = 4 нм, полученному из расшепления пиков в спектре электроотражения. Сравнимые по величине значения L и l подтверждают наличие квантовой ямы на поверхности кремния в соответствии с предложенной моделью зонной диаграммы фотолюминесцирующей структуры Si-SiO₂.

Данная модель позволила объяснить появление эффекта электроотражения в области существования фотолюминесценции, инверсию сигнала, наличие периодических осцилляций и расщепление пиков в спектрах электроотражения. Схема энергетических переходов в центре зоны Бриллюэна, ответственных за спектры электроотражения и фотолюминесценции в анизотропно травленном кремнии, представлена на рис. 46. В электроотражении принимают участие все указанные на схеме переходы, а фотолюминесценция обусловлена только переходами с участием уровней E_{ss} . При этом фотолюминесцирующий кремний остается непрямозонным полупроводником, так как энергии прямых переходов в особых точках Г и X по данным электроотражения практически не изменились в анизотропно травленном кремнии по сравнению с исходным. Наблюдалось лишь небольшое изменение ширины запрещенной зоны, вызванное поверхностным квантованием (40 мэВ) и возникновением внутренних механических напряжений сжатия. Оценка их величины по данным спектроскопии комбинационного рассеяния

ЖЭТФ, 1999, 116, вып. 5(11)

света, взятым из [10], составила 5 · 10⁸ H/м², что приводит к изменению величины E_g на 50 мэВ.

Таким образом, в анизотропно травленном кремнии не наблюдалось перемещения абсолютного минимума зоны проводимости из точки X_1 в точку Γ и не происходило сильного возрастания непрямой ширины запрещенной зоны вследствие квантово-размерного ограничения. Поэтому появление фотолюминесценции в нем не вызвано квантово-размерным увеличением ширины запрещенной зоны, переходами между хвостами плотности состояний у краев разрешенных зон или экситонной аннигиляцией на поверхностных состояниях квантово-размерных структур.

Сравнение спектральных зависимостей фотолюминесценции и электроотражения показало, что носители генерируются при возбуждении перехода с участием зоны поверхностных электронных состояний, расположенной в точке k = 0. Его энергия превышает энергию E_g непрямого перехода. Переходы с излучательной рекомбинацией электронов и дырок осуществляются в одной и той же точке k-пространства зоны Бриллюэна, для чего не требуется нарушения правила отбора или участия фононов, что значительно повышает квантовую эффективность.

Поверхностная излучательная рекомбинация возбужденных лазером электронов и дырок происходит в пространстве, ограниченном квантовой ямой, где вероятность нахождения безызлучательного центра мала. Действительно, параметр лоренцевского уширения Γ при переходе от исходного кремния к светоизлучающему уменьшался от 132 до 80 мэВ для E_0 -перехода, а для E_{ss} -перехода, ответственного за появление фотолюминесценции, $\Gamma = 40$ мэВ.

Как известно, величина Г является диссипативной частью собственной энергии электрона, возбужденного светом в зону проводимости. Она определяется рассеянием энергии электрона при оптическом переходе. Наличие квантовой ямы на фотолюминесцирующей поверхности кремния уменьшает параметр Г и увеличивает энергетическое время релаксации $\tau = \hbar/\Gamma$. Его величина возрастала соответственно от $5 \cdot 10^{-15}$ до $8 \cdot 10^{-15}$ с, а для E_{ss} -перехода $\tau = 1.6 \cdot 10^{-14}$ с. Увеличение τ приводит к возрастанию длины свободного пробега пары электрон-дырка и соответствующему возрастанию их подвижности. Заметим, что увеличение времени релаксации электронов по энергии наблюдалось также [32] в фотолюминесцирующем кремнии с квантово-размерным эффектом в сравнении с исходным образцом.

Увеличение интенсивности фотолюминесценции вызвано также следующими факторами: пассивацией кислородом оборванных связей на излучающей поверхности (уменьшается количество центров безызлучательной рекомбинации); снижением скорости безызлучательной поверхностной рекомбинации во встроенном электрическом поле и увеличением поглощения возбуждающего света развитой микрорельефной поверхностью анизотропно травленного кремния. Высокую стабильность фотолюминесценции во времени можно объяснить пассивацией фотолюминесцирующей поверхности толстым оксидным слоем. Об увеличении интенсивности и стабильности фотолюминесценции в окисленном пористом кремнии по сравнению с исходным сообщалось также в [38].

5. ВЫВОДЫ

На основе сравнения экспериментальных результатов исследования электроотражения исходной и анизотропно травленной фотолюминесцирующей поверхности кремния предложена четырехслойная модель зонной структуры Si–SiO₂, определены ее параметры и рассмотрен механизм видимой фотолюминесценции, отличающийся от традиционных. Полученные результаты позволяют утверждать следующее.

1. Фотолюминесцирующий анизотропно травленный кремний остается непрямозонным полупроводником. Возникновение в нем при комнатной температуре поверхностной фотолюминесценции вызвано появлением минизоны глубоких уровней поверхностных электронных состояний в запрещенной зоне анизотропно травленного кремния, созданных адсорбированными атомами кислорода. Прямая излучательная рекомбинация электронов и дырок происходит в квантовой яме на границе раздела Si-SiO₂ при энергетическом переходе в центре зоны Бриллюэна между зоной проводимости и минизоной поверхностных электронных состояний.

2. Возрастанию квантовой эффективности способствуют увеличение поглощения возбуждающего излучения развитой поверхностью границы раздела, перераспределение центров излучательной и безызлучательной рекомбинаций на поверхности кремния после анизотропного травления. Уменьшение центров безызлучательной рекомбинации в области зарождения электронно-дырочных пар обусловлено высоким совершенством границы раздела Si-SiO₂.

3. Пассивация фотолюминесцирующей границы раздела толстым оксидным слоем делает структуру Si-SiO₂, полученную анизотропным травлением, очень стабильной, инертной к окружающей среде. Стабильность фотолюминесценции в ней не уступает полученной в [38] для пористого кремния после специальной обработки. Простота технологии изготовления фотолюминесцирующего слоя при высокой эффективности и стабильности фотолюминесценции требует дальнейших исследований в направлении получения электролюминесценции в анизотропно травленном кремнии.

Литература

- 1. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
- М. С. Бреслер, И. Н. Ясиевич, ЖТФ 27, 871 (1993).
- 3. P. M. Fauchet, L. Tsybeskov, G. Peng et al., IEEE J. Spec. Topics in Quantum Electron. 1, 126 (1995).
- 4. R. T. Collins, P. M. Fauchet, M. A. Tischler et al., Physics Today (American Institute of Physics) 1, 24 (1997).
- 5. В. Я. Дегода, В. М. Огенко, Г. В. Весна, С. Н. Науменко, ЖПС 65, 247 (1998).
- 6. С. В. Белов, Письма в ЖТФ 18(24), 16 (1992).
- 7. Л. В. Беляков, Д. Н. Горячев, Д. И. Ковалев и др., ФТП 29, 1288 (1995).
- 8. R. W. Fathaner, T. George, A. Kgendzov et al., Appl. Phys. Lett. 60, 995 (1992).
- 9. F. M. Qureshi, I. C. Barnard, and R. E. Palmer, in *Book of Abstract EMRS-1998 Spring Meeting*, France, Strasbourg (1998), p. B-22.
- 10. T. Ya. Gorbach, G. Yu. Rudko, P. S. Smertenko et al., Appl. Phys. A 58, 183 (1994).
- 11. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, Phys. Rev. B 48, 4883 (1993).
- 12. D. G. Lockwood, Z. H. Lu, and Baribean, Phys. Rev. Lett. 76, 539 (1996).

- 13. K. Behrenmeier, Fereydoon Nomavar, G. B. Amisola et al., Appl. Phys. Lett. 62, 2408 (1993).
- 14. S. M. Prokes, J. Appl. Phys. 73, 407 (1993); Appl. Phys. Lett. 62, 3244 (1993).
- 15. А. В. Петров, А. Г. Петрухин, ФТП 28, 82 (1994).
- 16. Б. М. Костишко, А. М. Орлов, Т. Г. Емельянова, Письма в ЖТФ 21(19), 32 (1995).
- 17. Б. М. Костишко, А. М. Орлов, Т. Г. Емельянова, Известия РАН, Неорганические материалы 32, 1432 (1996).
- 18. Е. В. Астрова, В. В. Емцев, А. А. Лебедев и др., ФТП 29, 1301 (1995).
- 19. T. Ya. Gorbach, G. Yu. Rudko, P. S. Smertenko et al., Semicond. Sci. Technol. 11, 601 (1996).
- 20. Б. М. Костишко, Л. И. Гончар, Письма в ЖТФ 66(5-6), 357 (1997).
- 21. T. V. Torchinskaya, N. E. Korsunskaya, L. Yu. Komenkova et al., Semiconductor Physics. Quantum Electronics and Optoelectronics 1, 61 (1998).
- 22. P. D. Y. Calcott, K. Y. Nash, L. T. Canham et al., J. Luminescence 57, 257 (1993).
- 23. G. D. Sanders and Yia-Chung Chang, Phys. Rev. B 45, 9202 (1992); Appl. Phys. Lett. 60, 2525 (1992).
- 24. J. P. Proot, C. Delerue, and G. Allan, Appl. Phys. Lett. 61, 1948 (1992).
- 25. Ю. В. Копаев, С. Н. Молотков, С. С. Назин, Письма в ЖЭТФ 55, 696 (1992).
- 26. C. Delerue, G. Allan, and M. Lamroo, Phys. Rev. B 48, 11024 (1994).
- 27. Э. Кардона, Модуляционная спектроскопия, Мир, Москва (1973), с. 17.
- 28. В. А. Тягай, О. В. Снитко, Электроотражение света в полупроводниках, Наукова думка, Киев (1980), с. 47.
- 29. D. Aspnes, Surf. Sci. 37, 418 (1973).
- 30. Е. Ф. Венгер, Т. Я. Горбач, Л. А. Матвеева, С. В. Свечников, Письма в ЖТФ 20, 60 (1994).
- 31. И. М. Цидильковский, Зонная структура полупроводников, Наука, Москва (1978), с. 65.
- 32. Н. В. Гущина, В. С. Днепровский, Е. Ю. Довыденко и др., ЖЭТФ 106, 1830 (1994).
- 33. R. N. Bhattacharya, H. Shen, P. Parayanthal et al., Phys. Rev. B 37, 4044 (1988).
- 34. В. С. Виногардов, ФТТ 15, 395 (1973).
- 35. Xu. Hondwei, Zhou Xiachuan, Xu Guichang et al., Appl. Phys. Lett. 61, 2193 (1992).
- 36. H. Chen, M. Dutta, L. Fotiadis et al., Appl. Phys. Lett. 57, 2118 (1990).
- 37. Е. В. Гончарова, В. П. Кочерешко, М. Л. Якобсон и др., Письма в ЖЭТФ 61, 879 (1995).
- 38. P. M. Fauchet, L. Tsybeskov, S. P. Duttagupta, and K. D. Hirschman, Thin Solid Films 297, 254 (1997).

1761