НЕКОМПЛЕКТНОСТЬ Sm-ПОДРЕШЕТКИ И ВАЛЕНТНАЯ НЕСТАБИЛЬНОСТЬ В СОЕДИНЕНИЯХ НА ОСНОВЕ SmB₆

Е. В. Нефедова*, П. А. Алексеев*, Е. С. Клементьев, В. Н. Лазуков*, И. П. Садиков*,

М. Н. Хлопкин, М. Б. Цетлин, Е. С. Коновалова^а, Ю. Б. Падерно^а

Российский научный центр «Курчатовский Институт» 123182, Москва, Россия ^а Институт проблем материаловедения им. И. М. Францевича Национальной академии наук Украины 252680, Киев, Украина

Поступила в редакцию 19 июня 1998 г.

Измерены магнитная восприимчивость, электросопротивление, теплоемкость, коэффициент теплового расширения SmB₆, Sm_{0.8}B₆ и Sm_{1-x} La_x B₆ (x = 0.1, 0.2) в области температур T = 4-300 К. Изучены дисперсионные кривые акустических фононных ветвей в разбавленных лантаном образцах. Совместный анализ полученных результатов полтверждает существование активационной щели в спектре электронных состояний как в нестехиометрическом, так и в допированном лантаном соединениях. Аномалии в электронной компоненте коэффициента теплового расширения связаны в значительной степени с температурным изменением валентности и, так же как магнитная восприимчивость, отражают особенности спектра возбуждений f-электронов. Оказалось, что допирование лантаном не приводит к значительным изменениям аномалий фононного спектра SmB₆. Установлено, что однородное промежуточно-валентное состояние иона самария достаточно устойчиво и сохраняется при нарушении комплектности Sm-подрешетки.

1. ВВЕДЕНИЕ

Гексаборид самария (SmB₆) известен как первое из открытых валентно-нестабильных соединений. Его свойства интенсивно исследовались, начиная с 70-х годов, по мере получения все более качественных образцов. Это соединение привлекало повышенное внимание благодаря двум характерным особенностям. Во-первых, в SmB₆ обнаружена необычно узкая щель (~ 5 мэВ) в спектре электронных состояний. Существование шели подтверждается многочисленными экспериментами по электросопротивлению, эффекту Холла, теплоемкости [1–4], а также оптическими измерениями [5–7]. Природа шели в SmB₆ обсуждалась с разных позиций. Она трактуется как гибридизационная [8], как следствие вигнеровской кристаллизации в металле [9] или формирования экситонного состояния в промежуточно-валентной фазе [10]. Предполагается, что щель в плотности электронных состояний исчезает при допировании SmB₆ другими редкоземельными (P3) ионами [11] или при приложении давления [12]. Однако в работе [13], где исследовалось влияние легирования на гибридизационную щель по электросопротивлению, обнаружено, что щель сохраняется во всех соединениях на основе SmB₆, в которых существует состояние с промежуточной валентностью. Таким образом, нет однозначного

*E-mail; paval@sftt.kiae.su .

ответа на вопрос, исчезает ли щель или происходит смещение уровня Ферми относительно щели.

Вторая особенность этого соединения заключается в том, что ионы самария в SmB₆ находятся в промежуточно-валентном состоянии. Валентность иона самария при комнатной температуре, оцененная по постоянной решетки, магнитной восприимчивости, $L_{\rm III}$ -краю поглощения, эффекту Мессбауэра составляет $\simeq 2.55 \pm 0.03$ [14–16]. Принято считать, что валентная нестабильность РЗ ионов характеризуется наличием зарядовых и спиновых флуктуаций с характерным временем $\tau \sim 10^{-12}$ -10⁻¹³ с. Зарядовые флуктуации при определенных условиях должны влиять на спектры решеточных возбуждений, спиновые — проявляться в спектре магнитных возбуждений. Действительно, результаты измерения фононных дисперсионных кривых SmB₆ [17] демонстрируют общее смягчение акустических и низколежащих оптических фононов по сравнению с изоструктурным LaB₆. Кроме того, обнаружены отчетливые аномалии для продольных акустических ветвей вдоль направлений [110] и [111] и дополнительная мода, которая расположена в энергетической щели между акустической и оптической ветвями. Ряд важных результатов был получен также при исследовании спектра магнитных возбуждений SmB₆ [18, 19]. В частности, в магнитной составляющей спектра неупругого рассеяния нейтронов наряду с широкими, бесструктурными пиками, связанными с межмультиплетными переходами, при низких температурах (T < 40 K) обнаружено узкое низкоэнергетическое возбуждение с необычными свойствами. Недавно было предложено объяснение специфических особенностей как фононного, так и магнитного спектров возбуждений на основе экситонной модели, где ключевым фактором является формирование смешанного квантовомеханического состояния для каждого иона Sm [20,21]. Альтернативная модель, объясняющая спектр электронных состояний и магнитных возбуждений SmB₆, была развита в работе [22]. Она основана на идее о смешанно-валентном (неоднородном) состоянии ионов Sm в SmB₆. Однако ни одна из этих моделей не свободна от некоторых трудностей при обосновании исходных приближений. При этом для обеих моделей довольно критичными являются как изменение средней валентности, так и концентрация свободных носителей. В связи с этим представляет интерес исследовать трансформацию свойств SmB₆ при изменении валентного состояния ионов самария.

Величина валентности ионов самария в SmB₆ может варьироваться при помощи замещения Sm на двух- и трехвалентные ионы других элементов. При замещении в РЗ подрешетке SmB₆ ионов Sm на ионы La³⁺ происходит уменьшение валентности иона самария [23]. Для ряда образцов типа Sm1-x Lax B6 достаточно детально были изучены кинетические и магнитные свойства [15]. Другим способом изменения валентности ионов Sm в SmB₆, причем без внедрения инородных атомов в P3 подрешетку, является создание дефицита ионов самария ($Sm_x B_6$). При этом кристаллическая структура оказывается устойчивой в весьма широком диапазоне концентрации самария. По результатам измерений магнитной восприимчивости, периода решетки, L_{III}-края поглощения валентность иона самария в Sm_xB₆ (x = 0.7-0.9) остается заметно отличной от целочисленной и сдвигается в направлении к 3^+ ($v(300 \text{ K}) \simeq 2.63 \pm 0.03$) [24–26]. Существующий ряд экспериментальных работ по исследованию физических свойств нестехиометрического гексаборида самария весьма ограничен. Он включает в себя измерения периода решетки и магнитной восприимчивости в диапазоне относительно высоких температур (T > 80 K), в то время как особенности промежуточно-валентного состояния наиболее ярко проявляются при более низких температурах. Следует отметить, что нестехиометрическое соединение Sm_xB₆ само по себе заслуживает особого внимания благодаря его устойчивости при большом количестве вакансий (до 30%).

Цель настоящей работы заключалась в изучении и совместном анализе магнитных, кинетических (электросопротивления) и термодинамических (теплоемкости, теплового расширения) свойств на одних и тех же образцах стехиометрического SmB₆, Smдефицитного Sm_{0.8}B₆ и допированного лантаном (Sm_xLa_{1-x}B₆, x = 0.8, 0.9) соединений в широком интервале температур 4–300 K (в случае теплоемкости 2 < T < 45 K), а также изучении влияния замещения на особенности фононного спектра SmB₆.

2. ОБРАЗЦЫ И МЕТОДИКА

Порошковые образцы были получены боротермическим восстановлением оксида Sm_2O_3 при изменении соотношения количеств оксида и бора в Институте проблем материалловедения НАНУ (Киев). Однофазность всех образцов и соответствие их кубической структуре типа CaB_6 были установлены с помощью рентгеновской дифракции.

С целью уточнения структурных параметров соединений $Sm_x B_6$ и $La_x B_6$ (x = 0.8, 1) проведен ритвальдовский полнопрофильный анализ методом рентгеновской и нейтронной дифракции при комнатной температуре в интервале углов $2\theta = 20-160^\circ$. В процессе уточнения структуры варьировались следующие параметры: масштабный фактор, параметры фона, форма пиков, период решетки, параметрическая позиция атома бора, заселенности позиций атомов Sm и бора. В силу малого интервала изменений переданного импульса тепловые факторы атомов P3 и бора брались из литературы [27, 28] и не варьировались при подгонке. Обработка нейтронных данных проводилась с учетом поглощения P3 ионами и бором. Полнопрофильный анализ показал, что при нарушении стехиометрии происходит уменьшение периода решетки ($a = 4.1344\pm0.0003$ Å для Sm $_{6}^{6}$, $a = 4.1278\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1563\pm0.0003$ Å для LaB₆, $a = 4.1555\pm0.0003$ Å для Sm $_{6.8}^{6}B_6$, $a = 4.1563\pm0.0003$ Å для LaB₆, $a = 4.1555\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1563\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1278\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1563\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1278\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1563\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1278\pm0.0003$ Å для Sm $_{0.8}^{6}B_6$, $a = 4.1278\pm0.0000$ Å для Sm

Измерения температурных зависимостей периода решетки на поликристаллических образцах осуществлялись с помощью рентгеновской дифракции (Cu K_{α} -излучение) на установке ДРОН-3 в интервале углов $2\theta = 120-160^{\circ}$ с использованием гелиевого рефрижератора замкнутого цикла в области T = 10-300 К. Температурные зависимости коэффициентов теплового расширения α ,

$$\alpha = \frac{1}{a} \frac{da}{dT},\tag{1}$$

получались путем дифференцирования предварительно сглаженных полиномами третьей степени температурных зависимостей периодов решетки.

Измерения температурных зависимостей теплоемкости C(T) в интервале температур от 2 до 45 К проводились в адиабатическом калориметре [29].

Возможное влияние дефектности решетки на теплоемкость и коэффициент теплового расширения оценивалось на основе сопоставления полученных данных для лантановых соединений La_xB₆ (x = 0.8, 1). Учет решеточного вклада в тепловое расширение осуществлялся путем вычитания соответствующих зависимостей для соединений Sm_xB₆ и La_xB₆ (x = 0.8, 1), поскольку последние являются структурными аналогами, но ионы La имеют пустую f-оболочку.

Измерения электросопротивления проводились четырехконтактным методом в интервале температур 4–300 К.

Магнитная восприимчивость измерялась на магнитометре с величиной напряженности магнитного поля 50 Э. Температурный интервал измерений составлял 1.5–300 К для образца SmB₆ и 5–300 К для Sm_{0.8}B₆.

Для получения дисперсионных кривых акустических фононов использовались монокристаллические дважды изотопные образцы ¹⁵⁴Sm_{1-x}La¹¹_xB₆ (x = 0.1, 0.22) объемом 0.25 см³ (x = 0.22) и 0.1 см³ (x = 0.1), полученные из стержней, выплавленных методом бестигельной зонной плавки из поликристаллического материала в ИПМ НАНУ. Измерения проводились на трехосном кристаллическом спектрометре 2T1 (Лаборатория Леона Бриллюэна, Сакле, Франция), который обеспечивает высокий поток монохроматических нейтронов на образце, что необходимо в экспериментах со столь малыми и достаточно сильно поглощающими нейтроны (в силу остаточных примесей сильнопоглощающих изотопов Sm и бора) образцами. Измерения проводились в основном в режиме постоянного переданного импульса с фиксированной конечной энергией $E_f = 13.7$ мэВ ($k_f = 2.66$ Å⁻¹), в отдельных случаях в режиме E = const. В качестве монохроматора и анализатора использовался пирографит (отражение 002), с помощью пирографитового фильтра подавлялись высшие порядки отражений. Температура стабилизировалась гелиевым рефрижератором замкнутого цикла.

3. РЕЗУЛЬТАТЫ

Магнитная восприимчивость

На рис. 1 представлена температурная зависимость магнитной восприимчивости $\chi(T)$ для образцов SmB₆, Sm_{0.8}B₆, а также для Sm_{0.75}La_{0.25}B₆ [15]. Зависимость $\chi(T)$ для SmB₆ хорошо согласуется с результатами, полученными в [30, 31]. Для всех соединений экспериментальная зависимость магнитной восприимчивости отличается от расчетной для свободных ионов самария (Sm²⁺ и Sm³⁺). Из рисунка видно, что для некомплектных по Sm-подрешетке образцов температурные зависимости магнитной восприимчивости изменяются в соответствии с изменением валентности по отношению к гексабориду самария и приближаются к кривым для соответствующих ионов с целочисленной валентностью. Температурные зависимости $\chi(T)$ претерпевают качественные изменения в диапазоне температур 2 < T < 100 К. Характерный для SmB₆ максимум при $T \simeq 50$ К на кривой $\chi(T)$ исчезает или смещается в область более низких температур в допированном лантаном соединении.

Электросопротивление

На рис. 2 представлены температурные зависимости электросопротивления для моно- и поликристаллического SmB₆, нестехиометрического Sm_{0.8}B₆, а также результаты для Sm_{0.75}La_{0.25}B₆ из [13]. Как для монокристалла, так и для поликристалла SmB₆ наблюдается резкое увеличение сопротивления с понижением температуры. Температурные зависимости имеют прямолинейные участки, характерные для активационного

9*

Рис. 1

Рис. 2

Рис. 1. Температурные зависимости магнитной восприимчивости образцов SmB₆ (П), Sm_{0.8}B₆ (о), Sm_{0.75}La_{0.25}B₆ (Δ , [15]). Штрихи — расчетные кривые для свободных ионов Sm²⁺ и Sm³⁺; пунктир — расчетная кривая для Sm_{0.75}La_{0.25}B₆ в предположении неоднородного состояния ионов Sm (см. текст) ($\chi_{cal} = 0.56\chi(\text{Sm}^{2+}) + 0.44\chi(\text{Sm}^{3+})$); штрих-пунктир — расчетная кривая для SmB₆ ($\chi_{cal} = 0.4\chi(\text{Sm}^{2+}) + 0.6\chi(\text{Sm}^{3+})$) в том же предположении; сплошная кривая — расчет для Sm_{0.8}B₆ ($\chi_{cal} = 0.3\chi(\text{Sm}^{2+}) + 0.7\chi(\text{Sm}^{3+})$) в том же предположении

Рис. 2. Температурные зависимости электросопротивления для SmB₆ (монокристалл (■) и поликристалл (□)), Sm_{0.8}B₆ (0); Sm_{0.75}La_{0.25}B₆ (△, [13]). Линии — аппроксимация функцией (2) (см. текст)

типа проводимости

$$R = R_0 \exp(-E_a/2k_B T). \tag{2}$$

Для монокристалла — это участок в области температур 6 < T < 20 K, и несколько меньший (8 < T < 20 K) — для поликристалла. Величина активационной щели в спектре электронных состояний, полученная из измерений сопротивления на монокристалле, $E_g/2 = E_a \approx 50$ K. В области температур T > 35 K, а также T < 5 K для монокристалла и T < 8 K для поликристалла происходит отклонение температурной зависимости сопротивления от прямой.

Для Sm_{0.8}B₆ активационный тип электросопротивления в целом сохраняется. Линейный участок сопротивления наблюдается в интервале температур 15 < T < 30 K. Величина щели в плотности электронных состояний оказалась равной $E_a \approx 20$ K. В отличие от стехиометрического состава для x = 0.8 при низких температурах ($T \le 14$ K) наблюдается еще один прямолинейный участок.

Для образца $Sm_{0.75}La_{0.25}B_6$ температурная зависимость электросопротивления имеет сложный характер, в целом близкий к металлическому.

Теплоемкость

На рис. За представлены данные измерения температурной зависимости теплоемкости C(T) для La_xB₆ и Sm_xB₆ (x = 0.8, 1), а также для Sm_{0.8}La_{0.2}B₆. Результаты для SmB₆ хорошо согласуются с данными [3]. Как видно, нарушение стехиометрии состава в валентно-нестабильном гексабориде самария Sm_xB₆ приводит к заметным изменениям в теплоемкости, в то время как для аналогичных соединений на основе лантана (La_xB₆, вставка на рис. За) температурные зависимости практически совпадают.

Электронный вклад в теплоемкость, Cel (рис. 36), определен как разница полной теплоемкости и ее решеточной составляющей (Clat, сплошная линия на рис. 3a). Решеточная составляющая рассчитана по фононной плотности состояний SmB₆, полученной из модельных расчетов с учетом вклада экситон-фононного взаимодействия [20] на основе экспериментально измеренных дисперсионных кривых [17]. Электронный вклад в теплоемкость SmB₆ имеет максимум при $T \approx 40$ К. Для Sm_{0.8}B₆ в области температур выше 10 К наблюдается аналогичное SmB₆ поведение $C_{el}(T)$ с максимумом при $T \approx 25$ K, но с меньшей амплитудой (рис. 36). В отличие от нестехиометрического гексаборида самария максимум в теплоемкости Sm_{0.8}La_{0.2}B₆, по-видимому, существует при более высоких температурах (T > 40 K), чем максимум в теплоемкости SmB₆. Электронная составляющая теплоемкости самариевых соединений в координатах $C_{el}/T = f(T^2)$ представлена на рис. 4. Для Sm_{0.8}B₆ в области низких температур наблюдается качественно другое поведение температурной зависимости C_{el}/T , отличное от SmB₆: при уменьшении температуры появляется резкий рост теплоемкости, обычно наблюдаемый для тяжелофермионных систем. Оцененная величина коэффициента Зоммерфельда при T = 2 К составляет $\gamma \approx 450$ мДж/моль K^2 , что почти на два порядка выше, чем $\gamma \approx 6$ мДж/моль-К² для стехиометрического SmB₆. Для допированного лантаном образца γ также несколько увеличивается ($\gamma \approx 60 \text{ мДж/моль-} \text{K}^2$ при T = 4 K), при этом сохраняется общий с SmB₆ характер температурной зависимости.

Рис. 3. Температурные зависимости полной теплоемкости (*a*) и электронного вклада в теплоемкость (*б*) для SmB₆ (\Box), Sm_{0.8}B₆ (o), Sm_{0.8}La_{0.2}B₆ (\triangle), LaB₆ (\diamond), LaB₆ (\diamond), LaB₆ ([3], штрихи). Сплошная линия — решеточная составляющая теплоемкости SmB₆, рассчитанная по фононной плотности состояний (см. текст). На вставках: *a*) температурная зависимость теплоемкости La_xB₆ (x = 0.8, 1); *б*) электронный вклад в теплоемкость для образцов SmB₆ и Sm_{0.8}La_{0.2}B₆ за вычетом вклада, связанного со спектром возбуждений *f*-электронов (см. текст)

1029

Рис. 4

Pac. 5

- **Рис. 4.** Температурные зависимости электронного вклада в теплоемкость в координатах $C_{el}/T = f(T^2)$ для SmB₆ (\Box), Sm_{0.8}B₆ (o), Sm_{0.8}La_{0.2}B₆ (\triangle)
- Рис. 5. Температурные зависимости электронной компоненты коэффициента теплового расширения для SmB₆ (кривая 1), Sm_{0.8}B₆ (2), Sm_{0.9}La_{0.1}B₆ (3)

Тепловое расширение

Температурные зависимости электронной компоненты α_{el} коэффициента теплового расширения, полученной путем вычитания величины $\alpha(T)$ для LaB₆ из полного коэффициента теплового расширения для Sm-содержащих образцов, представлена на рис. 5. В зависимости $\alpha_{el}(T)$ для SmB₆ наблюдается минимум при $T \approx 50$ K, хорошо известный из публикаций [32]. Для лантановых соединений La_xB₆ (x = 0.8, 1) нарушение стехиометрии приводит к изменению лишь абсолютного значения параметра решетки и не влияет на плавное температурное поведение коэффициента теплового расширения. Нарушение комплектности в Sm-подрешетке гексаборида самария сохраняет минимум зависимости $\alpha_{el}(T)$, но приводит к изменению как его положения, так и площади под кривой $\alpha_{el}(T)$ (рис. 5). В случае нестехиометрического соединения Sm_{0.8}B₆ положение минимума сдвигается в область низких температур ($T \approx 25$ K), а также уменьшается температурная область существования аномалии (0 < T < 65 K). Замещение Sm на La приводит к смещению минимума аномалии в область более высоких температур ($T \approx 120$ K) и увеличению площади под кривой $\alpha_{el}(T)$.

Фононные спектры

На рис. 6 представлены дисперсионные кривые для продольных и некоторых поперечных акустических ветвей при T = 300 К для $\text{Sm}_{1-x} \text{La}_x B_6$ (x = 0.1, 0.22), а также LaB₆ и SmB₆ [17] вдоль трех основных направлений симметрии. Во всех Sm-замещенных соединениях наблюдается общее смягчение акустических фононов по сравнению с LaB₆, а изменения фононных частот в них по сравнению с SmB₆ незначительны и составляют в среднем около 5%. Существующие в SmB₆ аномалии продольных акустических ١

ветвей вдоль направлений [$\xi\xi 0$] и [$\xi\xi\xi$] при величине приведенного волнового вектора, равного $q/q_{max} = 0.25$, сохраняются в Sm_{1-x}La_xB₆ (x = 0.1, 0.22), но с увеличением концентрации La они становятся менее выраженными.

Для некоторых фононных частот в отдельных точках зоны Бриллюэна были выполнены температурные измерения (рис. 7). Как видно из рисунка, при уменьшении температуры на 250 К для большинства волновых векторов характерно изменение частот колебаний решетки до 0.1 ТГц. Наиболее сильные изменения частот происходят в интервале 2 < T < 100 К.

Рис. 7. Температурная зависимость разности частот продольных акустических фононов в Sm_{0.9}La_{0.1}B₆ для направлений [ξ 00], [ξ ξ 0] и [ξ ξ ξ] при ξ = 0.35 (o), 0.45 (\Box), 0.25 (Δ); линии проведены на глаз

4. ОБСУЖДЕНИЕ

Анализ результатов измерений магнитной восприимчивости подтверждает предположение о существовании промежуточно-валентного состояния как при замещении, так и при нарушении стехиометрии. Действительно, уменьшение величины χ в Sm_{0.8}B₆ во всем исследованном температурном интервале по сравнению с SmB₆ свидетельствует об увеличении валентности ионов самария, что согласуется с данными работы [23]. В свою очередь, для Sm_{0.75}La_{0.25}B₆ происходит уменьшение валентности Sm и рост χ . Ни одна из измеренных зависимостей не совпадает с $\chi(T)$, рассчитанными для целовалентных ионов Sm (см. рис. 1). Кроме того, температурная зависимость $\chi(T)$ не совпадает с $\chi_{cal}(T)$, полученной в предположении алгебраической суммы вкладов $\chi(Sm^{3+})$ и $\chi(Sm^{2+})$ в отношениях, соответствующих величине средней валентности. Интервал температур наиболее заметного отклонения от $\chi_{cal}(T)$ увеличивается при росте валентности ионов Sm (для Sm_{0.8}B₆ этот интервал является наибольшим для всех измеренных образцов).

Результаты прямых измерений $\chi(T)$ для SmB₆ качественно согласуются с результатами расчета магнитной восприимчивости по соотношению Крамерса-Кронига из спектров неупругого магнитного рассеяния нейтронов [19]. При этом абсолютные значения $\chi(T)$, полученные при интегрировании нейтронных спектров, меньше, чем магнитометрические величины. Расхождения абсолютных значений связаны, видимо, с сильной анизотропией и необычным формфактором низкоэнергетического возбуждения [19]. Изменение характера зависимости $\chi(T)$ для Sm(La)B₆ может быть обусловлено перестройкой в нем спектра магнитных возбуждений по сравнению с SmB₆ [33], для которого детально изучена температурная зависимость спектральной функции. В частности, для SmB₆ перераспределение интенсивности из области неупругого пика с энергией 14 мэВ при T < 20 К в область квазиупругого рассеяния при T > 100 К как раз и приводит к наблюдаемой зависимости $\chi(T)$. Рост энергии этого возбуждения и смягчение его температурной зависимости по мере роста x в сплавах $Sm_{1-x}La_xB_6$ [33] объясняют тенденцию, наблюдаемую в поведении $\chi(T)$ для этих соединений. При $x \to 1$ кривые стремятся к $\chi(T)$ для двухвалентного иона Sm. Таким образом, во всех исследованных соединениях не наблюдается простая «механическая смесь» разновалентных ионов

Sm в отличие, например, от неоднородной смешанно-валентной системы Sm₃Te₄ [34]. Наблюдаемые различия в $\chi(T)$ между некомплектными образцами могут происходить в основном за счет изменений средней валентности, но при сохранении однородного промежуточно-валентного состояния.

Рассмотрим результаты измерения электросопротивления (см. рис. 2). Как известно, температурная зависимость электросопротивления R(T) в основном определяется поведением зонных электронов, их взаимодействием с локализованными моментами, наличием примесных уровней и т.д. Как было отмечено выше, в гексабориде самария имеется узкая щель \approx 50 К. Нелинейный участок зависимостей $\ln(R(T)/R(290 \text{ K})) =$ f(1/T) при T > 35 K, вероятнее всего, связан с температурной зависимостью подвижности носителей. Отклонение температурной зависимости от прямой (рис. 2) при низкой температуре (T < 6 K) связано с изменением характера проводимости. При этих температурах, по-видимому, определяющим становится проводимость прыжкового типа. В поликристалле прыжковая проводимость начинает играть заметную роль при более высоких температурах, что связано, вероятно, с меньшей степенью чистоты и с несовершенством кристалла, как было недавно убедительно показано в [35]. Для объяснения отклонения зависимости R(T) от экспоненциального закона при T < 3 K в [36] предложена модель, основанная на появлении тонкой структуры в гибридизационной щели, которая связана с существованием в образце донорной или акцепторной примеси и дефектов решетки.

Характер температурного поведения сопротивления нестехиометрического $Sm_{0.8}B_6$ во всем исследованном интервале температур (прямолинейный участок (см. рис. 2) при низких температурах и резкое уменьшение сопротивления при увеличении температуры) аналогичны поведению типичного примесного полупроводника. Имеются два участка, соответствующие разным типам проводимости: собственная проводимость с $E_a \approx 20$ К и примесная проводимость из-за высокой концентрации дефектов (вакансии самария), которые вносят дополнительные состояния, расположенные на несколько градусов (2-4 K) выше верхнего края заполненной зоны. Эти состояния и определяют характер проводимости при низких температурах, а именно, прыжковый тип проводимости. В образцах $Sm_{0.8}B_6$ активационная щель в плотности электронных состояний сохраняется, однако ее величина уменьшается по сравнению со стехиометрическим SmB_6 .

Внедрение в SmB₆ 25% лантана, что по количеству дефектов близко к образцу Sm_{0.8}B₆, оказывается достаточным, чтобы кардинально изменить характер электросопротивления с полупроводникового на металлический. Следует отметить, что изменение характера зависимости R(T) Sm_{0.75}La_{0.25}B₆ может быть связано как с исчезновением щели, так и с появлением дополнительных электронов при допировании La³⁺.

Если в плотности электронных состояний существует щель, то тепловое возбуждение электронов через щель будет приводить к появлению вклада в теплоемкость типа аномалии Шоттки. Последнее можно наблюдать в электронном вкладе в теплоемкость SmB₆, что в свое время было одним из доказательств существования щели. Помимо вклада в $C_{el}(T)$ от щели должен присутствовать также вклад, связанный с состоянием локализованных f-электронов ионов Sm, который не анализировался в ранних работах. В промежуточно-валентном гексабориде самария f-электроны имеют основное состояние — синглет — и первое возбужденное — триплет [21]. Из измерений неупругого магнитного рассеяния нейтронов следует, что характерная энергия низкоэнергетического возбуждения, соответствующего переходу между этими состояниями, составляет ≈ 14 мэВ [19]. Такой спектр возбуждений дает вклад в теплоемкость с максимумом при $T \approx 55$ К. После учета этого вклада остается составляющая теплоемкости, связанная только с эффектом возбуждения через щель ($C_{el}^*(T)$ на вставке рис. 36). Таким образом, результаты измерений теплоемкости убедительно подтверждают присутствие щели в плотности электронных состояний. Исходя из простой двухуровневой модели можно грубо оценить ее величину: ≈ 60 К, что не противоречит величине щели в спектре электронных состояний, полученной из измерений электроспротивления.

Для Sm_{0.8}La_{0.2}B₆ ситуация выглядит более сложной: данные по теплоемкости качественно похожи на результаты для SmB₆, и в этом их отличие от данных по сопротивлению. Из измерений неупругого магнитного рассеяния нейтронов следует, что характерный масштаб низкоэнергетического возбуждения, связанного с новым состоянием иона Sm paвeн ≈ 25 мэВ для Sm_{0.8}La_{0.2}B₆ [33]. Соответствующее состояние даст вклад в теплоемкость при существенно более высоких температурах (≈ 110 К), чем достигаемые в наших измерениях. После вычитания из $C_{el}(T)$ вклада от возбужденного состояния f-электронов остается вклад в теплоемкость, который, по-видимому, обусловлен в основном щелью (см. рис. 36, вставка). Можно предположить, что, несмотря на характерный для металлов ход температурной зависимости сопротивления, щель сохраняется и в замещенном образце $Sm_{0.8}La_{0.2}B_6$. А отсутствие признаков существования щели в температурной зависимости сопротивления может быть связано с появлением дополнительных электронов, внесенных ионами La, которые «шунтируют» щель в кинетических измерениях. Дополнительные состояния проявляются в изменении характера проводимости, в наличии дополнительного вклада в теплоемкость при T < 15 К и в заметном росте величины коэффициента γ (см. рис. 4).

В зависимости $C_{el}(T)$ для нестехиометрического образца аномалия также сохраняется (см. рис. 36). Отсутствие измерений по неупругому рассеянию нейтронов для Sm_{0.8}B₆ не позволяет оценить составляющую теплоемкости, связанную с возбуждениями f-электронов. Однако исследование магнитных возбуждений в образце Sm_{0.5}Ba_{0.5}B₆ обнаружило исчезновение пика при 14 мэВ, характерного для SmB₆, и появление при низкой температуре особенности магнитного типа при энергии ≈ 9 мэВ, которая при незначительном повышении температуры (T = 12 K) исчезает [37]. Поскольку нестехиометрия по ионам самария приводит к увеличению валентности Sm аналогично замещению на ионы Ва ($v(Sm_{0.5}Ba_{0.5}B_6) \approx 2.7$), можно предположить, что в Sm_{0.8}B₆ подобное возбуждение, ответственное за промежуточно-валентное состояние иона Sm, окажется при энергии заметно меньшей 14 мэВ и приведет к вкладу в электронную составляющую теплоемкости только при T < 25 К. В этом случае составляющая $C_{el}(T)$ для Sm_{0.8}B₆ при T = 30-35 K, вероятнее всего, связана с щелью. Таким образом, полученный результат согласуется с выводом, следующим из измерений электросопротивления. В случае Sm_{0.8}B₆ нет дополнительных носителей заряда, которые появляются при допировании трехвалентными ионами La, и не происходит «шунтирования» щели: щель в плотности электронных состояний сохраняется и при 20-процентном дефиците самария.

Несмотря на резкий подъем в зависимости $C/T = f(T^2)$ при $T \to 0$ (см. рис. 4) для $Sm_{0.8}B_6$, это соединение по-видимому, нельзя отнести к тяжелофермионным соединениям. Дело в том, что величина магнитной восприимчивости (в $Sm_{0.8}B_6$ она на порядок меньше, чем в тяжелофермионных соединениях) и температурная зависимость электросопротивления не соответствуют поведению тяжелофермионных систем. Наблюдаемый подъем может быть связан либо с наличием низкоэнергетического возбуждения иона самария, либо с появлением дополнительных электронных состояний в $Sm_{0.8}B_6$, обусловленных вакансиями в самариевой подрешетке. Эти связанные с вакансиями

состояния могут отвечать за появление участка с'линейной зависимостью электросопротивления при низких температурах T < 10 К (см. рис. 2). Но следует отметить, что, в принципе, возможна и альтернативная трактовка. Так, в связи с результатами исследований смешанно-валентных соединений типа Sm₃X₄, для которых также характерно большое значение γ при отсутствии свободных носителей, выдвинута идея [38] о возможности формирования тяжелофермионного состояния за счет частичной делокализации f-электронов в соединениях с малым числом свободных электронов.

Рассмотрим результаты измерений теплового расширения (см. рис. 5). Обычно предполагается, что аномалия электронной составляющей $\alpha_{el}(T)$ промежуточно-валентных систем обусловлена изменением валентности РЗ иона, которая является функцией температуры [39–41]. При таком предположении в случае линейного соотношения между изменением валентности и изменением постоянной решетки можно записать

$$\frac{d\ln a}{dT} = \frac{d\ln a}{dn_f} \frac{dn_f}{dT} = \text{const} \cdot \frac{dn_f}{dT},$$
(3)

где a — постоянная решетки; n_f — заселенность f-оболочки иона Sm. В этом случае площадь S под аномалией электронной составляющей коэффициента теплового расширения определяет изменение валентности по температуре ($\Delta v(\Delta T)$), а положение экстремума соответствует температуре, при которой происходит наиболее сильное изменение валентности, связанной с эффективной температурой валентных флуктуаций [39], т. е.

$$S = \int_{T_1}^{T_2} \operatorname{const} \cdot \frac{dn_f}{dT} dT = \operatorname{const} \cdot \Delta v, \qquad (4)$$

$$S = k\Delta v, \tag{5}$$

где k — коэффициент пропорциональности. Значение коэффициента k = 0.39 получено на основе результатов измерений валентности иона Sm в SmB₆ при T = 295 и 12 К методом рентгеновской абсорбционной спектроскопии [14] ($\Delta v = 0.08$). Зная площадь под аномалией $\alpha_{el}(T)$ и предполагая, что значение коэффициента k слабо изменяется при замещении, можно вычислить температурное изменение валентности иона Sm в Sm_{0.8}B₆ и Sm_{0.9}La_{0.1}B₆. Расчет соответствующих температурных изменений валентности для Sm_{0.9}La_{0.1}B₆ дает $\Delta v(300-4$ K) ≈ 0.1 (увеличение $\Delta v(300-4$ K) в допированном лантаном образце согласуется с результатом работы [14]), а при нарушении стехиометрии (Sm_{0.8}B₆) валентность уменьшается на $\Delta v(300-4$ K) ≈ 0.04 .

В соответствии с соотношением Грюнайзена тепловое расширение пропорционально теплоемкости. Эта связь может быть обобщена на случай не только решеточных, но электронных и других возбуждений. Тогда, если в $C_{el}(T)$ присутствует вклад, связанный с наличием щели, он должен был бы проявиться и в $\alpha_{el}(T)$. В то же время, по-видимому, нельзя объяснить аномалии в коэффициенте теплового расширения и теплоемкости только наличием щели в спектре электронных состояний, как было предложено в [42], поскольку при рассмотрении электронных составляющих необходимо учитывать вклад, связанный со спектром возбуждений f-электронов. Кроме того, возможно изменение спектра решеточных возбуждений валентно-нестабильных систем по сравнению с изоструктурными соединениями [17], которые не содержат f-электронов и обычно используются для учета решеточной составляющей теплоемкости и коэффициента теплового расширения. Разные составляющие могут в неодинаковой степени проявляться в тех или иных свойствах. Действительно, если рассматривать совокупность результатов по всем исследованным соединениям, то несмотря на качественное сходство температурных зависимостей (существование экстремумов и их смещение в области низких температур в нестехиометрическом образце и более высоких температур при замещении самария на лантан, см. рис. 36 и 5), температура максимума в электронной составляющей теплоемкости и температура минимума в $\alpha_{el}(T)$ существенно различаются для одного и того же соединения. Следовательно, $\alpha_{el}(T)$ в рассматриваемых системах определяется не только вкладом от щели. Аномалия в электронной составляющей $\alpha_{el}(T)$ должна отражать также и особенности магнитного спектра промежуточно-валентного соединения, в первую очередь изменение состояния f-оболочки. В связи с этим следует указать на существование корреляции температурного поведения электронного вклада в коэффициент теплового расширения и магнитной составляющей спектра неупругого рассеяния $\operatorname{Sm}_{1-x}\operatorname{La}_x \operatorname{B}_6$. Во-первых, положение аномалии $\alpha_{el}(T)$ совпадает с температурой, при которой низкоэнергетическое возбуждение, обнаруженное в магнитной составляющей рассеяния для SmB₆ и Sm_{0.9}La_{0.1}B₆ [33], существенно подавляется. Во-вторых, как минимум $\alpha_{el}(T)$, так и низкоэнергетическое возбуждение SmB₆ очень резко смещаются в область более высоких энергий при замещении всего лишь 10% Sm на La. Последнее обстоятельство, по-видимому, связано с нарушением когерентности в Sm-подрешетке, которая играет определенную роль при формировании спектра магнитных возбуждений [33]. Существенная роль когерентности РЗ-подрешетки отмечалась и при исследовании теплового расширения соединений $Ce_{1-x}(Y, La)_x Ni$. Так, для соединения CeNi положение и величина максимума температурной зависимости электронной составляющей коэффициента теплового расширения выпадала из систематической зависимости от концентрации. Это отклонение связывалось с дополнительным вкладом в электронную составляющую теплового расширения от взаимодействия Се-Се, которое в результате замещения (при разупорядоточении РЗ-подрешетки) подавляется [43].

Таким образом, полученные результаты позволяют предположить, что электронная составляющая коэффициента теплового расширения в промежуточно-валентных системах обусловлена не только изменением валентности, зависящим от температуры [39], но и спектральными характеристиками основного состояния *f*-оболочки.

В заключение, обсудим результаты измерения фононных спектров $Sm_{1-x}La_xB_6$. Как было отмечено выше, допирование лантаном не привело к значительным изменениям фононного спектра SmB_6 и особенностей дисперсионных кривых (см. рис. 6). Поэтому можно сказать, что предложенная для описания спектров колебаний решетки SmB_6 экситонная модель [17] в целом, по-видимому, справедлива и для разбавленных систем. Следует подчеркнуть, что экситонное состояние иона самария оказывается крайне устойчивым и не исчезает при заметном нарушении комплектности решетки.

Что же касается увеличения фононных частот при понижении температуры (см. рис. 7), то оно может быть вызвано как наличием щели в спектре электронных состояний, так и изменением валентности иона Sm по температуре. Последняя причина, как нам кажется, наиболее вероятна. С одной стороны, температурные диапазоны изменения частот акустических ветвей и существования аномалий в макроскопических свойствах (2 < T < 100 K), связанных с промежуточно-валентным состоянием ионов самария, совпадают. С другой стороны, при замещении лантаном постоянная решетки увеличивается, что должно было бы привести к некоторому смягчению фононного спектра. Как следует из измерений образцов Sm_{1-x}La_xB₆ при комнатной температуре, замещение привело к возрастанию частот акустических фононов (см. рис. 6). Поэтому представляется возможным связать наблюдаемые изменения фононного спектра с уменьшением валентности. В частности, на основании этого рассмотрения увеличение энергии фононов при понижении температуры (рис. 7), вероятнее всего, связано с уменьшением величины валентности, которое было зафиксировано при измерениях L_{III} -края поглощения [14].

5. ЗАКЛЮЧЕНИЕ

Нарушение комплектности Sm-подрешетки приводит к существенной трансформации микроскопических и макроскопических свойств соединений на основе SmB₆. При этом однородное промежуточно-валентное состояние иона Sm в целом сохраняется во всех исследованных соединениях, хотя величина средней валентности иона Sm и ширина энергетической щели в плотности электронных состояний несколько меняются. В работе показано, что учет перестройки спектра возбуждений f-электронов при изменении величины валентности важен для понимания трансформации физических свойств исследуемых соединений.

Авторы считают своим приятным долгом выразить искреннюю признательность А. С. Мищенко за плодотворные стимулирующие обсуждения работы, Ж.-М. Миньо (J.-M. Mignot) и М. Брадену (М. Braden) — за существенную поддержку работы, Л. Гуревичу — за помощь в измерении магнитной восприимчивости нестехиометрического гексаборида самария. Е. С. К. и П. А. А. благодарны администрации Лаборатории Леона Бриллюэна (Франция) за предоставленную возможность проведения нейтронного эксперимента. Работа выполнена при финансовой поддержке Государственной научнотехнической программы «Актуальные направления в физике конденсированных сред», Фонда поддержки инициативных проектов фундаментального и поискового характера РНЦ «Курчатовский институт» и Международного проекта Министерства науки «Корреляции».

Литература

- 1. J. C. Nickerson, R. M. White, K. N. Lee et al., Phys. Rev. B 3, 2030 (1971).
- 2. J. W. Allen and R. M. Martin, J. de Phys. 41, C5-171 (1980).
- 3. T. Kasuya and K. Takegahara, J. de Phys. 40, C5-308 (1979).
- 4. T. Kasuya, K. Takegahara, Y. Aoki et al., in *Valence Fluctuation in Solids*, ed. by L. M. Falikov, W. Hanke, and M. B. Maple, North-Holland, Amsterdam (1981), p. 215.
- 5. Т. С. Альтшулер, Г. Г. Халиуллин, Д. И. Хомский, ЖЭТФ 90, 2104 (1986).
- B. Batlogg, P. H. Schmidt, and J. M. Rowell, in *Valence Fluctuation in Solids*, ed. by L. M. Falikov, W. Hanke, and M. B. Maple, North-Holland, Amsterdam (1981), p. 267.
- 7. S. von Molnar, T. Theis, A. Benoit et al., in *Valence Instabilities*, ed. by P. Wachter and H. Boppart, North-Holland, Amsterdam (1982), p. 389.
- 8. R. M. Martin and J. M. Allen, J. Appl. Phys. 50, 7561 (1979).
- 9. T. Kasuya, J. de Phys. 37 Colloq. C4-26 (1976).
- 10. K. A. Kikoin and A. S. Mishchenko, J. Phys.: Condens. Matter 2, 6491 (1990).

- M. Kasaya, H. Kimura, Y. Isikawa et al., in *Valence Fluctuation in Solids*, ed. by L. M. Falikov, W. Hanke, and M. B. Maple, North-Holland, Amsterdam (1981), p. 251.
- 12. V. V. Moshchalkov, I. V. Berman, N. B. Brandt et al., J. Magn. Magn. Mat. 47-48, 289 (1985).
- 13. Е. С. Коновалова, Ю. Б. Падерно, Н. И. Перепелица и др., ФТТ 26, 2138 (1984).
- 14. J. M. Tarascon, Y. Isikawa, B. Chevalier et al., J. de Phys. 41, 1141 (1980).
- 15. J. M. Tarascon, Y. Isikawa, B. Chevalier et al, J. de Phys. 41, 1135 (1980).
- 16. R. L. Cohen, M. Eibschütz, and K. W. West, Phys. Rev. Lett. 24, 383 (1970).
- 17. P. A. Alekseev, A. S. Ivanov, B. Dorner et al., Europhys. Lett. 10, 457 (1989).
- 18. P. A. Alekseev, Physica B 186-188, 365 (1993).
- 19. P. A. Alekseev, J.-M. Mignot, J. Rossat-Mignod et al., J. Phys.: Condens. Matter 7, 289 (1995).
- 20. К. А. Кикоин, А. С. Мищенко, ЖЭТФ 104, 3810 (1993).
- 21. K. A. Kikoin and A. S. Mishchenko, J. Phys.: Condens. Matter 7, 307 (1995).
- 22. T. Kasuya, Europhys. Lett. 26, 277 (1994).
- 23. Е. С. Коновалова, Ю. Б. Падерно, Т. Лундстрем и др., Порошковая металлургия 10, 78 (1982).
- Ю. Б. Падерно, Е. С. Коновалова, Н. Л. Батуринская и др., Неорганические материалы 18, 47 (1982).
- 25. М. И. Айвазов, С. В. Александрович, Б. А. Евсеев и др, Неорганические материалы 19, 211 (1983).
- 26. М. И. Айвазов, С. В. Александрович, Б. А. Евсеев и др, Неорганические материалы 16, 59 (1980).
- 27. А. А. Елисеев, В. А. Ефремов, Г. М. Кузьмичева и др., Кристаллография 31, 803 (1986).
- 28. V. A. Trounov, A. L. Malyshev, D. Yu. Chernyshov et al., J. Phys.: Condens. Matter 5, 2479 (1993).
- 29. М. Н. Хлопкин, Н. А. Черноплеков, П. Г. Черемных, Препринт ИАЭ-3549/10, Москва (1982).
- 30. M. Kasaya, J. M. Tarascon, and J. Etourneau, Sol. St. Comm. 33, 1005 (1980).
- 31. J. Roman, V. Pavlik, K. Flachbart et al., Physica B 230-232, 715 (1997).
- 32. П. А. Алексеев, Е. С. Коновалова, В. Н. Лазуков и др., ФТТ 30, 2024 (1988).
- 33. P. A. Alekseev, J.-M. Mignot, V. N. Lazukov et al., J. Sol. St. Chem. 133, 230 (1997).
- 34. M. Sugita, S. Kunii, K. Takegahara, N. Sato et al., in *Crystalline Electric Field in f-electron Magnetism*, Plenum Press, New York (1982), p. 479.
- 35. A. Kebede, M. C. Aronson, C. M. Buford et al., Physica B 223-224, 256 (1996).
- 36. I. Bat'ko, P. Farkasovsky, K. Flachbart et al., Sol. St. Comm. 88, 405 (1993).
- 37. П. А. Алексеев, В. Н. Лазуков, Р. Осборн и др., ЖЭТФ 108, 1064 (1995).
- T. Suzuki, in *Physical Properties of Actinde and Rare Earth Compounds*, JJAP, series 8, ed. by T. Kasuya, T. Ishii, T. Komatsubara et al., (1993), p. 267.
- 39. N. E. Bickers, D. L. Cox, and J. M. Wilkins, Phys. Rev. B 36, 2036 (1987).
- 40. E. Müller-Hartmann, Sol. St. Comm. 31, 113 (1979).
- 41. G. Gangadhar Reddy and A. Ramakanth, Sol. St. Comm. 78, 133 (1991).
- 42. D. Mandrus, J. L. Sarrao, A. Lacerda et al., Phys. Rev. B 49, 16809 (1994).
- 43. В. Н. Лазуков, П. А. Алексеев, Е. С. Клементьев и др., ЖЭТФ 113, 1731 (1998).