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We consider advection of a passive scalar (¢, ') by an incompressible large-scale turbulent

flow. In the framework of the Kraichnan model all PDF’s (probability distribution functions) for

“ the single-point statistics of 8 and for the passive scalar difference 8(F;) — 8(I;) (for separations
T} — I; lying in the convective interval) -are found.

INTRODUCTION

We treat advection of a passive scalar field #(¢,r) by an incompressible turbulent flow;
the role of the scalar can be played by temperature or by pollutant density. The velocity field
is assumed to contain motions from some interval of scales restricted from below by L,. A
steady situation with a permanent random supply of the passive scalar is considered. We wish
to establish statistics of the passive scalar 8 for scales that are less than both the scale L, and
the pumping scale L, and larger than the diffusion scale 74;5 (for definiteness we assume that
L < L,). Such a convective interval of scales exists if the Peclet number Pe = L/rais is
large enough; we will assume this condition. Since all scales from the convective interval are
assumed to be smaller than L., we will discuss advection by a large-scale turbulent flow. The
problem is of physical interest for dimensionalities d = 2, 3, but formally it can be treated for
an arbitrary dimensionality d of space. Below we will treat d as a parameter. In particular, all
expressions will be true for a space of high dimensionality d.

Description of the small-scale statistics of a passive scalar advected by a large-scale
solenoidal velocity field is a special problem in turbulence theory. This problem was treated
consistently from the very beginning and some rigorous results have been obtained, which is quite
unusual for a turbulence problem. Batchelor (see Ref. [1]) examined the case of an external
velocity field being so slow that it does not change during the time of the spectral transfer of the
scalar from the external scale to the diffusion scale. Then Kraichnan (see Ref. [2]) obtained
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plenty of results in the opposite limit of a velocity field delta-correlated in time. The pair
correlation function of the passive scalar (6(r)6(0)) was found to be proportional to the logarithm
In(L/r), and the pair correlation function of the passive scalar difference ([(r) — 6(0)1) was
found to be proportional to ln(r/rd, f) in both cases. The assertions are really correct for
any temporal statistics of the velocity field (see Refs. [3,4]). Thus we are dealing with the
logarithmic case which is substantially simpler than cases with power-like correlation functions
usually encountered in turbulence problems (see Refs. [5-7]).

Now about high-order correlation functions of the passive scalar. As long as all distances
between the points are much less than L, the 2n-point correlation functions of 8 are given by
their reducible parts (that is, are expressed via products of the pair correlation function) up
to n ~ In(L /r), where r is either the smallest distance between the points or 4,5, depending
on which is larger (see Ref. [4]). The reason for such Wick decoupling is simply the fact that
reducible parts contain more logarithmic factors (which are considered as the large ones) than
non-reducible parts do. Consistent calculations of the fourth-order correlation function of the
passive scalar at d = 2 (see Ref. [8]) confirm the assertion. Therefore, e.g., the single-point PDF
of 8 has a Gaussian core (that describes the first moments with n < In Pe) and a non-Gaus-
sian tail (that describes moments with n > InPe). The tail appears to be exponential (see Refs.
[3,74]). The same is true of the passive scalar. difference A@ = 6(r) —- #(0), where instead of In Pe
we should take In(r /r4;5). The tails do not depend on In Pe or on In(r/74:¢), and contain only
coefficients that depend on the statistics of the advecting velocity.

Correlation functions of the passive scalar can be written as averages of integrals of the
pumping along Lagrangian trajectones (see, e.g., Ref. [9]). For example, the pair correlation
function (6(r)8(0)) is proportional to the average time needed for two points moving along

- Lagrangian trajectories to run from the distance r to the distance L. Generally, correlation
functions of a passive scalar are determined by spectral transfer via evolution of Lagrangian
separations up to the scale L. For the large-scale velocity field, the Lagrangian dynamics
is determined by the stretching matrix oap = Vv, and, consequently, the statistics of the

" matrix determines correlation functions of the passive scalar. For example, the coefficient of
the logarithm in the pair correlation function of the passive scalar is P,/ X (see Refs. [1-4])
where P, is the pumping rate of 2 and Xis Lyapunov exponent that is the average of the largest
eigenvalue of the matrix 6. The coefficients in the exponential tails are more sensitive to the
statistics of &; specifically, they depend on the dimensionless parameter AT (see Ref. [4]) where
7 is the correlation time of &. The motion of the fluid particles in the random velocity field
resembles in some respects random walks, but one should remember that correlation lengths of
both the advecting velocity and of the pumping are much larger than scales from the convective
interval we are interested in. Thus the situation is opposite to one usually encountered in solid
state physics, where, e.g., random potentlal is short-range correlated in space.

Since In(L/r) is really not very large, it is of interest to find all PDF’s for the smgle-pomt
statistics of # and for the passive scalar difference Af. It is possible to do this for the Kraichnan
short-correlated case Ar < 1 when the statistics of 4 g can be regarded to be Gaussian. An
attempt to do this was made in Refs. [10,11] in terms of the statistics of the main eigenvalue
of the matrix 6. Unfortunately, the scheme works only for the dimensionality d = 2 where the
matrix ¢ has a single eigenvalue. This was noted in Ref. [12] where also the correct coefficient
in the exponential tails for an arbitrary dimensionality of space d was found. Here, we develop
a scheme enabling one to obtain all PDF’s for arbitrary d. The scheme is also interesting from
a methodological point of view. For example, its modification enables one to calculate the
statistics of local dissipation (see Ref. [13]).
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The paper is organized as follows. In Sec. 1 we find a path integral representation for the
simultaneous statistics of the passive scalar. In Sec. 2 we analyze the generating functional
for correlation functions of the passive scalar in the convective interval of scales. Using
different approaches we obtain the functional and establish the applicability conditions of our
consideration. In Sec. 3 we find explicit expressions for the single-point PDF and for the PDF
of the passive scalar difference. Ih the Conclusion we briefly discuss the results obtained.

1. GENERAL RELATIONS

The dynamics of the passive scalar § advected by the velocity field v is described by Eq.
80 +VWV0 - kVH=¢. (1.1)

Here, the term with the velocity v describes the advection of the passive scalar, the next term is
diffusive (x is the diffusion coefficient), and ¢ describes a pumping source of the passive scalar.
Both v(¢,r) and ¢(t,r) are assumed to be random functions of ¢ and r. We regard the statistics
of the velocity and source to be independent. Therefore, all correlation functions of 8 are to
be treated as averages over both statistics.

A. Simultaneous Statistics

The source ¢ is believed to possess Gaussian statistics and to be & -correlated in time. The
statistics is entirely characterized by the pair correlation function

(p(t1,1)P(t2,12)) = 8(t1 — t2)x (Ir1 — 12]) , (1.2)

where we assume that the pumping is isotropic. The function x(r) is assumed to have a
characteristic scale L, which is the pumping length. We will be interested in the statistics
of the passive scalar on scales much smaller than L.

Simultaneous correlation functions of the passive scalar 6 can be represented as coefficients
in the expansion over y of the generating functional

A) = <exp {zy / drﬁ(r)0(0,r)}> : (1.3)

where (8 is a function of the coordinates and angular brackets denote averaging over both
the statistics of the pumping ¢ and the statistics of the velocity v. The generating functional
Z(y) contains complete information about the simultaneous statistics of the passive scalar 4.
Specifically, knowing &% (y) one can reconstruct the simultaneous PDF of the passive scalar;
the problem is discussed in Sec. 3.

If characteristic scales of 3 in (1.7) are much larger than the diffusion scale rq4;5, then it is
possible to neglect diffusion when treating the generating functional (1.3). Then the left-hand
side of Eq. (1.1) describes simple advection, and it is reasonable to consider a solution of Eq.
in terms of Lagrangian trajectories g(t) introduced by Eq.

8o = v(t,0). | (1.4)

We label the trajectories with r, which are the positions of the Lagrange particles at ¢ = 0:
0(0,r) =r. Next, introducing 8(¢,r) = 6(t, 0), we rewrite Eq. (1.1) as 8,8 = ¢, which leads to
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-

0
mmﬂ=/mmmm. | (1.5)

Here we have taken into account that at ¢ = 0 the functions § and 8 coincide. Starting with (1.5)
and exploiting Gaussian pumping statistics, we can average the generating functional (1.3)
explicitly over the statistics. The result is

2 8 :
Z(y)=<exp —%— /dtU >, (1.6)

U=/mmﬂmmmmm4mx | 17

where angular brackets mean averaging over the statistics of the velocity field only.

- Being interested in the single-point statistics of § we should take S(r) = 6(r). But this is
impossible since we have neglected diffusion. We take 3(r) = §,(r) instead, where the function
6(r) tends to zero at Ar > 1 fast enough, and is normalized by the condition

/dr&,\(r) =1,

Then the generating functional (1.6) will describe the statistics of an object
Or = / dr 6A(r)8(r) ' (1.8)

smeared over a spot of size A=!. If rgis A < 1, then the statistics of the object is not sensitive to
diffusivity. On the other hand, if AL > 1, then knowing the correlation functions of 6,, we can
reconstruct single-point statistics due to the logarithmic character of the correlation functions.
To obtain single-point correlation functions one should substitute simply A — rd'i} into the
correlation functions of #,. The above inequalities Arq;y < 1 and AL >> 1 are compatible
because of Pe > 1. If we are interested in the statistics of the passive scalar differences in
points with a separation ry (where rg 3> r4:) then instead of §,(r) we should take

B(r) = 8(r —To/2) — BA(r +19/2). (1.9)
| Then the generating functional (1.6) will describe the statistics of an object
Afp = 04(ry/2) — 04(—10/2). (1.10)

Again, correlation functions of the passive scalar differences can be found from correlation
functions of Af, after the substitution A — r7}.
B. Path Integral

Below, we treat advection of the passive scalar by a large-scale velocity field, that is, we
assume that the velocity correlation length L, is larger than the scales from the convective
interval. Then for the scales one can expand the difference .

Vo (T1) — Va(r2) = tfaﬂ(t)(Tlﬁ —7T28), Gap =Vgls. (L.11)
923
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Here 0,3(t) can be treated as an r-independent matrix field. Then/Eq. (1.4) leads to

(01,0 — 02,0) = Tap(t)01,8 — 02,8) - - (1.12)
A formal solution of Eq. (1.12) is

Ol,a — 02,0 = Wop(r1,3 — T28),

) .. o (1.13)
AW =6W., W=Texp —/dt& ,
t : .

where .~ denotes antichronological ordering. Note that detW = 1; this property is a
consequence of Tra = 0 and the initial condition W = 1 at t = 0. The Lagrangian difference
in (1.7) is now rewritten as .

lo1 — &) = Via — 720)Bag(rig — 125), B=WTW, (1.14)

where the subscript T' denotes a matrix transpose. Note that det B = 1 since detW = 1.

The generating functional & (y) (1.6) can be explicitly calculated in the Kraichnan case
(see Ref. [2]) when the statistics of the velocity is d-correlated in time. Then the velocity
statistics is Gaussian and is entirely determined by the palr correlation function, which in the
convective interval is written as

(va(ti,F1)vp(t2,12)) = 6t — t2) [#0bap — K ap(ti — )] , (1.15)

d-1)D
H o) = D805 — Tarp) + Lz—)éaﬁ . (1.16)
Here 7 is a huge r-independent constant and D is a parameter characterizing the amplitude
of the strain fluctuations. The structure of Expr. (1.16) is determined by the assumed isotropy
and spacial homogeneity, and by the incompressibility condition Vv = 0. Then the statistics
of ¢ is Gaussian and is determined by the pair correlation function, which can be found from

Egs. (1.15), (1.16): i
(Uaﬁ(tl)ouv(t2)) = [(d + 1)501;46&1 - 60::1513;4 - 60[35;411] 6(tl - t2) (1 17)

Note that the correlation functlon (1.17) is r-independent, as it should be. We see from (1 17)
that the parameter D characterizes the amplitude of ¢ fluctuations.

Averaging over the statistics of & can be replaced by a path integral over unimodular
matrices W () with a weight exp (i.7). The effective action F = [dt.Z, is determined
by (1.17):

. 1 .
4L = m [(@+ D)Tr(6T6) + Tr6?] . (1.18)

" Then the generating functional (1.7) can be rewritten as the following functional integral over
unimodular matrices

0 ¢
- [ o oz ¥
Z(y)—/@W exp /dt (z.?o— -E-U) ) (1.19)
U= [ dnd j08(edx [Vira = 720 Baglrig =12 - (1.20)
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Here, we should substitute o = BtW(W)“ and recall the boundary condition W=1latt=0.

Some words about the «potential» U (1.7) figuring in (1.20). The characteristic value of
r, —r, in the integral (1.7) is of order A~! for B(r) = 6.(r). Since we assume AL >> 1, then
for single-point statistics U = P,, where P, = x(0), if B is not very large. In particular, it
is correct at moderate times |¢|, since B =1 at ¢t = 0. With increasing |¢| the argument of x
in (1.20) grows and U tends to zero when the argument of y becomes greater than L. For the
passive scalar difference when 3 is determined by (1.9) the situation is a bit more complicated.
Then U is a difference of two contributions. The first contribution behaves as for single-point
statistics. The second contribution contains x with the argument determined by r; —r; & =+ry.
Then at ¢t = 0 the meaning of the second contribution is determined again by P,, but it vanishes
with increasing |t| earlier than the first contribution.

The path integral representation (1.19) indicates that we reduced our problcm to the
quantum mechanics with d? — 1 degrees of freedom. Nevertheless to solve the problem we
should perform an additional reduction of the degrees of freedom. The conventional way to
do this is passing to eigenvalues, say, of the matrix B figuring in (1.20) (see, e.g., Ref. [14])
and excluding angular degrees of freedom. Just this way was used by Bernard, Gawedzki and
Kupiainen (see Ref. [12]). Then the authors using known facts about the quantum mechanics
associated with the eigenvalues (see, e.g., Ref. [15]) have found the coefficient in the exponential
tail of the single-point PDF of 6. Unfortunately this way is not very convenient to find the
whole PDF. To do this we will use a special representation of the matrix W in the spirit of
the nonlinear substitution introduced by Kolokolov (see Ref. [16]). That is the subject of the
next subsection.

C. Choice of Parametrization
To examine the generating functional & (y) we use a mixed rotational-triangle paramet-

rization

W=RT, B=1TT, o (1.21)
where R is an orthogonal matrix and Tisa triangular matrix; T;; = O for ¢ > j. The
parametrization (1.21) is the direct generalization of the 2d substitution suggested in Ref. [17].
Note that detT" = 1 since det W = 1. Note also that the matrix B introduced by (1.14) does
not depend on R as is seen from (1.21). That is a motivation to exclude the matrix R from
consmlerauon, integrating over the corresponding degrees of freedom in the path integral (1.19).
A Jacobian appears in the integration. To avoid an explicit calculation of the Jacobian, which
needs a discretization over time and then an analysis of an infinite matrix (see Ref. [10]), we

use an alternative procedure described below.
Let us examine the dynamics of the matrix 7. It is determined by the equation

0,T;; = 2, Ty; + Z Cir + Zei)Tkj (1.22)
i<k<j

following from Egs. (1.13) and ( 1.21). Here we used the notations
£=RT5R. » (1.23)
Next introducing the quantities
Ti =exp(ps), Ti; =explp)ni;, ifi<yj, 4 (1.24)
925
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we rewrite Eq. (1.22) as

Oipi = Zii s ' (1.25)

Omi; = (Zi; + Zji) exp(p; — pi) + Z (Zix + Zki) exp(pr — pi)nxj - (1.26)
i<k<j

Comparing (1.13) with (1.21), one can find the following expression for A= f?TBtR
A,‘j =X ifi> 7, A’i]‘ =-Z; ifi<j. (1.27)

One can easily check that the irreducible pair correlation function of Z;; has the same
form as for o;; [see Eq. (1.17)]:

(Zi; (1) Emn(t2)) = DI + 1)b6imbjn — 6inbjm — 6:0mn]é(t; — t2) . (1.28)
Furthermore, the average value of Z;; is norzero (see Ref. [10]):

dld—-2i+1)
2

Nonzero averages of Z;; are related to Lyapunov exponents (not only the first one), see Ref. [18]

(for our model see also Ref. [19]). To obtain (1.29) one should take into account that the matrix

R propogates backward in time since R=1is fixed at ¢ = 0 and we treat negative t. Solving
Eq. A= RTatR for R on a small interval T we get

- /t dt' /i(t')] :

t—1

(Z,‘j) =-D 51']' . : (1.29)

Rt — 1)~ R@)

Then with the same accuracy we get from Eq. (1.23)

t
$(t — 1) ~ RTt)6(t — T)R(t) — [i(t -7, / dt’ A(t')] . (1.30)

t—1

The average value of £ arises from the second term on the right-hand side of (1.30). The explicit
form of the average can-be found using

t
<2,-,-(t -T1) / dt’ Zmn(t’)> = %[(d + D)0imbjn — 0inbjm — 6ij6mn]. (1.31)
P
Here we utilized Eq. (1.28) and replaced the integral
t
/ dt' st — -1t
by 1/2. The reason is that the correlation function of & actually has a finite correlation time, and

therefore §(t) (representing this correlation function) should be replaced by a narrow function
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symmetric under t — —¢. Then we will get 1/2. Expressing A via £ from (1.27) in (1.30) and
calculating its average using (1.31) we get the answer (1.29).

The expressions (1.25), (1.26), (1.28), and (1.29) entirely determine the stochastic dynamics
of p; and 7;;. Using the conventional approach (see Refs. [20-24]) correlation functions of
these degrees of freedom can be described in terms of a path integral over p;, 7;; and over
auxiliary fields which we denote by m; and u;, (i < n). This integral should be taken w1th
the welght exp(i [ dt Z), where the Lagrangian is

2’=Zma [atpa+DM--}-—l—)]+— dZm —(Zm,,) +

a=1

+iDd ) exp(2p; — 2pip; +2iDd S bijmie expQpr — 20505 +
1<j <k<j

+ ) " piOmi; +iDd Y pim inTkmMkn €XD(20k — 2p3) - (1.32)
1<J i<k<m,n .

Since the matrix B in accordance with (1.21) does not depend on Ritis enough to know the
statistics of p, and 7;; to determine the average (1.6). Therefore, instead of (1.19) we get

0
2
F() = / B pDn DDy exp / dt (if—%U) . (1.33)

Here U is determined by (1.20), where the matrix B is determined by Egs. (1.21), (1.24).

Thus we obtained the expression for the generating functional (1.3) in terms of the
functional (path) integral which is convenient for the analysis presented in the subsequent
section.

2. GENERATING FUNCTIONAL

Here we calculate the generating functional (1.3) for a single-point statistics of € that is of
the object (1.8) corresponding to 3(r) = §,(r), and also the statistics of the difference that is of
the object (1.10) corresponding to (1.9). The starting point for the subsequent consideration is
the expression (1.33). There are different ways to examine & (y). We will describe two schemes
leading to the same answer but carrying in some sense complementary information. We also
believe that consideration of the different schemes is useful from a methodological pomt of
view. A modification of the second scheme is presented in the Appendix.

A. Saddle-Point Approach

The first way to obtain the answer for the generating functional (1.3) is by using the saddle-
point approximation for the path integral (1.33). The inequalities justifying the approximation
are AL > 1 for the object (1.8) and Ar >> 1 for the object (1.10).

As we will see, large values of the differences p; — pr, (¢ < k) will be relevant for us. Then
fluctuations of 7 and p are suppressed and it is possible to neglect the fluctuations. Therefore
we can omit the integration over 7 and u in (1.33), substituting n = =0 mto (1.32). After
that we obtain a reduced Lagrangian:
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a=1

d , . 2
gr=zma[at,,a+pé(d+_;‘@]+% dzmi—(zm,,) L@

Now, to obtain &% (y) one should integrate the exponent in (1.33) (with Z,) over p, and m,.
To examine (2.1) it is convenient to pass to new variables ¢, = Ogppp and Mg = Ogpma,
where O is an orthogonal matrix. We make the following transformation:

[ 3 ' A
¢1 = &= [(d Dpr+(d—-3)p+...+(1 - d)pdl,
: (2.2)

1
= o, pa= ==t pt...Fpal.
) Pd \/E[Pl P2 pdl

)

Then the expression (2.1) will. be rewritten as

Dd .Dd [d(d?-1)
1z, -—zZmaatq&a — mi+z—§—\/-(—3———)ml. 2.3)

a=1 a=1

The Lagrangian (2.3) is a sum over different degrees of freedom. The dynamics of ¢, is
ballistic, whereas the dynamics of ¢, for d > a > 1 is purely diffusive. The condition detT = 1
means ¢4 = 0, correspondinly the dynamics of ¢4 determined by the Lagrangian (2.3) is trivial:
0:¢: = 0. We will see that times determining the main contribution to the generating functional
are large enough that ¢, >> ¢, for the relevant region. Therefore, the potential U (1.20) depends
essentially only on ¢, and it is possible to integrate explicitly over ¢, and m, for a > 1. After
that we are left with only one degree of freedom, which is described by the Lagrangian

- Dd [d(d* 1 Dd . ‘ ’
i) = imy (3t¢1 + TV —(——?;-——2> - Tmf _ 2.4

Neglecting all ¢, for a > 1 and inverting transformation (2.2) we obtain

/3(d—1) d—2a+1 '
p1 = M‘bl , Po N =P (2.5)

We will see below that the characteristic value ¢; > 1. Therefore the characteristic value of
e”' is much larger than other e?=, and we conclude that the potential U depends really only on
p1. For the case of the single-point statistics, the characteristic value of the difference r; —r;
in (1.20) is A~!. Then it follows from (1.21) and (1.24) that the potential U decreases from
P, to zero near the point p; = In(LA), which is near the point ¢; = ¢,, where

_ld@d+1)
o= 3(d_l)ln(LA)- (2.6)

For the difference the potential increases from zero to 2P; at ¢; = ¢r, where

dd+1) -
o = ,/3(d_ Din @7
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and then decreases from 2P, to zero near ¢, = @,. The expressions (2.6) and (2.7) determine
the characteristic values of ¢;, which are actually large, since LA > 1 or L/ry > 1; this
Justlﬁes our conclusions.

Now we can employ the saddle-point approximation:

0
2
n&(y) ~ / dt (z'z’,—%u) , 2.8)
—o0 inst '

where we should substitute solutions of the extremal conditions, which we will call instantonic
equations. The instantonic equations, which can be found from extremal conditions for
iZy —y*U/2, are

Dd [d(d? -1)
RSl Dot Sl
3t¢1 > 3

2 .
— \
Oy =1 296, : : (2.10)

= —iDdm, , (2.9)

Egs. conserve the «energy»

d@ -1 Y
. —sz,\/—3—) : mf+%v. , 2.11)

'The conservation law is satisfied since 1% — yU /2 does not explicitly depend on ¢t. The
«energy» (2.11) is equal to zero, since as t — —oo the value of 771, should tend to zero. This
property can be treated as the extremal condition when §.Z, — y?U/2 is varied over the initial
value of ¢,. Equating the «energy» (2.11) to zero, we can express 7, via ¢. Next, since (2.11)
is zero, the saddle-point value of & (y) (2.8) can be written as 1 f d¢y Ty, where the integral
over ¢, goes from zero to infinity.

Substituting the expression for 1 in terms of ¢; into i f d¢, m,, we get for the single-point
statistics

In & (y) ~

dd+1) [1_ L+l

. BT 1)] In(ZA). @.12)

Note that the expression (2.12) has (as a function of y) two branch points y = iy,inge, Where '

, _ Dd*@*-1)

ysing -z 12P2 (2.13)

The same procedure can be done for the passive scalar difference, or, more precisely, for the -
object (1.10). Taking into account the presence of the jumps (2.6) and (2.7) in the potential
U, we get an answer slightly different from (2.12):

' dd+1) 24y’ P,
~ —_ +o—_— .
In F) = =5 [1 1+ BT | o), e
Dd(d? — 1) .
2 = —_—
ysing 24P2 . , (2. 15)
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Note that (2.14) does not depend on the pumping scale L, but still depends on the cutoff A.

The characteristic value of ¢; is determined by the quantity (2.6) which is much larger
than unity. Then it follows from (2.5) that exp(2p; —2p;) < 1, © > 7, (excluding a short initial
stage of evolution) and we see from (1.32) that fluctuations of the fields 5 are suppressed in
comparison, say, with p,. This justifies neglecting the fields 7 and p leading to the reduced
Lagrangian (2.1). Next, the dynarmcs of ¢, fora > 1 is diffusive, and it follows from (2.3)
that the characteristic value of ¢, can be estimated to be /Dd|t|. As follows from (2.3),
8:¢1 ~ Dd*/?, and we find from (2.6) the instantonic lifetime

ti, = D~'d~*In(LA), (2.16)

which determines times producing nonzero contributions to the effective action. At [t] ~ tu,
the characteristic values of ¢, for a > 1 are of order 1/In(LA)/d, and we conclude that

Pa 1
¢1 d\/ lni EA;

at times |t| ~ t;;. The inequality (2.17) justifies passing to the Lagrangian (2.4). The same
arguments can be applied to the generating functional for the passive scalar diﬁ'erence; the only
modification is in the substitution In(LA) — In(roA).

There are also additional applicability conditions for the results (2.12) and (2.14).
To establish the conditions, one should go beyond the main order of the saddle-point
approximation. It will be more convenient for us to develop an alternative scheme, which
enables one to find-the conditions more simply. That is the subject of the next subsection.

N

<1 ' (2.17)

B. Schrodinger equation

Here we present another way to get the answers (2.12) and (2.14). As before, we start with
the path integral representation (1.33) for the generation functional &(y).

Unfortunately it is impossible to get a closed equation for £(y). To avoid the difficulty
we introduce an auxiliary quantity

. ‘
2
¥(t,y, po, M) = /@p@n@m@u exp /dt’ (i.?’— %—U) . (2.18)

—t p—t)=po,n(—t)=nq

It follows from the definition (2.18) that'

Fw) = jim [ ] doadns ¥t.v,p,m). 219)

Eq. for the function ¥ can be obtained from the expression (1.32) and the definition (2.18):
Di|EG? 1(&K o
o= [Za—pz‘z (Za;:)

g g 9
+2) " exp(2p; — 2p0) 5 o o, +4 ) exp(2px — 2p0) 5 — Bm oM +

i=]

i<j i<k<j j Ok
a 0 U
+2 )0 expQpe 2005 — 5 —Tkmflkn [ ¥ - —2——\v (2.20)
i<k<m,n Mim OTin ‘
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We see that Eq. (2.20) for ¥ resembles the Schrodinger equation. The initial condition for the
equation can be found directly from the definition (2.18): :

w(t=0,y,p,m = [ ] 6(pa)8(n:5). (2.21)

The value of &, in accordance with (2.19), is determined by the integral of ¥ over n and p.
This integral is equal to unity at ¢ = 0, and then varies with increasing time ¢ due to U # 0,
since only the term with U in (2.21) breaks the conservation of the integral. Thus, to find &
we must establish the evolution of the function ¥ from ¢ = 0 to large t. 4

Below we concentrate on the single-point statistics. The scheme can obviously be
generalized for the passive scalar difference.

Let us first describe the evolution qualitatively. The initial condition (2.21) shows that at -
t = 0'the function ¥ is concentrated at the origin. Then it undergoes spreading in all directions,
except for p; + ...+ pg, since the operator on the right-hand side of (2.20) commutes with
p1+.. . +pq. Thisisa consequence of the condition det T = 1 (to be satisfied), which implies that
during evolution p, +. ..+ p; = 0. This means that a solution of (2.20) is ¥ o< §(p; +. . .+ pg).
The function ¥ is smeared diffusively with time, and also moves as a whole in some direction,
which is determined by the term with the first derivative in (2.20). The rate of ballistic motion is

(0p) =D XHED @.2)

Therefore .\P describes a cloud, the center of which moves according to the law

-2+
NEPY.CES LD

Effective diffusion coefficients for the #’s decrease with increasing ¢, since in accordance
with (2.23) the differences py, — p;, figuring in (2.20), are negative and grow in absolute value.
Therefore diffusion over 7 stops when the characteristic values of p; — p;, becomes greater than
unity. Note that the «frozen» values of 1 do not depend on y, since U can be considered
uniform during the initial stage of evolution. After that the 7’s are frozen, diffusion continues
only over the p’s. If the cloud is inside the region where I/ ~ P,, then evolution of the cloud
is not influenced by U. After a period of time t;; (2.16), the cloud reaches a barrier, where the
" potential U decreases from P, to 0. The subsequent history depends on the value of y. For
moderate y the cloud passes this barrier and continues to move at the same rate. After this, the
integral of ¥ will not change in time, and its value will determine the generating functional & (y).
Naive estimates yield In Z(y) = —y?t;;/2, which reproduces the pair correlation function of 4.

Special consideration is needed. if |y| 3> Ysing, Or if y is close t0 +iysing, Where y,ing
is defined by (2.13). Just this region determines the PDF’s, and is consequently of special
interest. Note that y = iy,;,, corresponds to the appearance of a bound state near the
pumping boundary (where U decreases from P; to zero). If y > y4ing, then the front of the
cloud reaches the jump of the potential much earlier than #;;. The remainder of the cloud
(inside the potential well) is damped due to the term with y, and does not contribute to & (y).
If |y| > Ysing then Z(y) > exp(—y*t:/2); the asymptotics of F(y) is actually exponential
in the case. If |y £ iysing| € Ysing then the cloud stays near the pumping boundary for a
long time, that is the shape of ¥ inside the region I/ ~ P, varies in time comparatively slowly.
Furthermore, a part of ¥ percolates out to the region where U ~ 0, and the integral of ¥
grows with increasing |t|. As y approaches iy,;ng, this stage lasts longer. One can say that the

2.23)
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back of the cloud ¥ gives the right answer for #(y). The important point is that if y is not
very close to iy,ing, then during the time ‘P leaves the potential, the width of ¥ in terms of
diffusive degrees of freedom is much less than In LA. This means that the function W is really
narrow, which justifies our consideration.

For a quantitative analysis it is convenient to pass to the variables ¢; (2.2). Since the
n-dependence of ¥ is frozen after the initial evolution, it is possible to obtain an equation for
the integral of ¥ over 7:

V(1. ..\ Pa-1) = /d¢de"7ij v, (2-24)

where we also included an integration over ¢, to remove the factor §(p; + ... + pg). Eq. for
the function (2.24) is

. Dd[&! & [dd@ 1) 8 U -
8,% = -2—[2 @ N3 o _2_—\{" (2.25)

i=}

where U is function of ¢, only which can be found by substituting into U the «frozen» values of
7’s. Qualitatively U has the same structure as U itself. One can conclude from (2.25) that the

cloud described by W moves ballistically in the ¢; direction and spreads along other directions.
.We are going to treat the situation when the cloud remains narrow during the relevant part of
the evolution. Then one can integrate ¥ over all ¢;,7 > l ina s1m11ar way as in the case with
n’s, and get a 1d equation for

d—1 -
w0 = [ L
2

The function ¥ satisfies Eq.

- _Dd| o dd2—1)| 8 o U :
atw—T[ga—,/ ]&mw 5. (2.26)

The initial condition for Eq. (2.26) is W(t = 0) = §(¢;). The potential Uis obtained from U
by the substitution ¢, — 0 for a > 0. In fact, for the direction (2.23) the potential U depends
only on p;. The barrier is reached when p; ~ In LA. Passing to the variables ¢;, we conclude
that the potential U diminishes from P, at ¢; < ¢, to zero at ¢; > ¢,, where ¢, is defined
by (2.6).

The character of the solution of Eq. (2.26) can be analyzed semiqualitatively in terms of
the width ! of ¥ over ¢, and its amplitude h. When ¥ reaches the pumping boundary, it stops
there for a period of time. Then the width [ and the amplitude h are governed by the equations

dl Dd dh _ Ddh y*Ph b
T =—Dd\ + T @ B 3o (2.27)

where A = (/d(d? — 1)/12, DdA is the rate of cloud motion along the ¢; direction (when
U = const), and Dd is the diffusion coefficient for the ¢, direction. One can estimate from
the first equation the width [ ~ 1/X. Then from the second equation the height h decreases or
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grows in time depending on y. The characteristic y where the regime changes is of the order
lysmgl ~ Dd)? / P,. We show this by consistent calculations.

Eqution (2.26) can be solved analytically, e.g., by the I.ap]ace transform over time ¢.- Taking
the Laplace transform, one gets

2
p¥E) - 86 = 22 [% -y 1@—-—2] 3540 - ——U(q);)‘{’(p) 228)

We are interesting in the bound state described by this equation. Solutions for ¥(p) in the
intervals (—o00,0), (0, #a), (¢a, 00) are exponential, and must be matched. The function ¥(p)
as a function of p has two branch points at ’

_ DdNd*-1) P, _ Ddd*-1)

nh=- 24 —T Pz“—“Ta (2.29)
coming from the regions ¢; < ¢, and ¢; > ¢,, respectively. When one of these branch points
passes p = 0, ¥ starts to grow exponentially in time. This happens when y passes £Ysing,
moving along the imaginary axis.

The 'value of the generating functional is determined in accordance with (2.19) by the
large-time behavior of ¥(¢). This means that we should be interested in the behavior of ¥(p)
at small p. The function [ d¢, ‘P(p) in (2.19) has a pole at p = 0 related to the asymptotic .

behavior
- . 2p 3
¥(p) o< exp (—D—d\,_—d(dz — l)dn) ’

at ¢; > ¢, and small p; the behavxor can be found from (2.28). The residue of [ d¢ ¥(p)
at the pole determines & (y). To find the residue we must analyze the behavior of W(p) at
0 < ¢; < ¢x. At small p there are two contributions to ¥, proportional to

2 2 __ 2 '
exp{ (\/d(dlz D, \/d(dn D, v ) ¢1} (2.30)

as follows from (2.28) at p = 0. Therefore the residue, which is determined by the integral
f do, ¥(p) over the region ¢; > ¢@,, is proportional to

2 2 2
exp{(\/d(dlz ”+\/d(dl2 Dy P’)¢A}. | 2.31)

Substituting (2.6) here, we reproduce (2.12).

Let us now establish the applicability condition for the above procedure. The
expression (2.31) implies that the exponent with the minus sign in (2.30) makes a negligible
contribution to ¥(p) at ¢; = ¢,. The condition is satisfied if

Dd
2 2 2
[¥* + Yoingl#R > B

Substituting (2.6) and (2.13) here, we obtain
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+ iy, -
’M > (d*In’LA) ™" @2.32)
Ysing :

For y close to +iy,ng, One must be careful, since then the subtle analytic structure of & (y)
will be relevant. As an analysis for d = 2 shows & (y) has a system of poles along the imaginary
semiaxis starting from +iy,;,, and the parameter (d“lnzLA)_l determines the separation
between the poles. The poles correspond to bound states. The assertion about the cut made in
the previous subsection is related to the restrictions of the saddle-point approximation which
cannot feel this fine pole structure; it yields the cut, which is a picture averaged over the interpole
distances. This averaged picture is acceptable at the condition (2.32).

Note that the same criterion (2.32) justifies our assumption that the cloud described by
¥ is narrow during the relcvant part of the evolution. Namely, the duration of the part is
détermined by the time ¢..;; = 1 (see (2.29)). This is the time that the cloud stays near the
barrier. For y close to +iying, the time can be estimated to be tew ~ Po|ysing||y F t¥singl.
Then the diffusive width v/Ddt.,;; of ¥ in the directions ¢, for a > 1 is much less than ¢,
precisely if (2.32) is satisfied. In principle the diffusive dynamics at d > 2 could modify the
noted fine pole structure of & ; this problem requires additional investigation.

The same procedure can be done for the passive scalar differences. The cloud ¥ should pass
the region p; < In(L/r,) before it reaches the potential. Then it enters the region U = 2P,
with some finite diffusive width. One can note, however, that this is irrelevant. The only
characteristics of the potential that are needed are its value (here 2P, instead of P,) and the
length of the path inside it (which is Ap; = In(roA) instead of In(LA)). The evolution of ¥ goes
in the same way as in the case of single-point statistics. Again, we get (2.14) and the criterion
analogous to (2.32). ;

In this subsection we presented an analysis based on the dynamical equation (2.20) for
the auxiliary object ¥. The results obtained can be reproduced also in alternative language:
for this we must introduce another auxiliary object, the equation for which is stationary. The
corresponding scheme, which nught be interesting from a methodological point of view, is
sketched in the Appendix.

3. CALCULATION OF PDF

In this séction we calculate the PDF’s & for the objects (1.8) and (1.10). The most
convenient way to do so is by using the relation

Py = / Y exp(~igH)AQ), B3
where 9 is
J= /drﬂ(r)H(O,r). 3.2)
Let us recall that knoth Z(9), one can also restore the moments of ¥:

(19| = / 9|0 P(9). 63
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The generating functional in (3.1) is determined by (2.12) or (2.14). Being interested in
the main exponential dependence of the PDF’s for the objects (1.8) and (1.10), we can forget
about preexponents. Then

PW) = / exp (—iyd +q[1—y/1+ yz/ymg]) (3.4)

where for the single-point statistics and for the statistics of the passive scalar difference
respectively

, _Ddd@-1) " , _ Ddd-1)

yaing —W ) ysing _2—4—P2_ ’ (3'5)
did+1 did+1
Iyt 3 ) In(LA), = & 3 ) In(roA). ‘ (3.6)

Since both ¢ defined by (3.6) are regarded to be much larger than unity, the integral (3.4) can
be calculated in the saddle-point approximation. The saddle-point value is

i Ysing
Yor = 1 + qz/yszng192 (3‘7)
Then
» |
In PW) =~ g (1 —qf1+ y“;g ) . 338).

This expression leads to the exponential tail
In P(9) ~ ~Ysing|9| , ‘ 3.9

realized at || > q/ysing. The coefficient y,in, in (3.9) determined by (2.13) is in agreement
with the result obtained in Ref. [12].
The expression (3.8) enables one to find the following averages in accordance with (3.3):

2P, 4P,
Jd— DD NN, (88)7) = a5 Introd). (.10

2
(63) = d(d-1)D

The expressions (3.10) can also be obtained by direct expansion of Z (y) from (2.12) or (2.14).
The universal tail (3.9) is realized if -

Br > 1/(62)dIn(LA), A8x> /(@82 dIn(roA). | (3.11)

Since both logarithms are assumed to be large, we conclude that there exists a relatively wide
region where the statistics of 1) is approximately Gaussian; the region is determined by the
inequalities inverse to (3.11).

Let us discuss the applicability conditions of the expression (3.8). First, if one calculates
the passive scalar PDF by the saddle point method, then the position of the saddle point is

determined by (2.32) if
2, [ B2y 2 1
I d D In“(LA). , (3.12)
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The applicability domain of the saddle-point method overlaps the region of validity of (2.12)
for the generation function %(y). The above inequalities are correct for 8,; for A9, one must
replace In(LA) with In(ryA). Second, fluctuations of y have to be small compared to the distance
between y,, and y,in,. This gives the same criterion (3.12).

Let us stress that though formally our procedure is incorrect at 9 2 d2y/P,/D In*(LA) the
answer will be the same: the PDF will be determined by the exponential tail (3.9). The point
is that the character of the integral (3.1) at such extremely large J will be determined by the
position of the singular point of & (y) nearest to the real axis. This is just iy,,,, leading
to (3.9). To conclude, only the character of the preexponent in F(¥9) is changed at 9 ~
~ d*\/P,/D lnz(LA) whereas the principal exponential behavior of .7(19) remains unchanged
there.

4. CONCLUSION

The single-point statistics of the passive scalar # and the statistics of its difference A@ are
traditional objects which carry essential information about correlation functions of the passive
scalar in the convective interval. We examined the passive scalar in the large-scale turbulent
flow, where the correlation functions logarithmically depend on scale. Since the logarithms
are actually not very large, it is useful to have all the PDF’s of § and Af. That was the main
purpose of our investigation, which was performed in the context of the Kraichnan model. The
single-point PDF for the passive scalar and the PDF for the passive scalar differences can be
obtained from (3.8) if we substitute A — 7. 4if ! where 74; s is the diffusive length. Though both
the advecting velocity and the pumping force in the Kraichnan model are considered 6-cor-
related in time, we hope that our results are universal, that is, are true in the limit when the
size of the convective interval tends to infinity for arbitrary temporal behavior of the velocity
and pumping. The reason is that the spectral transfer time grows with increasing convective
interval, and in the limit is much larger than the correlation times of the velocity and pumping.

We believe also that the analytic scheme proposed in our work could be extended for
other problems related to the passive scalar statistics. Note as an example Ref. [13] where a
modification of the scheme enabled one to find the statistics of the passive scalar dissipation. It
is also useful for investigating the large-scale statistics (on scales larger that the pumping length)
of the passive scalar see Ref. [25]. We also hope that it is possible to go beyond the case of the
large-scale velocity field using a perturbation technique of the type proposed in Refs. [26-28].

We are grateful to E. Balkovsky, M. Chertkov, G. Falkovich, K. Gawedzki and
M. Olshanetsky for useful discussions. This work was supported in part by the Einstein and
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Grant 98-02-17814), by Soros Foundation (M. S., Grant a98-674) and by INTAS (M. S., Grant
96-0457) within the ICFPM program.

APPENDIX

Hgre we present an alternative way to obtain the results (2.12) and (2.14). We use an
auxiliary’ quantity
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0

E(y, po,m0) = /@p@n@m@u exp [/ dt (i-‘?’— %U)] , (A1)
2(0)=po,n(0)=70

(o)
Z(y) = £(3,0,0). . A2

The function E can be also defined as ‘
£y, po,m0) = lim / I dea dni; ¥t y,0,m), (A3)

where ¥ is governed by Eq. (2.20) with initial condition ¥(¢ = 0,y, p,n) = 8(p — po)6(n — no).
The equation for = can be found from Egs. (1.32) and (A.1):

d d 2

| 5]

= + + _—+
|:iz=l:ap‘2 d(i-llapi) Z(d “ 1)

=1

423 exn(2p; — 200y +4 Y exp(2pi — 20,

L84
o3 Onij Onix

2
1<J a 1<k<j
a 0 y?U
+ 20k — 20)Mkm kn —J|E-=——E=0, A4
21<I§nncxp( Pk — 2Pi) MmNk e amn] 575=0 (A4)

The boundary condition for Eq. (A.4) follows from the definition (A.1): for large enough p;, 7);

the potential U = 0 at t = 0 and also remains zero at finite times ¢. Therefore the integral

(A.1) must be equal to unity in the case. Thus E(y, p,n) must tend to unity where p, N — 00.
Let us rewrite Eq. (A.4) in terms of the variables (2.2):

(M +3)@E+9 = E= 31‘+€, : (A.5)
. & d(d? — 1) U '
+ —_— — .
"=V 3 a¢1 Dd’ | (A6)
B IEATT)y LD 2
+2) exp(2pr — 2pi) 55 4 exp(2pk — 2piMkn 77— 57— +
Eyv) 32 . .
9% o Ok Lk Oin O
+2 > expQpk — 2p M Thn 5— 0 9 (A7)
1<k<m n a ‘Lm an‘l’n

Here U as a function of ¢, is equal to P, inside a region restricted by ¢, and ¢} (where ¢f are
functions of variables ¢,, ..., ¢4,7) and tends to zero outside the region. We solve Eq. (A.5)
using perturbation theory over 4, £. Then the zero-order equation is

0= =0. . (A.8)

Equation (A.8) can easily be solved at ¢, < '¢1 < ¢r; the answer is

| ——)\\/:—_:E-%_L%exp {— (\/)\2 + yzfz/Dd - )\) (o —-¢>1)} ) | (A.9)

v

[d]
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where A = /d(d? — 1)/12, DdA is the rate of the cloud motion along the ¢, direction. The
result (A.9) can be obtained using the inequality /A% + y2P,/DdIn LA >> 1. The derivative
0E,/0¢; =0 at ¢; < ¢, . However, Z; # 1 in this region. This is due to the following fact:
this region corresponds to the evolution of ¥ when its initial position is to the left of potential
U (see (A.3)). During evolution, cloud ¥ passes the region of U and its integral over p, 5
changes. Then E is not equal to 1. Only when the distance between the initial position and
potential is of order In*LA will the diffusion of the cloud lead to smallness of the part of ¥ that
passes the potential U, and E becomes closer to unity. Thus, function Z has a long tail from
the potential pointing toward negative ¢,, where it is not equal to 1. The procedure of finding
E from Eq. (A.8) corresponds to the geometrical optics approximation (taking into account
only derivatives in propagation direction; this allows one to get the fact of propagation). This
tail of £ in this approximation is none other than the shadow of potential U. Higher orders of
perturbation theory over the transverse derivatives correspond to diffraction corrections.

Now let us consider the correction £. Eq. for it looks like (T +4)§ = —4E,. Again let us
neglect 4 on the left-hand side and solve the equation. Z; is some exponential function with
scale of the order 1. Then 4Z, ~ E;. Note that 4Z, is almost equal to zero at ¢, > ¢;. To
estimate £ one must construct the Green function G(¢,|¢o) for operator ¥

-

GOlgn) = 57ex (— (\/ A2+yDZ2 A) ¢o> (I—Cexp( 20 2 P «m)) . (A.10)

where
C= (W-,\)/(Wu) :

The unity in the parentheses in (A.10) gives the correction for £, which has the same exponential
factor as Z;. Thus £ does not change the answer, to logarithmic accuracy. The second term
in the parentheses gains while ¢, is close to ¢. This is due to the nonzero width of the cloud
Z and to the dependence of ¢;; on other variables. Again, it does not change the exponent.

To get & from Z we in accordance with (A.2) have to substitute zero values of p and 7 into-
E. Then ¢, = 0 and @} = ¢, where ¢, is defined by (2.6). Substituting the values into (A.9)
we reproduce (2.12). The case of the passive scalar differences can be considered in a similar
way.
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