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We propose а kinetic mode! of transient nonequilibrium phenomena in meta!s exposed to 
u!trashort !aser pu!ses when heated e!ectrons affect the !аШсе through direct e!ectron-phi.>non 
interaction. This mode! describes the destruction of а metal under intense 1aser pumping. 
We derive the system of equations for the metal, wblch consists of hot e!ectrons and а cQ!d 
!attice. Hot е!есиоns are described with the help of the Boltzmann equation and equation of 
thermoconductivity. We use the equations оС motion for lattice displacements with the electron 
force inc!uded. The lattice deformation is estimated immediately after the !aser pulse up to the time 
of e!ectron temperature relaxation. An estimate shows that the ablation regime can ье acbleved. 

1. INТRОDUСГЮN 

@1999 

The first theoretical prediction of transient laser-induced nonequilibrium electron 
temperature phenomena in metals was made more than twenty years ago [1]. It was shown 
that ап ultrashort laser pulse ( ..... 10-13_10-12 s) produces а nonequilibrium state ofthe electron 
gas near а metal surface. However, experimental picosecond ( ..... 10-12 s) laser studies of 
thermally assisted multiphonon photoemission were ипаЫе to measure, and еуеп failed to 
observe this nonequilibrium electron state [2]. This failure had а simple explanation in terms 
of the theory of electron-lattice thermal relaxation [3], which yields а relaxation time Те-l ..... 

- 10-12 S. It was necessary to use power pulses shorter tnan Te-l. Such measurements with 
subpicosecond (- 10-13 s) pulses revealed а tmnsient nonequilibrium regime in tmnsrnittivity 
and IR ref1ection [4-8], giant electron emission [9-11] and the emission of light [12-14]. 

We brief1y summarize the physical process. The ultrashort laser pulse (f1t _ 10-14 -
10-13 s) absorbed in а metal mises the electron temperature Те considembly higher than 
the lattice temperature Ьесаше of the difference in their specific heats (Се « Cl)' 

Subsequent electron cooling results mainly from two processes, namely electron-lattice thermal 
relaxation and electron thermoconductivity. These are шuаllу modeled with а set of coupled 
thermoconductivity equations for the electron and lattice components. These equations are 
nonlinear and сап genemlly Ье solved numerically, yielding the electron tempemture relaxation. 
The solution also shows that the subsequent ablation regime сап ье achieyed, which involves the 
«cold» destruction of а metal into the parts consisting of different phases. «Hot» destruction, 
namely melting, сап also ье studied with the help of this solution [15]. However, such ап 
approach has seveml shortcornings. First, the question remains as to whether the equations 
of thermoconductivity are stil1 hold at such high frequencies (..... 1/ Ы). Second and more· 
importantly, these equations сап оnlу describe the temperature dynarnics of а metal but not 
electron transport, lattice deformation, thermionic emission, etc. It is evident that а strict 
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kinetic approach is needed to describe the various transport phenomena properly and derive 
thorougbly the equation of thennoconductivity [16]. 

In this paper we present а theory of transient nonequilibrium phenomena in metals 
subject to ultrashort laser pulses. Our theory is based оп the Boltzrnann equation for the 
nonequilibrium electronic partition function. We focus rnainly оп фпеs shorter than the 
electron-Iattice relaxation time Te-l. Electrons therefore affect the lattice via direct electron
phonon interactions. То consider lattice deforrnations, we use the equations of the so-called 
dynamical theory of ela"sticity. Lattice defonnation is due to the nonequilibrium electron state 
and results from the effective «driving» force (proportional to VT;) оп the lattice. This force 
also governs the renonnalization (depending оп 'Те) ofthe lattice constants (sound velocity and 
optical phonon gap). We show that th~ driving force leads to large lattice deforrnations, and сап 
destroy the crystal. These results are in agreement with measurements of time-resolved Х -ray 
diffraction synchronized with laser pumping [17]. А nonstationary increase in lattice parameterS 
of Аи( 111) апЬ Pt( 111) sing1e crystals was detected. Measurements of the shift and intensity 
variation of Bragg peaks, as well as the Debye-Waller factor, enables опе to separate the effects 
of lattice defonnation and heating. The transforrnation of elastic into plastic defonnation was 
also observed. 

The plan of the paper is as follows. In Sec. 2 we present the kinetic theory of the process 
under study: the Boltzmann equation for ап electron gas and the elastic equation for the lattice 
are derived, along with the equation for thennoconductivity, In Sec.3, 'the solutions of the 
proposed equations are found for the times of interest. The lattice deforrnation is calculated. 
In Sec. 4 the solutions are analyzed. The lattice defonnation is estirnated analytically in various 
limiting cases. Тhe possibility of crystal destruction under laser pumping in discussed. 

2. THEORETICAL FRAМEWORК 
\ 

l..et us briefly r~capitulate the main equations of our problem. For the lattice defonnation 
we use the so-called equation of dynamical theory of elasticity [18,19] 

(1) 

where р is the lattice density, )lijlm is the tensor of elastic constants, and the driving force 
describes the effect of free carriers оп the lattice, 

д J 1Д3р 
G i = BXj (211')3 )Чj(Р)fр(r~ t). (2) 

The defonnation potential Лij(Р) yields the change in the local electron spectrum, . 
&(p,r, t) = Лij(Р)Uij(r, t). 

То find the electron distribution function fp(r, t), we ше the Boltzrnann equation with 
the electron-phonon collision integral 

Stfp = L J (~:~3 w~~8(C:p+k - С:р + ".{n» [(1 - fp)fp,N~n) - fp(1 - fp,)(1 + N~n»] +. 
n . 

+ L J (~:~3 w~~8(C:p+k - С: р - ",,~n» [(1.- fp)fp,(1 + N~n» - fp(1 - f p' )N~n)], (3) 
n 
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with the probability of а scattering process involving а рЬопоп of the n-th branch, 

(n) _ 7г 1 (n) 12 
W pk - -т,i) ei >\ij(p)kj , 

(XJJk 

where e~n) апд у .. {n) are the polarization апд spectrum of рЬопоns of the n-th branch, 
respectively. 

Since the рЬопоп-рЬопоп relaxation time is large ('" 10-11 s) compared with tl1e times 
of interest, the рЬопоп distribution function N~n) takes its equilibrium· value at the lattice 
temperature Tl, 

(n)( _ 1 
N k 71) - exp(w(n) /Tl ) - 1 . 

ТЬе electron-electron relaxation time дие to scattering оп phonons т '" Тj-I ,-..) 10-14 S (see 
below) is' тисЬ less than the characteristic time of laser риЦlРing. Тherefore the electron gas 
is nearly in thermal equilibrium at the 10cal temperature Te(r, t). We seek а solution of the 
Boltzmann equation in the fonn 

(4) 

where 10 is the 10cal equilibrium Fermi-Dirac partitionfunction and Хр is the nonequilibrium 
part. We obtain for the collision integral (3) 

Sf "';'·S' -1 ( (хр)) 810 
t р- tJo -Т Хр - ('i[ де' (5) 

w~ere the scatteringrate 

ТЬе latter estirnate is valid when the ion temperature Т! is considerably higher than the Debye 
temperature; the dimensionless electron-phonon coupling constant 9 '" л/еF '" 1. Тhe· 
brackets denote integration over the Fermi surface 

J 2dSF 
( ... ) = v(27Г)З ( ... ). 

ТЬе first tenn in (5) comes from the contribution of the 10cal equilibrium partition function: 

Stlo = L J (~:;3 w~~ [!о(ер) ~ !о(ер,)] [N~n)(Te) - N~n)(TI)] х 
n 

х [б(ер - ер, - win » + б(ер - ер, + win »] . (6) 

Tbls tenn describes the energy flow from electrons· to phonons when they are at different 
temperatures. Тhis term is absent if the temperatures of the 'electron апд lattice subsystems 
coincide. 
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The nonequi1ibrium part of the electron distribution fиnction has to satisfy two conditions. 
The first is indeed the conservation law of the number of carriers: 

J dЗр д/о 
(21Г)З Хр де = о. 

This expression determines the chemical potential J.L and results in the renormalization of the 
deformation potential: л(р) -t л(р) - (Л(р»)/(l). 

The second condition 

(7) 

enables us to define the local temperature Те (see Ref. 20), i.e., to write the equation of 
thermoconductivity. 

Substituting Eq. (4) into the Boltzmann equation, we get 

BXP+vBXP+Xp-(Хр)/(I) = _еvЕ_л.(р/Uij+ер-J.L (дТе+удТе ) +Stf, /д/о . (8) 
Bt Br т 'з Bt Те Bt Br о де 

То obtain the equation for the local temperature Te(r, t), we mиltiply the Boltzmann 
equation (8) Ьу (ер - м)д/о/де and integrate over р. With the help of Eq. (7) we find the 
equation of thermoconductivity 

се(Те ) д~e + divq = Q - а(Те - Tt), (9) 

where се(Те ) = 1Г2 (I)Те /3 == fЗТе is the electron heat capacity and q is the heat flow: 

J 2dЗр д/о 
q = (21Г)З у(ер - М)Хр"&,. 

Using Eq. (6), we сап find the last (relaxation) term оп the right-hand side of Eq. (9). 
high temperatures Тl, Те » (.V D, the electron-Iattice relaxation constant а is 

-"" J 2dSFdS~ (n' (n) 
а - L...J vv'(21Г)6 wpk (.Vk . 

n 

The density Q of laser energy absorbed Ьу electrons сап Ье taken in the form 

(10) 

For 

(11) 

where R is the reflectivity and к, is the inverse penetration depth. The fиnction I(t) describes 
the pulse shape. 

Equations (1) and (9) must ье supplemented Ьу the proper boundary conditions. We 
assume the simplest geometry: the metal occupies the half-space z < О. Hence, the boundary 
conditions for the above equations are 

дТ_\ =0 
Bz z=O ' 

Bu z \ = о 
Bz z=O ' ~ 

(12) 

signifying that the heat flow through the surface and the normal stress tensor component vanish 
оп the surface. 

We also need the boundary conditions for the kinetic equation (8) at the metal surface. 
These boundary conditions depend оп the type of electron reflection from the surface. We 
assume the specular reflection for simplicity. 
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3. DYNAМICS OF ELECfRON TEMPERAТURE AND LAТТIСЕ DEFORМATION 

ТЬе аЬоуе equations are nonlinear and very complicated. However, it is possible to solve 
them in an important limiting case. Below we are interested in times shorter than the electron
lattice relaxation time Те-l '" се(Те)/а.. In this сме the lattice temperature сап ье set to the 
initial temperature То, and the last tenns in Eqs. (8) and (9) сап Ье omitted. 

То solve the system (1), (8) for the half-space with the boundary condition (12), we use 
the even continuation of the temperature Te(r, t) and the partition function Хр, and the odd 
continuation of иАг, t), into the half-space z < О: 

Te(z < О) = Te(-z,О), uZ<z < О) = -uА-z,О). (13) 

For the paraUel components их and иу опе must use the even continuation, but owing to the 
fact that the external heat (11) depends only оп z, these components vanish. In Eq. (8) we 
discard (Хр), which represents the «in-tenn» in the collision integral. This tenn accounts for 
carrier conservation, i.e., for the isotropic channel of collision processes. Therefore it does not 
affect the heat f10w and lattice driving force. 

ТЬе solution of Eq. (8) has the fonn 

t 

хр(г, t) = J dt' Хр (г - v(t - t'), t') ехр ( _ t ~ t') , (14). 
-00 

where Хр is the right-hand side of Eq. (8), 

Х = _л.(р)дUij + €p -/-L (ВТе +удТе ) 
р '1 Bt Те Bt дг' 

(15) 

Substituting the solution (14), (15) into the heat f10w (10) and integrating over the energy 
variable according to d3p = d(€p -/-L)dSF/V, we obtain 

q(.,t) ~ - :' (l dt' ехр (- t ~ ") у (~, +у :.) т;(.- У(' - t'),t'))' (16) 

ТЬе expression (16) is linear in Т;. It is convenient to introduce the new function 8(r, t) = 
= Т;(г, t) and take the Fourier transfonn with respect to space and time variables. Тhen Eq. (16) 
yields the Fourier component of the heat f1ow: 

i1Г2 ( (!.!) - vk)v ) 
q(k,!.V) = -6 k' 1 8(k,!.V). 

!.V - V + ZT-
(17) 

Substituting this result into the equation of thennoconductivity (9), we obtain its Fourier 
component 

(18) 

where I(!.V) is the Fourier transfonn of the pulse shape I(t). ТЬе factor Q(k) describes the 
spatial distribution of the laser field (11), and 

2,..; 
U(k) = -Т--k2 ' ,..; + z 

153 



L. А. Falkovsky, Е. G. Mishchenko ЖЭТФ, 1999, 115, 8ьm. 1 

which depends оnlу оп kz • Equation (18} yields the temperature dynamics of metals under 
laser heating with the time and space dispersion. 

We now tum to the equation for lattice displacements (1). The driving force Gi(r, t) сап 
ье evaluated as in the derivation of Eqs. (16) and (17). Both the local equilibrium partition 
function and nonequilibrium part (4) contribute to the integral (2). Expanding the integra!s 
over the епещу variable in powers of Те / с: F ир to the second order, we obtain 

(19) 

In addition to the electron force (19) we also obtain the temperature-dependent renormalization 
of the elastic constants >\ijlm (sound velocities) due tothe interaction with electrons (electron 
loop in the phonon self-energy function). The dorninant contribution in the rangе of interest 
comes from the local equilibrium partition function: 

The electron contribution to the sound velocity is second order in the electron temperature, 
tls / s '" Т; / с:}. 

Taking the Fourier transform ofthe left-hand side of Eq. (1), опе needs to keep in rniпд 
the singularityat z = О after continuation (13) of the function u z. This singularity contributes 
the term d8(z)/dz in the second derivative d2u z /dz2 ; such а term accounts for surface effects. 
The Fourier transform with respect to the coordinate z over the entire space gives 

(20) 

where s = )..zzzz/ р is the longitudinal sound velocity in the z-direction. In the last term, C(UJ) 
must Ье deterrnined from the boundary condition (12), and takes.the form 

С( ) =-2' J dk Gz(k,UJ) 
UJ U.vs 2 2 2k2 • JrUJ-S 

(21) 

We next proceed to the electron temperature and lattice deformations represented Ьу 
Eqs. (18) and (20) in various limiting cases. 

4. SPATIAL VARIATION OF ELECГRON TEMPERAТURE AND LAТТICE DEFORМATION 

Equation (18) describes the electron temperature evolution under ultrashort laser heating of 
metals. This equation generalizes the usual thermoconductivity equation [1]. We are interested 
in the wave vector k, which is the greater of the inverse skin depth к, ('" 105 ст- 1 ) and the 
electron diffusion length v..{iТo during the laser pulse to. In the usual experimental situation 
7-1 '" 1014 s-l, к,v '" 1013 S-I ,andthe hydrodynarnic regime к,v «: 7-1 is obtained. Thus, 
one сап omit the term kv in the denominator ofthe left-hand side of Eq. (18). The dominant 
contribution comes from the diffusion pole UJ '" 7v2k2 «: 7-1. Therefore, we сап also omit UJ 

everywhere in comparison with 7-1 or kv. The solution of the thermoconductivity equation 
reads 
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00 

i J dk dы dt' dz' . . 
0(z, t) = 00 + -д (271')2(1.1.1 + iDk2) I(t') ехр [-~I.I.I(t - t') + ~k(z - z') - I\;lz'l] , (22) 

-00 

where the diffusion coefficient D = T(V;} / (l) is introduced. ТЬе constant 00 = TJ comes from 
the solution ofthe corresponding homogeneous equation, and represents the initia1 temperature. 
Evaluating the integral (22) with respect to 1.1.1 and k, we obtain 

t 00 

J ' J ' Q(lz'l, t') (z - z')2 ) 
0(z, t) = 00 + dt dz f3v7l'(t _ t')D exp - 4(t _ t')D .. (23) 

-00 -00 . 
We see immediately that the function (23) satisfies the bOundary.condition (12). For the 
teniperature at the surface z = О, Eq. (23) gives 

t 

Т;(О, t) = Ti + 71'~ J dt' Q(O, t - t') exp(1\;2 Dt')ed-c ( v 1\;2 Dt') . 
о 

ТЬе electron temperature (23) just after the pulse peaks at the surface: 

Т2 '" Ito(1 - R) . ( (Dt )-1/2) . та", f3 mln 1\;, о . (24) 

This result Ьав а simple explanation. For short pulses 1\;..;'Dto <: 1, the time dependence ofthe 
temperature corresponds to the local laser intensity at the observation point. In the opposite 
саве, I\;vDto ~ 1, the temperature distribution is deterrnined mainly Ьу the diffusion process. 

Consider now the equation for lattice displacements (20) with the force (19). Note that 
in the hydrodynamic regime, I\;V <: т- 1 , the dominant contribution to the force а; comes 
from the local equilibrium partition function, i.e., the first terrn in (4), if we consider times 
greater than the electron-electron relaxation time, t ~ т. In this case, the force has the simple 
expression 

() ,cr.r;(r,t) 
а· r t = А·· -"--'-'--'-
., '] aXj 

where the constants 

1 а JdS 
Aij = 3271' Вц ~Лij(Р) "" gf3 

are of the order of the electron dtщsitу of states at the Ferrni surface. 
From Eq. (20) with the help of the expression (21) опе сап find the lattice deformation 

du z _ iAzz l\;(1 - R) J dыdk k2U(k)I(I.I.I) [ ikz i"'\Z\/S] -i"'t. -- -- е -е е 
dz рf3 (271')2 (1.1.1 + ik2 D)(1.I.I2 - s2k2) . . 

(25) 

ТЬе first terrn in the brackets in Eq. (25) represents the particular solution ofthe inhomogeneous 
Eq. (1), while the second corresponds to the general solution of the homogeneous form 
of Eq. (1), and represents the effect of the surface. ТЬе integrand in (25) сопtains poles 
associated with the diffuson and sound-wave excitations. Sound singularities are bypassed шing 
infinitesimal РЬОП~>n damping, 1.1.1 - 1.1.1 + Ю. 
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5. EFFECГ OF ACOUSTIC AND OPТICAL DlSPLACEMENТS ON DЕSТRUСГЮN OF METALS 

Equation (25) describes the effect of nonequi1ibnum electron heating оп lattice 
deformations of аСЩ.lstic type. This deformation vanishes at the surface z с= О according to 
the boundary condition (12). For z =f о, the second term in brackets in (25) represents а 
deformation wave propagating from the surface into the bulk of the metal. It makes а nonzero 
contribution оnlу at sufficiently small depths z < st "" 10-7 ст. Thus, we see that the 
deformation (25) peaks at z "" 10-7 ст « ~-I. ТО obtain the order of the effect, we сап 
drop the second term in parentheses. It is then convenient to integrate over Ll.J, substituting the 
Fourier transform I(Ll.J). We obtain 

t 

-"". t t х duz Лzz~(1 - R) J d 'I( ') 
dz рfЗ 

о 

х -U(k) - е J dk (ехр [-isk(t-t')] ехр [_k2 D(t-t')]) ikz 
21Г s(s+ikD) k2 D2+s2 . 

(26) 

Consider times greater than the duration of а pulse (t > to) but less than both the characteristic 
time of electron diffusion (t < (~2D)-1 "" 10-12 s) and а sound-wave period (t « (B~)-I "" 
"" 1 0-11 s) with characteristic wave vector of the order of the inverse skin depth~. In this 
range we сап expand the exponentials in (26) in powers of t uр to second order: 

(27) 

Using the estimate л/ р "" ув2 / с:} and Eq. (24) for the maximum electron temperature, 
we extrapolate our result uр to electron diffusion times t "" (~2 D)-I : 

du z "" у(1- R)Ito (_в_)2 "" 9 (ВТтах )2 
dz ~fЗ TV2c:p ~TV2c:p 

(28) 

Setting 8/V "" 10-2, ~ "" 105 cm- I , we arrive at the numerical estimate duz/dz "" 
,....., 10-2у5 (Те /с:р)2. 

Our result contains the natural factor Т; / с:}, which means that laser heating is important 
as soonas the electron temperature is higher than the Fermi energy. Although the estimate 
was obtained for Те « с: р, it is still roughly correct uр to Те "" с: р. ТЬе additional small 
factor 82 /(V~l)2 is due to the fact that the characteristic period of the sound wave (10-11 s) 
is muсЬ greater than the characteristic times of electron diffusion (10-12 s) and laser heating 
(10-13 S). Therefore it would Ье of considerabIe interest to caIculate the lattice deformation 
from high-frequency (nevertheless 10ng-wavelength) excitations, i.e., optical phonons whose 
period is about 10-14 s. This case differs from the caIculations above in the equations oflattice 
motion (1) and electron force (2) due to the different form of deformation potential (see Ref. 21). 
Estimates show that the relative optical displacement (with respect to the lattice сопstiшt) is 
of the order of Т; / с:}. 

6. СОNСLUSЮNS 

Our result (28) for acoustic deformation agrees with the experiment reported Ьу Rепц:ерis 
[17], where а deformation du z / dz "" 1 0-3 had Ьееп observed in the laser heating of поЫе 
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metals. However, we see that the interaction of heated electrons with optical phonons сап 
provide а more etfective means of strong lattice deformation, but this case has yet to ье studed 
experimentally. An ultrashort intense laser pulse сап result in the destruction and ablation of 
metals, while only the electron component is heated, and the lattice stays сооl at а considerably 
low temperature. 

In conclusion, we emphasize two points. First, as follows from Eq. (9), the driving force 
for lattice expansion is proportional to TeaTe/az. Весаше ofthe high absorption coefficient 
ofmetals in the UV (1): '" 105 cm- 1), the temperature gradient reaches '" 109 К/ст. Note that 
the extremely high values ofthis parameter (which is typical ofmetals) leads to nonequilibrium 
expansion of the lattice. Second, subpicosecond elastic deformation of the lattice of the order 
of 10-3 - 10-2, corresponding toan internal pressure 10 - 100 ОРа, сап provide ап etfective 
mechanism for subsequent laser fracture of metals. 

We are grateful to S. 1. Anisimov and У. А. Benderskii for тапу useful discussions 
and valuable comments. This work was supported in part Ьу the Russian Foundation for 
Basic Research (Grапt,N297-02-16044). Опе of the authors (Е. а. М) also thanks KFA 
Forschungszentrum, Ju1ich, Germany, for а Landau Postdoctoral Fel1owship. 
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