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An analytical expression is derived for calculating the intensities of individual spin-rovibronic 
lines in the [иНу resolved gas phase electronic spectrum of а polyatomic molecule, in which one 
of the zero-order electronic states is а triplet state. The expression is employed to calcи1ate the 
effect of [те structure splitting оп the singlet-triрJеt absorption spectrum of pyrazine using the 
parameters ауаПаЫе from experiment. А transition from Hund's coupling Case (а) to Case (Ь) 
оп going from Jow J to high J rotationalleveJs is predicted to occur at а moderate resolution of 
а few hundred MHz. The effect is more pronounced in pyrazine-d4 and the pyrazine-argon уan 
der Waals сотрlех owing to their larger mass. 

1. INТRODUCTION 

@1998 

The pyrazine molecule continues to attract much attention due to its unique photophysicaI 
properties. Owing to а moderate SI - Т1 energy gap (4056 сm- 1 ), the density ofT1 vibrational 
levels at the SI origin is relatively low, which places pyrazine into the class of so-called 
intermediate-case polyatornic molecule [1] with respect to S 1 - Т1 intersystem crossing (ISC). In 
intermediate-case molecules, the coupling between the SI and Т1 states results in а formation of 
mixed singlet-triplet levels. These mixed levels have Ьееп revealed in ultrahigh resolution spectra 
and are believed to Ье responsible for observed nonexponential fluorescence decay behavior [2-
7]. While the singlet states that participate in this mixing are well characterized, little is known 
about the zero-order triplet states. The important point, in particular, is that the effect of the 
fine structure splitting оп the triplet state energy level structure of the gas phase molecule is 
not well understood, еуеп at the Т1 origin. 

In solid matrices at liquid helium temperatures, the energy ofthe lowest triplet state is split 
into three spin sublevels Т х, Ту and Tz , each having very different phosphorescence lifetimes т х , 
Ту and T z . T11e separations and lifetimes ofthese sublevels in pyrazine have Ьееп measured Ьу 
the microwave-induced delayed phosphorescence (MIDP) technique [8-12]. Figure 1 shows 
the sublevel ordering and rnicrowave transitions observed [9] in а benzene crystal at 1.2 К 
together with the appropriate choice of molecular axes. The lifetimes measured in different 
media are listed in ТаЫе 1. 
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Fig. 1. Ordering and energy lеуеl 

separations of the 10west triplet state of 
pyrazine in the solid state, as obtained 
from MIDP experiments. The smallest 
moment of inertia in the gas phase is 
about the N-N liпе (the а axis) in 
both the 50 and Т1 states. The largest 
moment of inertia is about the axis 
perpendicular to the molecular рlanе, 

the z (с) axis of the top 

ТаЫе 1 
Triplet spin subIevel lifetimes of the lowest triplet state of pyrazine* 

Тх Ту Tz Ref. 

Benzene host crystal at 1.2 К 6.3 284 163 [9] 
Para-dioxane host crystal at 1.6 К 6.5 400 200 [11] 

Supersonic jet Tph = 1.45 (upper limit 2.5) [27] 

• Аll values in msec. 

In the MID Р experiments, the Т1 state is prepared in ап indirect way via 51+- 50 excitation 
fol1owed Ьу 51 ---. ТI ISC. The direct ТI +- 50 electronic transition in pyrazine also has 
Ьееп observed in the absorption spectra of solids [13-15] and vapors [16-18]. The measured 
oscillator strengths were determined to Ье 10-7 and 3 ·10-8, respectively, [18], which is typical 
of а spin-forbidden transition. In supersonic jets, the Т1 +- 50 transition was first detected 
using tlle multiphoton ionization (MPI) method [19] and then Ьу phosphorescence excitation 
methods [20-27], in some cases using SEELEM (surface electron ejection Ьу laser excited 
metastables) detection. Valuable information about the vibrationally excited Т1 state has also 
Ьееп obtained with the pulse-field-ionization technique [28]. 
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As сап Ье seen from Fig. 1 and таы1e 1, the Ту and Tz sublevels in the solid hostare 
nearly degenerate and have similar lifetimes, whereas the ТХ sublevel is set apart Ьу about 
10 GHz and has а much shorter lifetime. While this phenomenon is well established in the 
condensed phase, по conclusive evidence for its manifestation in the gas phase molecule is 
available. Theoretically, it was explained in terms of the properties of spin-orbit соuрНng 
in aromatics and heteroaromatics with their characteristic 1Г-еlесtrоniс structure and planar 
geometry [29-34]. Since the planarity ofthe two participating states has Ьееп shown to survive 
in the gas phase [23], this phenomenon сап Ье expected to occur in the gas phase, too, [25,26]. 
However, the previous studies were performed at relatively 10w resolution ('" 2 GHz) [25,26], 
по! high enough to answer the question definitely. 

Two additiona1 factors comp1icate the interpretation of а gas phase experiment. The first 
is the lack of а condensed phase environment. If Тх , Ту and Tz are assumed to ье the sarnе 
{п the so1id and gas phases, then in jets а теап ЫеНте Tph arising from rotationa1 mixing of 
the spin sublevels would Ье observed, which at least would по! Ье shorter than the shortest 
lifetime in so1ids; i.e., 6.3 ms [9, 11]. The measured gas phase phosphorescence lnetime а! the 
Т1 origin in а supersonic expansion is only 1.45 ms, with ап upper limit of2.5 ms [27] having 
Ьееп established in а separate experiment. Clearly, then, the environment plays а role. With 
the quantum yield ofphosphorescence emission as large as 0.3 in а solid solution at 77 К [35], 
this implies that acceleration of radiative and nonradiative transitions to the ground state mЩЫ 
both Ье responsible for the lifetime shortening in the jet. If, further, we accept the absolute 
values of the Т1 t-- Во osci1lator strengths cited аЬоуе, which tell us that the osci1lator strength 
is а factor of three 10wer in the gas phase than in а so1id, then it is the nonradiative transition 
rate which is responsible for the lifetime shortening [27]. The reasons for this behavior are 
completely unknown. 

The second factor complicating the interpretation of а gas phase spectrum are rotations 
which produce extensive mixing of the three spin sublevels of the triplet state. In the ground 
state, as well as in the 10west excited singlet and triplet states, the pyrazine тоlесше is а nearly 
symmetric top with rotational constants of about 3 and 6 GHz [26] (see ТаЫе 2). If in the 
gas phase the spin splittings are assumed to Ье оп the same order of magnitude, 10 GHz, as 
in so1ids (which seems to Ье the case for glyoxal, where they change from 0.6 and 2.2 GHz to 
1.1 and 2.4 GHz between the solid and gas phases, respectively [22]), then the nature of the 
spectrum wi1l Ье quite different at 10w and high rotational quantum numbers. 

ТаЫе2 

Rotational and fine structure splitting constants of рyrazinе in сш-1 

(values in parentheses are for pyrazine-,;4) 

ВО Т! Ref. 

А 0.21285 0.212 [26,44] 
(0.18389) [44] 

В 0.19767 0.196 [26,44] 
(0.17502) {44] 

С 0.10249 0.101 [26,44] 
(0.08%7) [44] 

D 0.3455 {9,44] 
Е -0.00705 [8,43] 
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. For high vaIues ofthe rotational angular momentum N, Hund's Case (Ь) should apply, in 
which case the spectrum should consist of rotational bands corresponding to transitions between 
states with definite values of the asymmetric rotor quantum numbers N, К +1 and К -1, each 
of which, exept for N = О, is split into states with different values of J = N, N ± 1, where 
J = N + S is the total angular momentum and S is the angular momentum of the spin. This 
is the analog of the rotational structure in the 1: states of diatomic molecules which typically 
belong to Case (Ь) because of а weak spin-axis interaction [36,37J. However, for low vaIues 
of N, the observed bands will Ье shifted away from the purely rotational band positions since 
they are now sрiп-rоtаtiопaI bands. Again ап anaIogy comes from diatomics whose П, д, etc. 
states usuaIly belong to Case (а), apart from some light diatomics. The transition from Hund's 
Case (а) to Case (Ь) with increasing rotational quantum number is called spin uncoupling, of 
which severaI examples are given Ьу Herzberg [36J. 

А general approach to calculating band intensities in the singlet-triplet spectra о' 
polyatomic molecules was developed Ьу Hougen [38J, Creutzberg and Hougen [39J, and di 
Lauro [40J. Energies and wavefunctions of spin-rotationallevels of а triplet state were derived 
from ап effective Hamiltonian given Ьу Уап Vleck [41] and Raynes [42J. The intensities of 
transitions in nearly symmetric tops were represented in the form of Hougen and di Lauro 
factors (rather than Honl-London factors), tabulated for some limiting cases. The Hougen 
factors [38] are appropriate for а Hund's Case (Ь) molecule with по multiplet splitting in the 
triplet state. Creutzberg and Hougen further extended this approach to near-symmetric rotor 
molecules of symmetry С211 , D 2 , and D 2h , defining а new «limiting» Case (аЬ), which was 
further subdivided into types 1, 11, and 111. Their Case (аЬ) corresponds to а situation, not 
unlike that of pyrazine in its lowest triplet state, in which two of the spin components of the 
nonrotating molecule are separated Ьу а small energy, and the third is separated Ьу а large 
energy, compared to the rotationaI intervaI. (In this respect, Т1 pyrazine is а Case (аЬ), type 
11 molecule; thus we are actually dealing with а Case (аЬ) - Case (Ь) transition here.) The di 
Lauro factors are appropriate for all types of Hund's Case (аЬ) molecules; they account for the 
multiplet splittings Ьу using Raynes' effective Hamiltonian [42] for asymmetric rotors which 
includes contributions from various magnetic interactions. 

Here, we take а new approach to this problem, one that relies оп the derivation of 
а closed-form analytical expression for the intensities, assuming arbitrary relations between 
rotational intervals, asymmetry and fine structure splittings. This approach is motivated Ьу 
the likely success of future high resolution experiments оп the singlet-triplet transitions of а 
wide variety of molecules, requiring а more generaI method for their interpretation. In the 
present instance, we rnake two simplifying assumptions, in order to make the problem tractable. 
Оnlу the spin-spin interaction is taken into account [43, 44J, and оnlу one spin sublevel ofthe 
nonrotating molecule is assumed to Ье radiativelyactive [31J. А more general expression for the 
intensities is also obtained and compared with the Hougen factors [38J. We test our approach 
Ьу computing the Т1 <- 80 spectra of pyrazine, pyrazine-d4, and the pyrazine-Ar van der 
Waals complex, for comparison with existing and future experimentaI spectra. The approach 
described here is extendable to other molecules, thereby anticipating new experiments in high 
resolution spectroscopy. 
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2. THEORY 

2.1. Rotational States in So 

Pyrazine has D2h symmetry in its ground (So, 1 A1g ) and first excited triplet (Т1 , 3 В!U) 
states. The smallest moment of inertia is about the axis passing through the two nitrogen 
atoms [23,44]. Therefore, the rotational Harniltonian for both So and Т! is of the form 

(1) 

where А > В > С are the rotational constants (nearly the same in both states, see ТаЫе 2) 
and Nж,у,z are the projections ofthe rotational angular momentum vector оп the axes ofthe 
molecular coordinate frame (мср), the inertial axes. For а symmetric top (А = В) without 
spin, the operators N2, N z , and Nz, i.e., the rotational angular momentиm squared and its 
projections оп the z axis of the мср and оп the z axis of the laboratory coordinate frame 
(LCF), respectively, constitute а full set of commuting operators. 

The electronic-vibrational-rotational (EVR) wavefunctions are written as 

Irs;NKK) == Irs)INKK), (2) 

where rs (= A1g for the vibrationless So state) is the symmetry species (IR, irreducible 
representation) of the electronic-vibrational wavefunction Irs), N is the rotational angular 
momentum quantum number, and К and К are the eigenvalues of Nz and Nz, respectively. 
As а basis set for ап asymmetric rotor without spin, we will use the symmetrized rotational 
wavefunctions that transform (under rotations Ьу ап angle 1г with respect to the MCFaxes) 
according to the IR's ГТ = А, В1 , В2 , Вз of the D2 group, 

where 

fK = 1 for К> О and fK = г1/2 for К = О. (4) 

In Eq. (3), two additional «quantum numbers», т and 

>. = T(-I)N = ±1, (5) 

are defined for the characterization ofthe symmetrized basis functions. The reason for using >. is 
that this is а «good quantum number» for the rotational, spin-spin, and spin-orbit Hami1tonians 
(see below). The relations between ГТ and >. for different К are shown in ТаЫе 3. 

ТаЫеЗ 

К and .л for irreducibIe representations of the D2 gгoop 

ГТ >. к 

А +1 even 
В! -1 even 
В2 -1 odd 
Вз +1 odd 
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Since the asymmetric rotor Hamiltonian (1) has по matrix elements between the basis 
states (3) differing in either гт , л or т, its eigenfunctions ехрапдед in this basis сап also ье 
characterized Ьу гт , Л апд т (in addition to N and К), 

IГsГтлтNiК) = L с~sГrлтNi)IГтлтNКК), (6) 
К 

where i labels the eigenvalues of НТ for а given гТ , л, Т and N. Here К runs from О to N over 
аН odd or еуеп values depending оп ГТ (see ТаЫе 3). Тhe asymmetric top functions are label1ed 
with Г s Ьесаше, unlike the case of the symmetric top, they are dependent оп the rotational 
constants of the given electronic state. Тhe eigenvalues and the coefficients с~sГrлтNi) are 
found Ьу diagonalizing НТ in the basis (3). ТЬе Hamiltonian (1) conserves al1 quantum numbers 
except for К. Using the notation 

we obtain the fol1owing nonvanishing matrix elements: 

(7.1) 

for К =f 1, 

(1IHT ll) = ~(A + В) [N(N + 1) - l] + с + ~T(B - A)N(N + 1) (7.2) 
2 4 

for К = 1, 

(KIHrIK + 2) = (К + 2IHr IK) = 

= ~(B - А) [(N - K)(N - К - 1)(N + К + 1)(N + К + 2)J1/2 (7.3) 
4 

for К =f О, and 

(0IHr I2) = (2IHr I0) = ГЗ/2(В - А) [N(N - l)(N + 1)(N + 2)J1/2 (7.4) 

for К = О and т = 1. 
Тhey оЬеу the selection rules 

~Л == .>. - >.,' = О, ~T = ~N = О, Ш = О, ±2. (8) 

2.2. Spin-Rotational States in Т1 

For а symmetric top with spin, three sets of commuting operators сап ье formed (see 
Appendix in Ref. [1} for commutation rules involving al1 relevant momenta апд their projections 
оп the МСР and LCFaxes). ТЬе fifSt set is obtained Ьу adding S2 апд Bz to the аЬоуе 
rotational angu1ar momenta. Тhe EVR wavefunctions 'ГТ; N К К) (ГТ = B1u for the Т1 
state vibrationless wavefunction 'ГТ) are multiplied Ьу the spin functions 'Вет), where S is 
the total spin quantum number and ет is ап eigenvalue of В z. We shall call this Representation 
1, the uncoupled-spin representation in the LCF. Тhe second set includes the operators S2, 
J2, Jz , Jz, and S z. Тhe rotational part of their common eigenfunctions is IJ Р Р) and the 
spin part is 1 в 0"). Here, J is the total angular momentum quantum number and Р, Р, and 
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cr are eigenvalues of Jz, Jz, and Sz, respectively. This is Representation 11, the иnсоир· 
led-spin representation in the МСР. ТЬе third set of commuting operators is 82, J2, N2, N z , 

and Jz, and the corresponding mixed spin-rotational wavefиnctions are ISJNKP}. ТЫэ is 
Representation IП, the coupled-spin representation. ТЬИ notation aIso will ье used for the 
singlet-state rotational wavefиnction, in which сше оnе Ьш 

(9) 

ТЬеn the symmetrized fиnction (3) is denoted аэ 

IГrлтSJNКР} = fk2- 1/ 2 [ISJNKP} +TISJN,-K,P}] (10) 

for К ~ О and т = ±1, and the expansion (6) for the ground state takes the form 

Irs г';л" т" S" J" N"i" Р") = L C~7,Г: )."'1''' s" J" N"i")Iг';л"т" S" J" N" к" Р"), (11) 

к" 

where the ground state quantities are double-primed. 
The spin-rotational fиnctions сап ье expanded in terms of products of the pure rotational 

and spin functions using both uncoupled Representations 1 and П. According to the тотеn­
tum-addition rule [37}, which for Representations 1 and П is written as J = N + 8 and N = 
= (-8) + J, respectively, the expansions Ьауе the form [1,45] 

ISJNKP} = (-I)N-s+?J2J + 1 ~ (~ ~ .:р ) INKK;Si7), (12) 
Ki'т 

ISJNKP) = (-l)s-J+KJ2N+ 1 ~ (; ~ ~ ) IJPP)(}IScr}, (13) 

where (} is the time-reversal operator [37], 

(14) 

With the иэе of Eq. (14) the expansion in Eq. (13) сап Ье recast as 

ISJNKP} = J2N + 1 ~(_I)J+P ( .!Р ; ;) IJPP; Scr}, (15) 

where ( ... ) denotes а Wigner 3-] symbol. 
We wi1l use the symmetrized spin-rotational wavefиnctions in the form of Eq. (10) as 

the basis set for аn asymmetric rotor with the spin-spin coupling. Again, the rotational 
Hamiltonian (1) conserves аll the quantum numbers except for К. Its nonvanishing matrix 
elements in the symmetrized basis (10) caIculated with the иэе of expansion (12) are 

wllere (KIHrIK') is given Ьу (7). ТЬе selection rules are the эате as in Eq. (8) plus I:!.J = О. 
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2.3. Fine 8tructure оС the 8pin-Rotational 8tates in Т. 

The Hamiltonian of the spin-spin interaction in the triplet state has the form [43] 

Hss =п (В; - ~82) +Е(В; -Bz), (16) 

where Bx,y,z are projections ofthe spin angular momentum operator оп the MCFaxes, and D 
and Е are the fine structure splitting constants given in ТаЫе 2. In the nonrotating molecule 
Н s s has three eigenfиnctions, 

where 

2 
Т =--п 

z з' 

1 
Т =-п+Е 
у 3 ' 

The eigenfиnctions оЬеу the relationships 

(17) 

(18) 

(19) 

These fиnctions transform as the х, у, z components of а vector under the п2 group rotations 
of the electronic spin variables according to Г". = Вз , В2 , and B 1, respectively. Since these 
rotations change only the sign of Sx, Ву, and Bz, the Hamiltonian (16) is invariant and, 
hence, has по otт-diagonal matrix elements. Similarly, the products in Eq. (19) transform 
Ьу Г". Х Г". = А and, hence, identically vanish. Thus, Eqs. (18) and (19) are consequences of 
the symmetry properties of the system. 

The аЬоуе wavefиnctions сап a1so Ье expressed in terms of the spin fиnctions 1 в а} with 
а definite spin projection (j [38], 

ITx ) = -i2-1/ 2 (111) -ll,-I}), 

ITy } = 2-1/2 (I11) + 11, -1}), 

ITz } = -ill0}. 

Let us define Cartesian components of two tensors with zero traces, 

1 1 2 
Т-. = -(В·В· + в ·В·) - -8 Б .. '} 2 '} }' 3 '} , 

2 
Qxx = зп, 

1 
Q =--п-Е уу 3 ' 

1 
Q = --п+Е 

zz 3 ' 

and the corresponding spherical tensors T~k) and Q\,") of the second rank k = 2 [37] Ьу 

(2) _ f3 
То - -у "2 T zz , 

Q~2) = 6- 1/ 2(D - 3Е), QTI = О, QT2 = -~ (п + Е), 
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with all projections in Eqs. (21) and (22) being taken оп the MCFaxes. Then Eq. (16) takes 
the [оfПl 

k 
НВВ = L (_1)k-vQ~k)т~k2, (23) 

v=-k 

which enables us to invoke the Wigner-Eckart theorem to calcu1atethe relevant matrix elements 
for а rotating molecule. 

Consider first the matrix elements of Н s s in the nonsymmetrized basis 18 J N К Р). Since 
НВВ commutes with S2, J2, and Jz , and does not commute with ~ and N z , it is diagonal in 
8, J, and Р and off-diagonal in N and К. Introducing the notation 

(8JNKPIHssI8'J'N'K'P') == 8ss8JJ,8pp,(NKIH ssIN'K') 

and inserting expansion (15), we obtain 

(NЩНssIN'К') == (N'K'IHssINK) = J(2N+ 1)(2N' + 1) х 

х L (_1)2-vQ~) ( !р ~ ~) ( !р ;, ~;) (8uIT9~18u'). (24) 
VPU(f1 

The advantage of using expansion (15) rather than (12) is that both Q~) and (8uIT9~18u') 
are independent of Euler angles, so that the rotational factor is merely 8 J J' б р Р' б р р,. The 
remaining pure spin matrix element in Eq. (24) is ca1culated Ьу applying the Wigner-Eckart 
theorem [37], 

(25) 

where the reduced matrix element is 

(81IT(2)118) = 1/7 [(28 - 1)28(28 + 1)(28 + 2)(28 + з)]1/2 (26) 
2у6 

(= J5 for 8 = 1). Substituting Eqs. (25) and (26) into Eq. (24) and performing summations, 
we obtain for 8 = 1 

(NKIHssIN'K') == (N'K'IHssINK) = (-1)J-KJ5(2N + 1)(2N' + 1) х 

( 2 N' N) { N N' 2} (2) 
Х К' _ К -К' К 1 1 J QK-K" (27) 

where { ... } stands for а Wigner 6 - J symbol. The fol1owing selection rules stem from Eqs. (22) 
and (27): 

д8 = д] = О, дN = О, ±1, ±2, дК = О, ±2. (28) 

Matrix elements (27) also оЬеу the relation 

(N, -КIНssIN', -К') == (_I)N+N' (NKIHssIN'K'), (29) 

which is easy to deduce from the symmetry properties of the 3 - J symbol [37]. 
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The matrix elements in the symmetrized basis (10) are off-diagonal in т, N, and К. 
Introducing the notation 

(ГrлтВJNКРIНssIГrл'т' в' J'N'K'P') == блNбss,{jJJ,брр,(тNКIНsslт'N' К') (30) 

and applying (29), we find 

(TNKIHssIT'N'K') = fкfю [(NKIHssIN'K') + T(N, -КIНssIN'К')] . 

It is easy to verify that the Hss matrix is symmetric in this basis, as well as in the original 
basis (see Eq. (24». Ав is evident fюm Eq. (30), the following selection rule, in addition to 
(28), applies for the spin-spin coupling: 

дл == л - л' = о. (31) 

Let us write down explicitly the nonvanishing matrix elements of Hss in terms of the matrix 
elements (27), 

(INOIHss IT' N'2) = h (NOIHss IN'2), 

(TN1IHssIT'N'I) = (N1IHssIN'I) + T(N, -IIНssIN'I), 

(TNKIHssIT'N'K') = (NЩНssIN'К'), К + к' i 2. 

The total Hamiltonian for the triplet state is written as 

НТ = Н.,. + cHss, 

(32) 

(33) 

where с is а parameter to Ье used for drawing а correlation diagram. Since Н т has по matrix 
elements between the symmetrized basis states (10) differing in either Г.,. or л, its eigenfunctions 
сап also Ье characterized Ьу Г r and л (in addition to the conserving quantum numbers В, J, 
and Р). Pиtting а prime оп all quantities relating to the triplet state, we obtain the following 
representation for the wavefunctions: 

IГтг'rЛ'В'J'i'Р') = L с;~Т;:r;;S'J'i')Iг..Л'т'В'J'N'К'Р'), (34) 
r'N'K' 

where i' labels the eigenvalues of Н т for а given Г'т' л', В', J'. For апу given J', г.. runs 
over the IR's of the D 2 group, and, for each г.., the л' assumes а definite value from Table 
3. The summation in the right-hand side of Eq. (34) is taken over N' = J', J' ± 1; К' runs 
from О to N' over even or odd values for а given г.., according to Table 3; and the sum over т' 
involves only а single term since т' is uniquely fixed Ьу л' and N' according to the defmition 
in Eq. (5). 

2.4. Singlet Contamination оС the Тriplet State 

The triplet state is assumed to Ье mixed, via spin-orbit coupling, with ап excited singlet 
state ВN having rsn = В2u symmetry [26, 31], giving it radiative character. (We do not consider 
а rnixing of the ground state with an excited triplet state Тn , which maу Ье of importance in 
pyrazine [46].) The intensities in the Т1 f- Во absorption spectra depend оп the degree of this 
mixing. We fшt consider the general restrictions, due to the Pauli principle, оп the symmetry 
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speeies of the levels that еап mix with eaeh other. These restrietions are independent of the 
form of the partieular mixing operator. 

Let 'Ф and 'Ф' stand for the total wavefunetions of the states that are eoupled via some 
interaetion Hamiltonian H int . Theyare represented as produets ofthe eleetronie, vibrational, 
rotational, and nuelear-spin wavefunetions, 

'Ф = 'Фе'Фv'Фr'Фns, 'Ф' = 'Ф~'Ф~'Ф~'Ф~., 
whose symmetry properties depend оп their behavior with respeet to the 
feasible permutations [47] of the nuelei. Every sueh permutation Р еап ье performed Ьу а 
rotation R Е D2. This is done in three steps. First, the MCF is rotated with respeet to the 
LCF, whieh results in the transformation 'Фr -+ Гr'Фr, where Гт is ап IR of D 2• Seeond, the 
eleetronic eoordinates and nuelear displaeements must ье retumed to their initial values Ьу 
the baekward rotation R-1; in D2, it is the same as R. This leads to 'Фе'Фv -+ (Ге'Фе)(Гv'Фv), 
where Ге and r v are again IR's of D 2• Third, the permutation Р is applied to the nuelear spin 
variables resulting in 'Фns -+ Г nв 'Фns. Sinee the set of three feasible permutations plus the unit 
(по rotation) operator eonstitute а group isomorphous to D2, Г nэ is ап IR of D 2 as well. 

Тhe symmetry speeies of the total wavefunetion with respeet to the feasible permutations 
is therefore the produet of the symmetry speeies of eaeh of the eomponents, 

(35) 

These permutations involve spinless earbon nuelei, spin опе nitrogen nuelei and ап еуеп number 
(two or four) of protons whose total врin is again ап integer. Тhеп, aeeording to the Pauli 
prineiple, the total wavefunetion must Ье invariant under the feasible permutations of the 
nuelei; i.e., 

г= r' = А, (36) 

where А is the tota1ly symmetrie representation of D2. Now, the interaetion Hamiltonian 
H int of interest is independent of nuelear spin. Тhш means that 'Фns = 'Ф~s and Г nэ = Г~B' 
Combining this with Eqs. (35) and (36) gives the final relation 

(37) 

For the mixing of the vibrationless ВN and Т1 states опе has Ге = В2и , г.. = Bju. and 
rv = г~ = Ау , Then Eq. (37) reduces to в2гт = в1 гт = Гnв , where the D 2 group IR's 
are used instead of D 2h . Table 4 shows the symmetry species of the rotational levels that are 
allowed to mix according to this result. 

ТаЫе 4 
Symmetry species ГТ and Г r' ofthe rotational subIevels ofthe VlЪrаtiоnlеss Вll1о 
and В211о states, respectively, that wiU mix via ап arbitrary coupling independent 
of nuclear spin. Тhe symmetry species of the corresponding nuclear spin 

wavefunctions, Г n$' are also given 

гт г' r Гnэ 

А Вз В1 
В1 В2 А 

В2 В! ВЗ 
ВЗ А В2 
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Next, we derive ап expression for matrix elements ofthe spin-orbit Hamiltonian Н80 , which 
couples Т1 to the singlet manifold Вn . In the Hartree-Fock self-consistent-field approximation 
Н80 is represented Ьу а sum of one-electron operators, each acting оп the coordinates of а 
single electron [1,34], 

(38) 

where Ьа is а body-fIхеd vector, whose components in the MCF depend оп the Cartesian 
coordinates of the a-th electron and оп the nuclear displacements, and Sa is the spin operator 
of the a-th electron. Equation (38) сап Ье further simplified providing that the electronic states 
of interest are the ground state and only one-electron excited states. For instance, the 1 в2u 
and з B 1u states of pyrazine are formed Ьу promoting а single electron from the fIlled 7r2 and 
n+ orbitaIs, respectively, to the empty orbitaI 7r.j [31,48]. Then the summation in Eq. (38) сап 
Ье taken over two electrons, 

(39) 

The equivalence of Eqs. (38) and (39) сап Ье proved Ьу а straightforward caIculation; e.g., 
using the method of secondary quantization [37]. 

In order to caIculate the Вn - Т1 vibronic matrix element of Н80 , Eq. (39), we note 
that the spatiaI part of the electronic wavefunction is symmetric with respect to the electrons' 
permutation for the singlet state and antisymmetric for the triplet state. Тhen, the vector 

(40) 

сап Ье defined for each participating singlet state, and the desired matrix element takes the 
form 

(Г 'Н 'Г ) = cG = " (_1)1-0" с(1)а(1) вn 80 т ~ о" -О"' (41) 
О"=О,±I 

where G = Sl - S2. Тhe components of the first-rank spherical tensors are defined as [37] 

(42) 

and similarly for a~). The matrix elements of a~) over the spin functions 'Во-) are easily 
caIculated to give 

(43) 

In the particular case of pyrazine the spatial parts of the electronic wavefunctions тау Ье 
written in terms of one-electron orbitals as 

IrsJ = 2-1/2 [7r2(rI)7r.j(r2) + 7r2(r2)7r.j(rI)] , 

'ГТ) = 2-1/2 [n+(rI)7r.j(r2) - n+(r2)7r.j(rI)] , 

where fI,2 асе the coordinates of the two electrons. Then, 

1 
с = "2 (7r2Ibln+). 
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Since 1Г2 and n+ transform as Вз and А, respectively, the vector с has only опе nonvanishing 
component, 

1 
С", = "2{1Г2IЬ",ln+) == vso..fi, Су = Cz = О, (44) 

where the spin-orbit coupling parameter, V so ' is introduced. Using Eq. (44), we recast Eq. (42) 
as 

(45) 

From Eqs. (20), (43), and (45) we deduce that only the Т.", triplet sublevel is contaminated 
with the 8n singlet via spin-orbit coupling (41). This result is а consequence ofsymmetry [38]. 
Indeed, H so is invariant under the D2 group transformations of the electronic space and spin 
coordinates and nuclear displacements. Непсе, а vibrationless triplet leve1IrTC,,) сап Ье mixed 
with а vibrationless singlet IrsJ оn1у when ГТ х Г.,. = rsn • For ГТ = В1 and rsn = В2 , it 
fol1ows that оn1у the Т'" level which has Г.,. = ВЗ mixes with the singlet. 

Next, we calculate the spin-rotational matrix elements of Eq. (41), 

where 8 = О and 8' = 1. Now Hso stands for (rsn IHsolrT), and соттоп notations are used 
for the singlet and triplet wavefиnctions (see Eq. (9». Inserting Eq. (41) and the spin-rotational 
fиnctions in the form of expansion (15), we obtain after simple algebra [1] 

(KIHsoIJ'N'K') = vso (-I)J'-K+1V2N' + 1 L (7' ( !~ ;, ~:), (47) 
.,.'=±1 

where usе was made of Eqs. (43) and (45). These matrix elements have the following obvious 
property: 

(-К\Нsо\J'N', -К') == (_I)N+N' (K\HsoIJ'N'K'), (48) 

where N = J' according to Eq. (46). The matrix elements of H so in the symmetrized basis 
(10), 

(ГrЛr8JNКРIНsо lг',.Л'r' 8' J'N' к' Р') == b)..)..'bJNbJJ,bpp,{rKIHsolr' J' N'K'), (49) 

сап Ье expressed in terms of (47) as follows: 

(ТК\Нso\Т' J' N'K') = fкfю [(K\Hso\J' N'K') + r'{K\HsolJ' N', -К'}] , (50) 

where use was made of Eq. (48). The selection rules for the matrix elements (49) are 

ilл = О, il8 = ±1, ilJ = О, ilN = О, ±1, ilK = ±1. (51) 

It is seen that Н.о conserves л and changes К Ьу опе. According to Table 3 it means that 
Hso mixes the states of the following rotational symmetries ГТ : В1 +-+ В2 and ВЗ +-+ А. In 
other words, H so obeys the genera1 requirements for а mixing operator as displayed in Table 
4. Substituting Eq. (47) into (50), we obtain 
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(TKIHsolr' J'N'K') = Vso!k!k,(-I)J'-К+l.J2N' + 1 х 

[( J' 1 N') (J' 1 N') ] х U~la' -К а' К' +т' -К а' -К' . (52) 

Penner et al. [25] introduced the conjecture of а so-called MJ' selectivity of the spin-orbit 
coupling, assuming that, out of а manifold of triplet states with а given J', а single state with 
М J' = О borrows oscillator strength from ап excited singlet. This is shown to Ье incorrect Ьу 
our Eq. (52). It is easy to verifY that, for every J' ~ 1, аl1 3(2J' + 1) triplet sublevels borrow 
oscillator strength from Вn. 

The next step is to ca1culate the singlet-contaminated triplet wavefunction, 

'гт; г'rЛ'т' в' J' N' К' Р') -t 

L: (ГrлтSJNКРIНsоIГrл'т'S'J'N'К'Р') I . 'SJNKP-) 
-t Е Е Гsn , Гrлт , 

т - вn 

(53) 

where tlle unperturbed triplet function is omitted and the sum is taken over all quantum numbers 
ofthe Вn state. The energy denominator depends оп the quantum numbers ofthe participating 
states, and in general Eq. (53) depends оп the rotational constants ofthe contaminating singlet 
state. However, in case of pyrazine the Вn state is assumed to Не at much higher energy than 
the Т1 state, in which case the purely electronic energy gap t.E between Вn and Т1 сап Ье 
substituted for the energy denominator in Eq. (53). We also note that, strictly speaking, the 
linear combinations (34) found after diagonalizing the total triplet state Hamiltonian (33) rather 
than the basis functions (10) should Ье corrected for the contamination with Вn. However, 
after making the аЬоуе approximation to the energy denominator, we obtain the same result 
Ьу ca1culating (53) and inserting it into (34). Final1y, the symmetric top wavefunctions for the 
Вn state are used in Eq. (53), thus neglecting the Вn asymmetry effect. As а result, the mixing 
of the triplet state is independent of the rotational constants of the contaminating singlet state. 

Inserting Eqs. (49) and (52) into (53) gives 

IГт;г'rл'т'S'J'N'К'Р') -t t.~L:б>.>.'бJN8JJ,8рр,(тКIНsоlт'J'N'К') х 
J' 

хIГsn;ГrлтSJNКР) = :; L: !р,!ю(-I)J'-Р'+lV2N' + 1 х 
Р'=О 

'"'" ,[( J' 1 N') '( J' 1 N')] I " SJ'J'P'P-') х ~ а _Р' а' К' +т _Р' а' -К' Гsn;Гrлт , 
u'=±l 

(54) 

where we changed the notation К to Р' fol1owing the convention that К is а projection of N 
and Р is а projection of J. In the singlet function, т is flxed Ьу the condition that л = Л', 
which gives (see the definition of л in Eq. (5» 

т = T'(_I)J'+N'. (55) 

Equation (54) сап ье derived in а different way. First, we calculate the contaminated 
triplet spin wavefunction neglecting rotations and using Eqs. (41), (43), and (45), 

IГт;В'а') -t t.~(rSn;OOIHsolrT;S'a')lrsn;OO) = - :~a'lrsn;OO). (56) 
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Then, we insert this into expansions (10) and (15) for the syrnmetrized spin-rotational function, 

J' 

IГт;Гrл'7'S'J'N'К'Р') --t - Vso lк,г1 /2 .j2N' + 1 L (_l)J'+P' Х 
дЕ P'=-J' 

"" ' [( J' 1 N') , (]' 1 N')] I J'P'P-' 00) х ~ а _Р' а' К' +7 _Р' а' -К' rs,,; ;. 
".'=±1 

(57) 

Here, the singlet wavefunction has a1s0 to ье syrnmetrized. We rename the summation variables, 
Р' --t К and а' --t а, and recast the sum over К as 

f.lk(-l)J'+K L а [(!~ ~ ;:) +7' ( !~ ~ ~, )] Irs,,;J'KP';OO) + 
К=О ".=±1 

~ 12 l)J'-К"" [( J' 1 N') , ()' 1 N')] I .)' К Р-"ОО) (58) + t:'o К(- "'~1a К а К' +7 К а -К' rs", ,- , , . 

In the second term of Eq. (58) we change the sign ofthe summation variable, а --t -а. Using 
the syrnmetry properties ofthe 3-] symbols [37] and the identity {7')2 = 1, we rewrite Eq. (58) 
in the form 

t;lk(-I)J'+K ".~;a [(!~ ~ ;:) +7' (!~ ~ ~, )] х 
х [IJ'KP') +7IJ', -К,Р')] Irsn;OO), (59) 

where 7 is given Ьу Eq. (55). Ву defmitions (3)-(5), (9), and (10), the total wavefunction in 
Eq. (59) сап Ье written as 

(60) 

with л == 7( _1)J' = 7'( _1)N' = л'. Then inserting Eqs. (58)-(60) into (57) again leads to 
Eq. (54). 

2.5. Intensities of Individual Singlet-Тriplet Тrапsitiопs 

The contamination ofthe triplet state with the singlet state ВN results in а nonzero transition 
moment (rsIJLlrTr",), which is proportional to (rsIJLlrs,,), where JL is the electric dipole 
moment operator. The only nonvanishing component of the transition moment in the мср 
for rs = AI~ and rs" = В2u is (rslJ.tylrsJ since the symmetry species of J.ty is В2U ' The 
corresponding Hougen's intensity parameter J.t(ВЗg ) [38] сап Ье introduced Ьу the relationship 

_ r,:; V so ( I I ) _ СжJ.tу 
J.t(ВЗg ) - у2 дЕ rs J.ty rsn = дЕ' (61) 

where J.ty now stands for the matrix element and the notation J.t(ВЗg ) reflects the fact that the 
triplet sublevel Тж borrowing the В2u +-- А1у oscillator strength belongs to the symmetry species 
Г". = ВЗg ' 

The intensity of ап individual transition is given Ьу 
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I(Гтг..л' 8' J'i' ~ Гsг':л"т" 8" J" N"i") = 

= 3 L 1 (гт; г'тл' 8' J' i' P'lJ.telr s; г': л" т" 8" J" N" i" Р") 12, 
Ё"?" 

(62) 

where е is а unit vector in the direction of the electric field. Defining the first-rank spherical 
tensor components of J.t and е both in the LCF and МСР Ьу the relations given in Eq. (42), e.g., 

e~l) = ie- еЩ_ = -ri2-1/ 2(e- ± ie-) 
о z, ±1 т х у , (63) 

and similarly for J.t where tilda indicates the LCFaxes, we have 

J.te = L (_1)1-и fL~)e~)u' (64) 
и=О,±1 

which is similar to Eq. (41) except that projections are taken in the LCF rather than МСР. 
The LCF projections are expressed in terms of the МСР projections Ьу [37] 

(65) 

In Eqs. (64) and (65), fL~) and e~)<1 are invariant with respect to rotations whereas the Wigner 

functions D~~ depend оп the Euler angles. We substitute Eqs. (64), (65) and expansions (11) 
and (34) into Eq. (62), obtaining 

I(Гтг'тл' 8' J'i' ~ гsг':л"т" 8" J" N"i") = 3 L I L C~'>K'C<;;;; М112 , (66) 
Ё"?" N'K'K" 

where we ornitted some indices of the coefficients of expansions (11) and (34), and 

М1 = (гт; г'тл'т' 8' J' N' к' P'I L(_1)I-U D~~fL~)e~)ulrs; г':л"т" 8" J" N" к" Р"). 
(7<1 

The triplet function is approximated Ьу Eq. (54), 

V so '" J'-P' +1'1' М1 = - L.Jр,!ю(-1)2N' + 1 х 
дЕ р' 

[ ( J' 1 N') (J' 1 Х L (У' _Р' (У' к' + т' -Р' (У' 
О"'=±1 

where 

м = (г ·г л' 8J'J'P'P'I"'(-1)I-uD(1~,,(l)е(1)_IГ 'Г'л"т"8"J"N"К"рlI ) 2 sn, т т L...J (7(7,..,(7 -(7 S, т 

(70" 

and т is given Ьу Eq. (55). The electronic factor in Еч. (69) is 

(rsпlfL~)lrs) = IrrlfLy/V2. 
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We will choose the LCFaxis z along the electric field since the result is independent of the 
field direction. Then from Eq. (63) we have e~1) = i, e~~ = О, and Eq. (69) becomes 

М2 = -iJ-tуМз/V2, where 

Мз = (Гrл'rSJ' J' р' Р'I 2: D~llг';л"r" s" J" N" К" Р") 
<7=±! 

(71) 

is the rotational factor. This matrix element is expressed in terms of the integra1 of а product 
of three Wigner functions [37]. With the use of Eqs. (9), (10), and (55) the rotationa1 factor 
becomes 

Мз = fр'fк"б)",-)''' Х 

Х [(J'KP' I 2:D~БIJ"К"Р") +r"(J'KP'1 2: D~lIJ",-К",Р")] 
<7=±I <7=±! 

р,-р'у = fр'fк"б).',-)''' (-1) (2J' + 1)(2J" + 1) х 

[( J' 1 J") ,,( J' 1 J")] ( J' 1 J") х <7~I -Р' (1 К" + r -Р' (1 -К" -Р' О Р" . (72) 

After the insertion of Eqs. (67)-(72) in Eq. (66), the last factor in Eq. (72) squared сап Ье 
summed to give unity. ТЬus, we arrive at the final expression for the intensity of an individua1 
transition: 

l(Гтг'rл'S'J'i' f-- Гsг';л"т"S"J"N"i") = ~8)",_),,,IJ-t(Взg)12(2J' + 1)(2J" + 1) х 

J'+! 

Х 2: V2Ni + 1 
N'=IJ'-II 

N' 

2: 
К'=О 

J" 

2: 
K"~O 

(only even or odd) (only even or odd) 
2 

J' 

Х 2: f~, 2: (1' Fp '<7'<7 , 

where 

р'=о ",'",=±I 

Fp '<7'''' = [( !;, 
х [( !;, 

and, according to Eq. (5), 

1 N') (J' 1 
(1' К' + т' -Р' (1' 

1 J") ,,( J' 1 
К" +т р' (1 - (1 

_~,)] х 
J" )] 
-К" , 

т'=Л'(-l)N', т"=Л"(-l)J". 

(73) 

(74) 

(75) 

For given г~ and г~ the evenness or oddness of К' and К", as well as the values of л' and 
л", are found from ТаЫе 3. The following selection rules are evident from the properties of 
the Wigner 3-J symbols in Eq. (74): 

tlJ = О, ±l, tlN = О, ±l, ±2, tlK = О, ±2. (76) 
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Иg. 2. Correlation diagram for the lowest spin-rotational leve1s of the 
тi state of pyrazine in the gas phase 

For instance, Р ditfers from both К' and К" Ьу опе, therefore К' and К" ditfer Ьу О or 
2. Since the K's are both even or odd, and since the л's are opposite in sign, the allowed 
transitions are (see ТаЫе 3) А - В1 and В2 - Вз • 

Equation (73) is the тain result of the present paper. lt тау ье appIied to molecules for 
which only the spin-spin interaction is important, and in which only опе spin sublevel of the 
nonrotating molecule is radiatively active, as in сазе of the Т1 .- Во absorption spectrum of 
pyrazine. А more general formula, va1id for other molecules, is derived in the Appendix. 

In Eq. (73), the intensities are given for transitions between the true molecular eigenstates, 
represented ьу the symmetrized rotational wavefunctions in Eqs. (3) and (10), rather than 
between the states represented Ьу the functions in Eqs. (2) and (15). Consequently, the 
Boltzmann averaging necessitated Ьу а given ехрептептl arrangement does not involve any 
additional compIications associated with using the signed angular momentum projections [38]. 
Instead, each intensity ca1cuIated from Eq. (73) needs only to ье multiplied Ьу gexp(-ЕjkТ) 
where g is the nuclear spin statistical weight. 

The singlet-triplet spectrum of а polyatornic molecule is а very complicated matter, even 
for а symmetric top without the multiplet splitting. Therefore, our focus in this paper was to 
develop а general approach accompanied Ьу а detailed derivation for а specific тоlесиlе, which 
is easily extendable to апу other опе. А more genera1 formula is given in Appendix. 

З. RESULTS AND DISCUSSION 

3.1. Тhe Correlation Diagram 
А correlation diagram for the spin-rotational1evels of the Hamiltonian (33) is shown in 

Fig. 2. For е = О (по fine structure (FS) splitting) the levels of ап asymmetric top are shown 
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as horizontal bars оп the Ieft -hand side of the diagram. The level1abelling is N к -1 К +1' where 
the asymmetric top quantum number К + 1 reduces to the projection of the angular momentum 
N оп the top axis с, КС , in the limit of the oblate symmetric top (А = В). The asymmetry 
splitting for а nearly oblate symmetric top is first order in the smaH asymmetry parameter А - В 
for К+ 1 = 1 and second order for К+I > 1. Therefore, the splitting of the 212 and 202 levels 
is not seen at the energy scale of the fщurе. The symmetry species of the levels are shown in 
brackets. 

Turning оп the FS interaction (~ > О) produces а splitting of аН levels other than 
NK_,K+, = 000, as shown in Fig. 2. Typically, three components are observed, corresponding 
to three possible values of J = N + S. In general, the separation of the three components 
decreases with increasing N (and J). The J = 3 components of the 212 and 202 levels remain 
nearly degenerate since their coupling is to the 312 and 322 levels, which lie at significantly 
higher energy. Each set of FS components belongs to the same symmetry species as the levels 
from which they are derived at ~ = О. 

The spin levels of the nonrotating molecule and their correlation with the spin-rotational 
levels are shown in the right-hand side of the fщure. The energy separations of the T:z;,y,z are 
arbitrary. А [иН сопеlаtiоn diagram would ье two-dimensional, depending upon two parameters 
ofthe FS interaction Hamiltonian, D and Е (see Eq. (16». Instead, we show а one-dimensiona1 
section of the diagram, in which D and Е are both proportional to ~ while their ratio, Е / D, 
remains constant (see Eq. (33». In this case the correspondence between the symmetry species 
of the spin-rotationallevels and the pure spin levels is not defined uniquely, being dependent 
upon the value of Е / D. Indeed, each spin-rotational wavefиnction involves contributions from 
аН three spin levels T:z;,y,z as is seen from the expansion (15) in the lirnit of ~ = О. When ~ > О, 
the same is true for the wavefиnctions (34), where the relative contributions of Tx,y,z depend 
on~. In the lirnit oflarge~, one ofthem dominates, but which one cannot ье predicted without 
calculations since this depends оп the Е / D ratio. 

As an example, let us consider the J = 1 components of 220, 202, and 000, which сопеlаtе 
with Tz , Ту, and Тх, respectively. Ifwe change the sign ofthe FS constantE,the orderingofthe 
levels T z and Ту is reversed (see Eq. (18». However, because ofthe non-crossing rule for terrns 
ofthe same symmetry (А in the present сме), the previous сопеlаtiоn is not preserved. Instead, 
the J = 1 components of 220, 202, and 000 now correlate with Ту, Tz , and Тх, respectively. 

The number of levels with а given J in Fig. 2 is equal to 6J + 3, being defined Ьу the 
usual momentum addition rule. 

3.2. Тhe Singlet-Тriplet Spectrum of Pyrazine-Iч 

We next used Eq. (73) to calculate the singlet-trip]et absorption spectrum of the o~ band 
of pyrazine-h4 . The spectrum was calculated Ьу Boltzmann averaging the intensities of the 
individual transitions using а rotational temperature of 7 ст- 1 (10 К). The summation over 
the transitions was truncated at а maximum value ofthe total angular momentum Jma:z; = 12, 
at which point the level populations were less than one percent of the total popu]ation. Nuc]ear 
spin statistical weights, g(B1) = g(Вз ) = 9, g(B2) = 13, and g(A) = 17, were also taken into 
account. Each line was dressed with а Lorentzian whose fиll width at half maximum represents 
the resolution of the calculated spectra. 

The spectra calculated with the parameters of ТаЫе 2 (and ~ = 1 in Eq. (33» are shown 
in Fig. 3. The top spectrum has the same resolution ( ...... 2 GHz) as the published experimental 
spectra [25, 26}. The spectrum consists of а central intense Q branch due to the дN = О (дN == 
N' - N") transitions, an R-form branch involving R (дN = 1) and S (дN = 2) transitions оп 
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Fig. З. The calculated singlet-triplet spectrum of pyrazine-h4 at two different resolutions. The 
rotational temperature is Trot = 10 К, Jmаж = 12 

the high-frequency side of the Q branch, and а P-form branch due to О (dN = -2) and Р 
(dN = -1) transitions [25,26] оп the low-frequency side. At this level ofresolution most ofthe 
individual bands in the R- and P-form branches of the calculated spectrum are structureless. 
Yet some splittings are seen, similar to those observed in the experimental spectra [25,26]. For 
example, the Р(1) member has а shoulder оп its red side, whereas Р(2) is structureless. R(O) 
and R(2) are weaker than Р(I) and exhibit more evident splittings. 

The FS splitting becomes more pronounced in the spectrum calculated with а higher 
resolution of about 600 MHz (bottom panel in рщ. 3). Тhe line splittings are more extensive 
in the R-form branch than in the P-form branch because transitions in the R-form branch 
access higher J va1ues in the triplet state. 

The effect of the FS interaction оп the spectrum is made more clear in Fig. 4 Ьу the 
comparison of two spectra, one with с: = О and another with с: = 1. With с: = О, the 
R-form branch is more intense than the P-form branch. Introducing the FS splitting decreases 
the overall intensity of each branch, but the effect оп the R-form branch is larger since the 
degeneracy ofthe triplet levels for R and S transitions is higher than that for Р and О transitions. 
Hence, the R- and S -type transitions are split into а larger number of components sharing the 
total intensity of а given transition. As а result, the intensities of the Р- and R-form branches 
Ьесоте more similar, and the spectrum acquires а sort of mirror image symmetry with respect 
to the Q branch. Such а uniformity ofhigh J and low J parts ofthe spectrum is expected fюm 
the fact that the rotational intervals are proportiona1 to 2J and the rotationa11evel degeneracy 
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Fig. 4. Effect of fine structure splitting оп the sing1et-triplet spectrum of pyrazine. Resolution 
0.02 сm- 1 

to 2J + 1, hence the density of states is essentially independent of J. 

Figure 4 a1so c1ear1y demonstrates the transition from Case (а) to Case (Ь) behavior. In 
both P-form and R-form branches, the 10w J bands are split significant1y, the splittings being 
оп the order ofthe rotationa1 band separations. This corresponds to Hunds's Case (а) coupling 
(or, more precise1y, Case (аЬ), as noted earlier). With J increasing, the splittings decrease and 
u1timate1y disappear in the high J bands, characteristic of Case (Ь). Thus, we predict that 
Hund's Case (а) - Case (Ь) transition сап Ье observed in as 1arge а p01yatornic то1есu1е 
as pyrazine under quite moderate res01ution conditions. Тhe effect wi1l a1so Ье observable in 
1arger m01ecu1es, at higher res01ution. Apart from the diatomic molecu1es mentioned in the 
Introduction, there have been по previous observations of this phenomenon in а polyatomic 
molecu1e. Recent1y, а pure Case (аЬ) spectrum has been reported in H2CSe [49]. 

Figure 5 shows the R-form branch оп an expanded scale at higher resolution (150 MНz), to 
illustrate the relative importance of the asymmetry and FS splittings in pyrazine. ТЬе asymmetry 
splitting is more important for transitions terminating in J ~ 4, whereas the FS splitting is 
more important at higher J. Note, in Fig. 5Ь, that the asymmetry split bands still preserve 
their identity as rotationa1 bands since the splittings are smaller than the band separations. In 
contrast, the FS splitting in Pane1 с is large enough to Шl the gaps between the low J bands. 
Thus, these bands are actually spin-rotationa1 rather than rotationalin nature. C1ear1y, а high 
resolution of about 100 MHz will Ье required to observe this behavior. Even higher resolution 
("-' 10 MHz) will Ье required to observe the true molecular eigenstates. 
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Fig. S. Evolution ofthe R-form branch from а symmetric top with по fine structure splitting 
(а, с: = О) to an asymmetric top with по fine structure splitting (Ь, с: = О) to an asymmetric 
top with fine structure splitting (с, с: = 1). Тhe starred band in panel а involves degenerate 
R(2) and 8(1) lines; these are split in panel Ь due to asymmetry and further split in panel 

с due to the spin-spin interaction. Resolution 0.005 сm- ! 

3.3. The Singlet-Тriplet Spectra of Рутazinе-а. and the Pyrazine-Ar уan der WaaIs Complex 

We also used Eq. (73) to calculate the singlet-triplet spectra of pyrazine-d4 and the 
pyrazine-Ar van der Waals сотрlех. Our objective was to compare these spectra with those of 
pyrazine-h4 , therebyexploring the effects ofvarying the magnitudes ofthe rotational constants 
оп the Сме (а) - Сме (Ь) transition. In the calculation оп pyrazine-d4 , we used the known 
rotational constants ofthe ВО state (see Table 2) and assumed, for the Т1 state, that the rotational 
constants are reduced upon deuteration in the same proportion as in the ВО state. The smallest 
moment ofinertia in both states is now the moment about the х axis [44]. Thus, the rotational 
constants А and В are exchanged in the Harniltonian (1). The nuclear spin statistical weights 
are у(В1 ) = g(Вз ) = 6, у(В2) = 7, and у(А) = 8 in this сме. Таking these changes into 
account, we obtain the spectra shown in Fig. 6, with and without the FS splitting. Comparing 
the two spectra, we again see that turning оп the FS sp1itting decreases the intensiy of the R­
form branch relative to the P-form branch. We also note that numerous lines appear in the gaps 
between the rotational bands at low J, and that these lines disappear at high J. This behavior is 
again а manifestation ofthe Case (а) - Case (Ь) transition; turning оп the rotation decouples 
the spin from the molecular frame and distributes the oscillator strength more uniformly, as 
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Fig.6. Тhe calculated singlet-triplet spectrum ofpyrazine-d4 • Тор panel, with fine structure 
splitting; bottom paпel, without Гше structure splitting. Resolution 0.01 cm- I , Trot = 10 К 

noted in Sect. 3.2. 
ТЬе singlet-triplet spectrum Qf the pyrazine-Ar van der Waals сотрlех has been observed 

in а supersonic jet using the МРI technique (19), at Iow resolution. No rotationalIy resolved 
spectra have been reported to date. То model such а spectrum, we assumed that the Ar atom 
Iies оп the z axis perpendicular to the ring plane, at а distance of 3.5 А, as it is in benzene­
Ar [50] and s-tetrazine-Ar [51]. With this model, the С rotationa1 constant remains unchanged 
whereas the А and В constants are reduced Ьу а factor of 4.8, in both states. ТЬе nuclear spin 
statistical weights are g(A) = g(B1) == 13 and g(B2) = g(Вз ) == 11. ТЬе spectm calcu1ated 
using these modified pammeters are shown in Fig. 7. 

Comparing the spectra for these species (Figs. 3, 6, and 7), we see first that the singlet­
triplet spectrum ofpyrazine-Ar is considerably more congested than those ofthe bare molecule, 
owing to the significant decrease in the values of А and В. Stш, the complex exhibits well-de­
fined branches in its spectrum, in the absence of the FS interaction. However, tuming оп this 
interaction has а dramatic effect оп the spectrum. ТЬе Iow J rotational transitions, within 
±1 ст- I of the Q branch, are extensively mixed Ьу the spin-spin coupIing. 'Still, а defined 
leveI structure exists, although extremely high resolution ('" 1 MHz) will ье required to expose 
the individuaI eigenstates. ТЬе Iong Iifetime of the triplet state should permit such experiments 
in the near future, raising the intriguing probability of seeing still more underlying structure, 
including that due to hyperfme interaction and/or coupIings to nearly isoenergetic ground state 
IeveIs. ТЬе possibility of observing such effects is enhanced at ЬщЬ J (cf. Fig. 7), where the 
structure with € =f о is even simpler than that with € == О, the transition to pure Case (Ь) being 
«complete». 
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Fig. 7. The calcu!ated sing!et-trip!et spectrum of the pyrazine-Ar van der Waa!s сотр!ех. 
Тор pane!, with fine structure splitting; bottom рапе!, without fine structure splitting. 

Reso!ution 0.005 cm- I , Trot = 1.5 К 

4. CONCLUSIONS 

А closed-form analytical expression has been derived for calculating the intensities of 
individual spin-rovibronic lines in the singlet-triрJеt absorption spectrum of а polyatornic 
molecule. This expression takes into account both the intramanifold spin-spin coupling within 
the triplet state and the intermanifold spin-orbit coupling of the triplet to an excited singlet 
state. It also includes asymmetry splittings, and therefore сап Ье applied to asymmetric tops as 
well as symmetric tops. With this expression, we have calculated the spectra of three species: 
pyrazine-h4 , pyrazine-d4 , and the pyrazine-Ar van der Waals complex, using the available 
experimental values of the gas-phase rotational and so1id-state fine structure parameters of 
pyrazine-h4 and model parameters for the remaining molecules. Comparison ofthe predictions 
of the theory with the available data for pyrazine-h4 shows good agreement with experiment. 
The remaining molecиles have not yet been examined at high resolution. 

The computed spectra exhibit а number of interesting properties, the most notable being 
the transitionfrom Oase (а) to Case (Ь) with increasing J andjor increasing molecular size. 
Inclusion of the [те structure interaction in the zero-order triplet state results in а decrease 
in the intensity of the R- and S-transitions, compared to р- and O-transitions branches, 
and а more symmetric spectrum. This effect has Ьееп observed in moderate resolution 
experiments [25, 26]. Additionally, spin-rotationa1 transitions appear in the gaps between «pure» 
rotational transitions at low J, fragmenting tlle spectrum, but disappear at high J. This effect 
is more pronounced in pyrazine-d4 and the pyrazine-Ar van der Waals complex, owing to their 
smaller rotationa1 constants. All of the predicted behavior should Ье observable in experiments 
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performed with а resolution of ~ 100 MHz. 
The analytical expression derived here сап ье used for interpretation of the singlet-triplet 

spectrum of апу polyatomic molecule with arbitrary large (or small) rotational and fine structure 
constants. 
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APPENDIX 

The general formula for the intensities and its relation to the Hougen factors 

А general formula for the intensities сап ье derived from Eq. (62) ifwe represent the triplet 
function in the most general form, Eqs. (10) and (15), not invoking Eq. (53). Introducing the 
notation 

(Аl) 

we obtain 

I(Гтг..л' в' J'i' +- Гsг':л"т" В" J" N"i") = ~(2J' + 1)(2J" + 1) х 

J'+I N' J" 
х L ..J2N' + 1 L с') !юС;',ю L ("") 

!К"С!<" х 
N'=IJ'-II К'=О К"=о 

(only even or odd) (on1y even or odd) 

J' 
х L L о.и'иРР'и'и , (А2) 

P'=-J' и'и=О,±1 

where РР'и'и is given Ьу Eq. (74). The selection rules are the same as in Eq. (75), plus дК = 
= ±1. The rule л' = -л" does not аррlу anymore. 

А general expression for о.и'и found from Eqs. (41), (43), and (56) is 

(А3) 

where the star denotes а сотрlех conjugate, M~) now stands for (rsnl/-L~)lrs), and the 
summation is over аН contributing singlet states Вn. The foHowing identity is easily derived 
either Ьу applying the time reversal operator (14) or from the definition ofthe spherical tensors 
in Eq. (42): 

n - ( l)и'+и+1 n* 
:&I.-O",-cr - - :tI.1.(J'I U • (А 4) 
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For pyrazine, retaining а single terrn of the sum (А3) and inserting Eqs. (45), (61), and (70), 
we find 

(А.5) 

In this case Eq. (А4) reduces to 

(А6) 

Designating the last sum in Eq. (А2) Ьу А(Р') and using Eq. (А6) and the properties of 3-J 
symbols in Eq. (74), we derive 

А( - Р') = -л' л" А(Р'). (А7) 

Inserting this into the identity 

L:A(P) == L: f~ [А(Р) + А(-Р)] (А8) 

р p~o 

folowing from Eq. (4), we immediately obtain the selection rule л' = -л". Now, it is easy to 
verify that Eq. (А2) reduces to Eq. (73) in the particular case of pyrazine. 

ТЬе intensities of individual rotationallines in the singlet-triplet spectrum of а symmetric 
top тolecиle without fine structure splitting were given Ьу Hougen [38] in а tabular forrn for 
the D2h point symmetry group, together with directions for the use of these tables for other 
groups. Our general [оrrnulа (А2) enables us to derive а single unified expression embracing 
all cases considered Ьу Hougen. In Eq. (А2), one has to put 

., '1' 

CN, К' = Oi' ,N' К' and Ск" = Oi" ,К", 

and then to convert it to give the intensities for transitions between nonsymmetrized states 
(with К' and К" taking both positive and negative values). This is perforrned Ьу а simple 
transforrnation of the transition amplitude from basis (3) to basis (2). ТЬе result reads 

I(ГтJ' N' К' - ГsJ" К") = (2N' + 1)(2J' + 1)(2J" + 1) х 

{~:,.,. (!~ ; ~:) (!;, ~ ::, )1', (А.9) 

where the actual summation is perforrned оnlу over (j since Р' = (j + К' and а' = (j + АК; 
АК == К' - К". ТЬе 3 х 3 matrix (Аl) is expressed in terms of nine real intensity parameters, 
Пik, i, k = х, у, Z, in the same manner as еасЬ member of the sum of Eq. (А3) is expressed 
in terrns of CiJ.lk/ АЕ using the definition (42). For instance, 

(АI0) 

etc. For the D 2h group, our intensity parameters сап ье related to the Hougen parameters 
J.l(B1g ), J.l(B2g ), and J.l(ВЗg ) as shown in the following examples. 

For АК = AN = AJ = О, Eq. (А.9) gives 

_ 2J + 1 I i [ 2 ]. 2 1 12 1 - ри + 1)2 "2(ПХХ + Пуу ) К - J(J + 1) + zПzzК - "2(ПХУ - Пух)К , (А 11) 
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where К = К" and J = J". Thus, in general, five intensity parameters govern this particular 
transition. In case of the ЗАи f- 1 A 1g transition in the D2h group, the possible contaminating 
singlets having nonzero tгапsitiоп rnoments /-Lж,у,z from the ground state are 1 ВЗи , 1 В2и> and 
1 В1и , respectively. The corresponding triplet sublevels acquiring the oscillator strength via the 
spin-orbit coupling parameters Cx,y,z are Тж,у,z' Since the transforrnation rules for !lik are 
the same as for Ci!-Lk, we obtain the following three nonvanishing parameters, assigning them 
Hougen's notations: 

(А.12) 

These defmitions apply to аll transitions with rS х ГТ = Аи • Equations (А9) and (А12) 
entirely reproduce Hougen's ТаЫе 1, apart from an insignificant phase factor ofthe transition 
arnplitude. Similarly, for rS х ГТ = В1и , two nonvanishing parameters are 

(АlЗ) 

Equations (А9) and (АlЗ) reproduce Hougen's ТаЫе 2. Pyrazine belongs here, with 
/t(B2g ) = О (cf. Eqs. (А5), (А 10), and (АlЗ». For rs х ГТ = В2и or ВЗи , all five parameters 
vanish. 

For дК = дN = дJ = 1 Бq. (А9) gives 

(J + К + 1)(J + К + 2) . . 2 
1 = 4(J + l)2(J + 2) I(Z!lжz - Qyz)(J - К + 1) + (z!lzж - !lzy)(K + 1)1· (А 14) 

For rs х ГТ = В2и in the D 2h group, the nonvanishing parameters are 

(АI5) 

Equations (А9) and (АI5) reproduce Hougen's ТаЫе 3. Application of Eq. (А9) to апу other 
point group is straightforward; опе has to calculate the intensity of а particular дК, дN, дJ 
transition and then to define, Ьу the usual rules, which of the intensity pararneters vanish. 
For а molecule with по symmetry, all ninе intensity parameters Qik are present, but not all 
of them are relevant to а given transition. Thus, five parameters govern the intensity of the 
дК = дN = дJ = О branch, Eq. (А 11), and the other four govern the intensity of the 
дК = дN = дJ = 1 branch, Eq. (А14). 
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