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The properties of the low excitation field magnetic response of the granular high temperature 
(НТС ) superconductor Lal.SSrO.2Cu04 have Ьееп analyzed at low temperatures. Тhe response 
of the Josephson eurrents has Ьееп extraeted from the data. It is shown that intergrain 
eurrent response is fuПу irreversible, produeing shielding response, but do not еаау Meissner 
magnetization. Analysis of the data shows that the system of Josephson eurrents freezes into а 
glassy state еуеп in the absense of external magnetie field, whieh is argued to ье а eonsequenee of 
the d-wave nature ofsupereonduetivity in Lal.SSro.2Cu04. Тhe maeroseopie diamagnetic response 
to уегу weak variations ofthe magnetie field is shown to Ье strongly irreversible but still qualitatively 
difТerent from апу previously known kind of the critical-state behaviour in superconductors. А 
phenomenological description of these data is given in terms of а newly proposed «fraetal. model 
of irreversibility in supereonductors. 

1. INТRODUCTION 

@1997 

Granular superconductors (SC) are composed of а уесу large number of smaJ1 (micron-size) 
superconductive grains which are coupled together due to the Josephson tunnelling (or, in some 
cases, due to the proximity effect). Тhese systems are inherently disordered due to randomness 
in the sizes of grains and in their mutual distances. Usually the strength of Josephson coupling 
between grains is rather weak, so the maximum Josephson energy of the contact between two 
grains is тисЬ below the intragrain superconductive condensation епещу. Therefore granular 
SC сап Ье considered as systems with а two-level organization: their short-scale properties 
are determined Ьу the superconductivity of individual grains, whereas the macroscopic SC 
behaviour is governed Ьу the weak intergrain couplings. In the treatment of the latter, опе 
сап neglect апу internal structure of SC grains and describe them just Ьу the phases фj of their 
superconductive order parameters д] = IIllj ехр(iфj). As а result, the macroscopic behaviour of 
granular SC сап Ье described Ьу а classical free energy functional ofthe form (cf. Ref. [1-3]): 

н = ~ ~E1 СОS(Фi - фj - (Щ) + J dЗr (8~[V'A]2 - 4~ ([V'A]Hext»), (1.1) 
<) 
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where 

j 

а = 21г JAdf 
2) ФО 

is the phase difference induced ~y the electromagnetic vector potential А and ФО = 1Гlic/е, 
whereas tl1e coupling strengths Е] are proportional to the таЮтит Josephson currents: Е] = 

= (n/2e)Ifj' The vector potential А in Eq. (1.1) is the sum of the vector potential Aext of the 
extemal magnetic field H ext and of the Josephson currents-induced vector potential A;nd. In 
the absence of extemal magnetic field, the 10west-energy state for the «Hamiltonian» (1.1) is, 
clearly, а macroscopically superconductive state with аll phases фj equal to each other. Thus 
that granular SC system looks similar to the random ХУ ferromagnet with randomness in the 
values ofthe coupling strengths ЕУ 's (apart from the possible role ofthe induced vector potential 
Aind which мll Ье dicussed later); within this ana]ogy the role of ХУ «spin components» is 
taken Ьу Sx = СОSфj, Ву = siПфj. 

The situation becomes а 10t more complicated in the presence of ПОl1-zеro extemal 
magnetic field Hext , which makes the system randomly frustrated (since magnetic f1uxes 
penetrating plaquettes between neighbouring grains are random fractiol1al parts of Фо). When 
the extemal field is sufficiently strong, H ext ~ Но = Фо/ а5 (here ао is the characteristic 
intergrain distance), the random phases Dij Ьесоте of the order of 1г or larger, which means 
complete frustration of the intergrain couplings - i.e. tl1e system is thel1 expected to resemble 
the ХУ spin-glass. Actually the random Josephson network in а magnetic field is not exactly 
identical to the ХУ spin-glass due to the following reasons [1]: i). The effective couplings ву = 

= ЕУ ехр(iЙij) between «spins,> Si ofthe frustrated SC network are random complex numbers 
whereas in the ХУ spin-glass model, they are real random numbers. ii). Generally the phases 
Dij depend оп the total magnetic induction В = H ext + Bind , i.e. the effective couplings ву 
depend оп the phase variables фj determining the intergrain currents I ij = Ifj siП(Фi -фj -aij). 
In some cases the effects produced Ьу the self-induced magnetic field Bind are weak and сап 
Ье neglected (the quantitative criterion will Ье discussed later оп), so that phases Dij сап ье 
considered as being fixed Ьу the extemal field. 

The model described Ьу the Hamiltonian (1.1) with flXed Di/S and H ext ~ Но is usually 
called «gauge glass,> model. It is expected оп the basis of the analytical [2-5] as well as 
numerical [6,7] results that the gauge glass model in 3D space exhibits а true phase transition 
into а 10w-temperature glassy superconductive (nonergodic) state. The mean-field theory of 
such а low-temperature state shows [3,5] that it is characterized Ьу the presense of а finite 
effective penetration depth for the variation of ап extemal field, nonzero macroscopic critical 
cиrrent, and the absense of а macroscopic Meissner effect. The [иll model (1.1) with a's 
containing contribution from Bind is sometimes called «gauge glass with screening» [8]. The 
effect of screening оп the presence and properties of the phase transition into а glassy state is not 
completely clear; some numerical results [8] indicate the absence of а true phase transtion in 
а 3D model with screening. Quantitatively, the strengh of screening is determined Ьу the ratio 
(3 L = 21ГЯ' I c / сФо where !Z' is the characteristic inductance of ап e]ementary intergrain current 
100Р [9]. In the ceramics with (3L « 1, screening effects Ьесоте important оп а long-dis­
tance scale '" ao/V7JL only (i.e. they are similar to the strongly type-II superconductors with 
disorder). 

Apart from its relevance for the description of granular superconductors, the gauge glass 
model with screening is rather often considered (e.g. Ref. [10]) as а simplified model describing 

2080 



ЖЭТФ, 1997, 111, выл. 6(12) Low fteld magnetic response . .. 

{Ье large-scale behaviour of disordered bulk type-П superconductors in the mixed state (so­
cal1ed vortex glass problem). Actually it is unclear а priori how these two problems are re1ated; 
ап obvious difference between them is that the basic ingredient of the latter is the vortex lattice 
which is clearly ап anisotropic object, whereas the former does not contain апу prescribed 
direction in the 3D space. оп the other hand, the granular superconductor in а moderate 
magnetic field Нежt ~ Но mау ье considered as а kind of disordered tуре-П superconductor, 
where {Ье notion of а hypervortex (which is the macroscopic analogue of {Ье Abrikosov vortex) 
сап ье introduced [2,11]. Therefore, the macroscopic properties of а granu1ar network at 
Нежt :.:::; Но тау resemble those of the vortex glass; in such а scenario а phase transition 
between vortex glass and gauge glass phases would ье expected in а granu1ar superconductive 
network at Hext '" Но (cf. Ref. [1] for а тосе detailed discussion ofthis subject). 

RecentIy, it was noted that granular superconductors тау Ьесоте glassy еуеп in the 
absence of external magnetic field, if а large enough part of Josephsonjunctions are anomalous, 
i.e. their minimum Josephson coupling energy corresponds to а phase difference L1ф = 7r 
instead of О (so-cal1ed 7r-junctions). Two complete]y different origins of 7r-junctions were 
proposed: mesoscopic fluctuations in dirty superconductors [12] and the pairing with non-zero 
momentum [13, 14J. Recent experiments revealing the d-wave nature of pairing in high-tem­
perature superconductors [15} indicate the possibility of observing glassy superconductive 
behaviour in HTSC ceramics in virtuaПу zero magnetic field. Note that ceramics with equaJ 
concentrations of usual and 7r-junctions асе completely equivalent (if screening effects сап ье 
neglected) to the ХУ spin-glass. Contrary to the 3D gauge glass model, the ХУ spin-glass 
in зп is expected to have по true thermodynamic phase transition а! fmite temperature [7J; 
recently, it has Ьееп suggested that the ХУ spin-glass and d-wave ceramic superconductor 
might have а new equilibrium ordered phase, the so-called chiral-glass phase [16J. However, 
these issues are hardly relevant for the measurable response at temperatures тисЬ below «Ьасе» 
glass transition temperature Ту , which we consider in this paper. 

Experimental studies of granular superconductors reveal [9, 17] ап appearance of magnetic 
irreversibllity (а difference between Meissner and shielding magnetizations or, in other terrns, 
between field cooled (РС) and zero field cooled (ZFC) magnetizations) below soте temperature 
Ту , which is lower than the SC transition temperature Те of the grains. However, detailed 
analysis of the magnetic response in such systems is шишlу complicated Ьу the mixing of 
contributions fют individual grains and from the intergrain currents. ТЬе goal ofthis paper is to 
develop а method which makes it possible to extract from the raw data оп d.c. magnetic response 
the intergrain contribution and to сотрасе its behaviour with existing theoretical predictions. 

ТЬе compound Lal.SSrO.2Cu04 was chosen in this study for experimental convenience, 
since its critical temperature (~ 32 К) is within the optimal temperature range of ош noise 
and а.С. susceptibllity measurements setup. ТЬе sample was fabricated Ьу standard solid state 
reaction of La2Оз , SrСОз and СиО [18]. Mixed powder was pressed into pellets which were 
sintered in air at 9200С for 12 hours. ТЬе material was then submitted to three cycles of 
regrinding, sifting to 20jlm, pressing and sintering again at 11000С for 12 hours. Samples 
prepared in two successive runs were used in this study. In the first опе (sample А), pellets 
1 тт thick and 1 О тт diameter were obtained, with а density about 80% of the theoretical 
bulk value. In the second опе (sample В), cylinders of diameter 6 mm and length 5 to 6 тm 
were prepared with а density ratio about 88%. In both preparations, grains sizes were in the 
range 1-10jlm. Room temperature Х -ray powder diffraction patterns showed {Ье presence of 
а small amount « 5%) of the поп superconductive compound LaI_2жSr2жСU205. 

ТЬе rest of the paper is organized as follows. In Section 2 the general analysis of the 
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magnetic response data obtained оп two different samp!es (А and В) ofLal.SSrO.2Cu04 ceramics 
is presented and the intergrain (Josephson) contribution to tIle overall response is extracted. 
Section 3 is devoted to the detailed study of the magnetic response of Josephson intergrain 
network in the !ow-fie!d range. It is found that the macroscopic criticaI сuпепt is suppressed 
considerabIy (Ьу а factor 2), in а magnetic field of оn1у about 2G. The 10wer-fie!d d.c.-response 
to fie!d variations oforder 0.05-0.5 G was ana!yzed for the FC states obtained at Нрс = 0-10 G 
and two temperatures, 1 О and 20 К. The data at Т = 1 О К and Н рс = О and 0.1 G are shown to 
Ье compatibIe with the Веап criticaI-stаtе picture [19] and the low-fie!d criticaI сuпепt value 
is identified. The rest of the data are in а sharp contrast with Bean-model predictions: the 
screening сuпепt grows subIinear!y (approximately as а square root) with increasing exitation 
fie!d. Very !ow field, low frequency а.с. measurements are presented, which reveal the strongly 
irreversibIe nature of that anomaIous response. А new phenomenological model is proposed for 
the treatment of these data. Its first predictions are found to Ье in а reasonabIe agreement with 
the data. In Section 4, the tIleoretica! analysis of our experimentaI results is given in tепns ofthe 
existing theories of «gauge-glass» state. It is shown that the observed transition temperature to 
the 10w-temperature state ofthe network and the magnitude ofthe (low-B, Т) critical current 
are in sharp contradiction with the (usuaI) assumption that the zero-field granular network 
is unfrustrated. Оп the contrary, under the assumption of а strongly frustrated network at 
В = О, аН basic measured parameters of the ceramic network are in mutuaI agreement. We 
believe that these estimates indicate the existence of а large proportion of Jr-junctions in the 
La1.8SrO.2Cu04 ceramics, possibIy due to the d-wave nature of superconductivity in cuprates. 
The Section 5 is devoted to the deve!opment of а new mode! of diamagnetic response in glassy 
superconductors, which is necessary for the description of the anomalous data described at the 
end of Section 3. This new model (in some sense, intermediate between the Веап [19] and 
the СатрЬеll [20] ones) is based оп two ideas: i) the existence of two characteristic «critical» 
currents (Jc1 and Jc » Jc !), and Н) the fractal nature of free energy valleys in the ceramic 
network. Our conclusions are presented in Section 6, whereas some technical calc::ulations сап 
Ье found in the Appendix. 

For convenience, the е.т.и system ofunits wi11 Ье used for experimental data, and Gaussian 
units for the theoretical discussions. 

2. GENERAL PROPERTIES OF D.C. МAGNEТIC RESPONSE 

The d.c. magnetization was measured Ьу the classical extraction method. Two SQUID 
magnetometers were used: опе а home made apparatus used in several previous spin-glass 
studies [21], the other а commercial system (Cryogenics S500). 

In this section, we describe successive!y the static magnetic response of samples А and В 
and present а preliminary treatment of these data, in order to distinguish between the magnetic 
response of individual grains and intergrain сuпепts [9,22] (а detailed study of the latter is the 
subject ofthe next section). FirstIy, we present the results obtained after cooling the samples in 
various d.c. fields and applying small field increases. Secondly, we wi11 derive from the results 
the response of the Josephson сuпепts as а function of field and temperature. Finally, we wiH 
show that the behavior of the field cooled susceptibility сап Ье satisfactorily accounted for if 
the system of Josephson сuпепts does not carry Meissner magnetization. It wiI1 ье shown that 
the same interpretation accounts fairly welI for the FC results which, at first sight, are rather 
different for the samples А and В. 
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Fig. 1. Magnetic moment of the ватр1е А ав а function of fie1d applied in the zero 
fie1d coo1ed state (е.т. units of moment correspond to стз ·а). Нrnа ", = 0.5 (о), 

1 (О), 1.5 (L1) а. The curves for fie1d 100РВ О-Нrnа",-О are superimposed 

2.1. Sample А 

Sample А is а 1 mm thiek pellet with an approximately ellipsoidal shape of 2 х 6 mm2• Its 
ealculated volume is V ~ 8.5 mmЗ and the demagnetizing field coeffieient for the field parallel 
to the longitudinal axis is N ~ 0.06 [23]. 

Fig. 1 displays the mu.gnetic dipole moment of tlle sample cooled to 10 К in zero field 
and submitted to eycles О -+ Нтах -+ О for several values of Нтах ир to 2 G. At the lowest 
increasing fields, the moment increases initially with а slope Н. АЬоуе 1.5 G, it approaches 
а slope Р2' The remanent positive moment saturates for Нтах ?: 1 G.The calcиlated moment 
of the sample for perfeet volume shielding in an homogeneous field is (е.т.и. system) 

HV -3 3 
Jt=-4Jr(I_N)=-0.72.10 ·Нет ·G. 

Owing to the error in the evaluation of the volume, this value is determined with an асеurасу 
of only ±5%. Nevertheless, it is in fair agreement with the slope Р\ in Fig. 1. Оп the other 
lшпd, the slope Р2 is about 53%, а rather small value since the density ratio of the sample 
is about 80%. At sueh low temperatures ОП comparison with Те ~ 32 К), where the lower 
critical field ofthe grain's material is аЬоуе 100G, опе would expect expиlsion ofthe field Ьу 
the grains with а penetration depth л. The expeeted value for the magnetization М = Jt jV 
of the system of uncoupled grains system сап Ье ealculated as [24]: 

f 
н - 47Г -=-1 ---f=-=N-=--=---:-(:-1 -----::л'n' 
м 

(2.1) 
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where f is the volume fraction of the superconductive material and n is the demagnetizing 
field coefficient for the grains. For ап estimate, we assume grains to Ье spherical (n = 1/3) 
and, using М/Н ~ 0.53· 1/47Г and N = 0.06, we find f ~ 0.41. This value is considerably 
below the volume fraction ofthe sample filled Ьу grains (~ 0.8); we assume that the difference 
is due to the intergrain penetration depth л being comparable to the grain size r and estimate 
ап effective value of л as 

yielding л = О.2т. 

Taking ап average size of 5р,т for the grains, we obtain л ~ 500 пт. Values reported for the 
теan penetration depth in Lal.gSrO.2Cu04 are about 200 nm [25]. The value found here is larger 
than the expected теап уаlие for the homogeneous material, indicating that the grains are not 
monocrystalline. This will ье confirmed below Ьу the results of field-cooling experiments. 

The shielding susceptibility is plotted in Fig. 2, as а function oftemperature and for several 
values of the ambient FC field. The measurements were performed according to the following 
procedure: the sample was cooled in а field H dc down to the working temperature and the 
moment was measured after waiting 300 sec; then the field was increased Ьу а small amount 
дН ::; Hdc /l0 and the moment was measured again after waiting 300 sec. The fIgUre displays 
the experimental shielding susceptibility normalized to the value for total shielding, i.e.: 

Jt(H + дН) - Jt(H) 47Г(l - N) 
Xsh = дН V 

The curves show the double step usually ascribed to the action of both intragrain currents 
and Josephson intergrain currents [26]. At high temperature, the onset of grains diamagnetism 
occurs at about 32 К. АЬоуе 25 К, the response сопеsропds to the diamagnetism ofthe grains. 
At а fixed temperature, it is H dc independent for H dc ::; 5 G, and decreases for increasing 
H dc > 5 G. Below 25 К, the onset of Josephson currents manifests as а second step of the 
diamagnetic response. This second step appears at а decreasing temperature as Н dc increases. 
At the lowest temperatures, the diamagnetic moment amounts to about 100% offlux expulsion 
at Н dc = О and decreases with increasing Н dc. At Н dc > 8 G, the flux expulsion saturates at 
а value slightlyabove 50% which corresponds roughly to the level of 53% determined аЬоуе 
for the grains response. 

ТЬе susceptibility in Fig. 2 contains the contributions of grains and Josephson currents. 
The contributions сап Ье separated оп the 1ine of the work Ьу Dersh and B1atter [22]. ТЬе 
induction in the sample is given Ьу В = Н + 47Г(Мg + M j ) where Му and M j stand respectively 
for the magnetization of grains and of the Josephson сuпепts. It should ье noted that the 
magnetization due to macroscopic circulating сuпепts in а superconductor is sample-size 
dependent, i.e. the corresponding susceptibility is not а local quantity. At the macroscopic scale 
of the circu1ating currents, the magnetization M g сап always ье written as XgHlocal, where 
Xg (Н) is homogeneous over the sample. In what follows, we consider quantities averaged over 
the volume of the sample: in that case, M j is the averaged moment per volume unit due to the 
сuпепts. ТЬе demagnetizing field effect wШ ье neglected in the calculations. We Ьауе verified 
that, 'owing to the small value of the demagnetizing factor, this does not modify the essential 
features ofthe result while allowing а simpler derivation (the effect of demagnetizing factor wШ 
ье taken into account when analyzing the data from the sample В). We get 

Му = Ху(Н + 47ГМj ). 
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Fig. 2. Shielding susceptibiliy оС the sample А ав а function of temperature. normalized to 
the тотеп! СОС complete shielding. Curves асе arranged in the sarne ascending order as in 
the legend. Hdc "" 20.07, 14.34, 8.60, 5.73, 2.87, 1.99, 1.42, 0.85, 0.57, 0.28, 0.14, 0.06 G 

м = M-ХgН 
J J1.g 

(2.2) 

Eq. (2.2) must ье considered with сасе since Ху is history апд field dependent. In fact it is 
well-adapted to the description ofthe result ofzero (or small) field cooling ехрепщепtз. Мосе 
generally, we must consider the сезроnse to field increments б Н to оЬtain Х ,.. /j м / /j н . ТЬеп, 
the polarizabilityl) Xj оС the Josephson network reads 

Х .,.. Х - Ху 
J . 

J1.g 
(2.3) 

Note that we сап equivalently consider the response ofthe currents system in an homogeneous 
medium with permeability }.tg. Ifthe applied field is varied Ьу БН. the Josephson network зеез 
а variation of intemal field БНi = J1.gБН and develops а polarization cMj = хjБНi . ТЬеп, 
we recover Eq. (2.3). 

1) ТЬе susceptibility, which in the иэuШ sense i8 а local quantity representing (В - Н)/ Н. Ьав по теaning 
in the саве of circulating currents in а conductor. We speak rather of а роlаrizaЬШtу х; which represents 
the average value (В - Н ) / Н, and describes the global effect of the currents over the whole volume of 
the sample. 
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ХГ 1/4n-

10 20 30 40 
Temperature, К 

Fig. З. Josephson currents susceptibility in the sample А as а function of 
temperature. Values have Ьееп calcu1ated from data of Fig. 2 and using Eq. (2.3). 
Hdc = 5.73 (е), 2.87 (0),1.99 (_),1.42 (о), 0.85 (А), 0.57 (Т), 0.28 (6), 0.14 (\7), 

0.06 (О) G 

The value of Ху could Ье determined in principle if we were аЫе to obtain а packing of 
disconnected grains equivalent to the packing of the sintered sample. In practice this was not 
possible. Indeed, mechanical grinding resulted in breaking а large part of the grains and thus 
modifying the characteristics of the material. Nevertheless, it is possible to extract Ху' at least 
approximately, from the data of Fig. 2. At high temperature, аЬоуе the onset of intergrain 
сuпепts at ~ 25 К, the shielding susceptibility Xsh is due to the grains alone, independent оп 
Н de below ~ 6 G . At low temperatures, for Н de аЬоуе ~ 6 G, the Xsh curves superpose and 
there is по manifestation of the onset of intergrain сuпепts. Thus, here also, Xsh represents 
the response of the grains alone. Непсе, the response Ху of the grains сап Ье reasonnably 
approximated Ьу ап interpolation between these two limits. The interpolation curve, obtained 
Ьу а smoothing procedure between both curves at H de = О G and H de = 20G is displayed оп 
Fig. 2 (dashed curve). The values of Xj derived from Eq. (2.3) are plotted versus temperature 
in Fig. 3, for H de < 6 G. 

Note that the dependence of Xj оп H de , seen in the figure is supposed to reflect the 
behavior of the initial shielding properties of the Josephson network with the increase of H de • 

Nevertheless, the nonlinearity ofthe response due to the сопеlаtivе increase ofthe value of дН 
(дН = Н/I0) cannot Ье excluded: this aspect will Ье studied in detail in sample В. Finally, 
опе сап note the similarity of our data with the results of earlier numeric simulations оп а 
gauge glass system [17]. 

АЬоуе we have dicussed the system's responses to the variation of magnetic field at fixed 
temperature О.е. shielding responses) and extracted from these data the polarizability Xj of 
the intergrain system. Now we tum to the description of the results of the field cooling 
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MIН 1/4я 
0.1 

-0.1 

-0.2 

-0.3 

-0.4 

10 

Low field magnetic response . .. 

20 30 40 
Temperature, К 

Fig. 4. РС (Meissner) susceptibility of the sample А as а function of temperature 
for fields ир to 20 G. Curves are апапgеd in the same ascending order as in the 
legend. Hdc = 20.07, 14.34, 8.60, 5.73, 4.01, 2.87, 1.99, 1.42, 0.85, 0.57, 0.4, 

0.28, 0.2, 0.14, 0.08, 0.06, 0.02, 0.01 G 

measurements. Ре (Meissner) magnetization was measured Ьу the standard procedure between 
10 and 40 К for fields [roт 0.01 to 20G. The results are reported in рщ. 4 versus temperature 
and Fig. 4 versus applied field. Data are normalized to the value of the moment for 100% 
shielding. 

Еуеп at the smallest field, the flux expulsion rate is по more than 45%, less than the 
53% shielding Ьу the grains. At low fields, below 1 G, there is ап approximate affinity between 
the curves of М/Н versus Т. М/Н сап Ье extrapolated linearly to Н-О. The result is 
plotted in Fig. 2 (solid circles): опе сап see that the extrapolated Ре susceptibility superposes 
exactly with the low d.c. field shielding susceptibi1ity аЬоуе 25 К. Therefore, at low d.c. field 
аЬоуе 25 К, the response of the grains system is reversible and it is well described Ьу the low 
d.c. field shielding curves; this justifies the hypothesis used аЬоуе for the calculation of Xj' 

Оп the other hand (see Fig. 5), the behavior of the Ре susceptibility as а function of Н is 
not trivial. М/Н decreases with increasing field and reaches а stable level (about 25% at the 
10west temperatures) at rougbly 1 G. Whatever the temperature, this decrease is centered at 
а constant уаlие ofthe field, about 0.l-O.3G. АЬоуе 5 G, М/Н decreases опсе more with 
increasing field. Note ап essential difference between the Ре results presented оп Fig. 4 and the 
shielding results аЬоуе (Fig. 2): the Ре curves do not showany increase of the response М/Н 
with the temperature decrease below 20 К, where the intergrain coup1ing grows considerably 
(as it is seen from Fig. 2). This means that the network of intergrain currents does not produce 
Meissner (Ре) magnetization, whereas it does produce shie/ding magnetization. 

The behavior of the Ре susceptibi1ity Х FC = М FC / н as а fиnction of the applied field Н 
depicted in Fig. 5 shows two nontrivial features: i) crossover between two plateaus (at 10w and 
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Fig. S. FC (Meissner) susceptibility of the sample А as а function of field 
for selected temperatures. Curves are arranged in the same ascending order as 

in the legend. Т = З6, зо, 28, 26, 24, 22, 20, 18, 16, 13.5, 10.5 К 

moderate vaIues of Н), which takes place between 0.1 and 1 G independent oftemperature, and 
ii) the vaIue ofthe low-field ХРС is noticeabIy lower than the Meissner response ofuncoupled . 
grains (45% versus 53%). Тhese features сап Ье understood in terms of О), apolycrystalline 
structure of the grains, which сап ье suspected fют the large vaIues of the penetration depth 
obtained from the results of Fig. 1, and (ii), self-shielding (pinning of the magnetic flux) Ьу 
the Josephson currents when 10wering the temperature in ал applied field. 

We start from the feature i); the curves of FC magnetization in Fig. 5 are rather similar to 
those which were measured Ьу Ruppel et аl. (27) in YBaCuO cerarnics. ТЬе authors interpreted 
their results оп the basis of а theory of the flux expulsion Ьу strongly anisotopic randomly 
oriented crystallites as derived Ьу Woh1lebeen et аl. (28). We stress that the model is not based 
оп апу activated flux creep mechanism. It is thus weIl-аdaрtеd to the analysis of our results: 
indeed, flux creep effects сап hardly Ье invoked here since the temperature has по apparent 
effect of оп the characteristic field related to the decrease of rnagnetization. ТЬе starting point 
of the model is that, provided the size Ь of the сгуstаШtеs is such that ЛII « ь « Л.L, the 
10ngitudinaI magnetization of а crystaIlite whose c-axis makes ап angle а with the field is given 
Ьу М = -(Н/4n)-усоSlа, where -у is а factor close to 1, depending оп the ratio Л\I/Ь' After 
averaging over а, опе obtains 

м _ -у 1 
Н-З41Г' 

It must Ье stressed that the system of intragrain crystallites is а strong1y-coupled system, contrary 
to the system of grains which composes the cerarnic. Therefore, а grain consists of ап ensembIe 
of interconnected Josephson loops surrounding crystaIlites whose planes асе nearly along the 
field and are thus transparent to the field. At 10w fields, this system will ехреl the flux with а 
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penetration deptll depending оп the junction coupling energy. Nevertheless, when the field is 
SUC!l that а !оор sees а Оих larger than '" Фо/2, the macroscopic magnetization ofthe Josephson 
currents vanishes and the system reacts as ап ensemble of disconnected crystallites [29]. The 
characteristic field of this crossover is such that [28] 

НтВе ::::::0.1. 
ФО 

(2.4) 

Recently determined va!ues for the penetration depth in La,.SSrO.2CuO" [30] are AII = 150 пт 
and )..1- = 1500 nт. Older measurements indicate а higher anisotropy, ир to а factor 14 [31]. 
We сап thus reasonnably consider that the тодеl сап ье аррliед in our case. Taking Н m = 
= 0.3 О, we obtain Ве = 7.4·10-8 ст2 • With Ве :::::: 1f'b2 this leads to а теan diameter Ь = 1.5 рт 
for the crysta1lites. Above Н т, the system acts as ап ensemble of crystallites whose average 

. susceptibility is ('Y/3)(1/41f'). With the density ratio f = 0.8, taЮng 'у = 1 апд supposing 
spherica! crystallites we obtain from Eq. (2.1) 41f' М/Н = 0.31 which is above the experimental 
уа!ие (the !atter being about 0.25). Nevertheless, it must ье noted that we have neglected here 
the effect of the factor 'у and used а rather unrealistic spherical approximation for the shape of 
crystallites. Finally, it has Ьееп seen that above 5 О, the FC magnetization starts to decrease 
опсе more with increasing field although Не' is larger than l00О in LaI.SSrO.2Cu04' This сап 
ье дие to intrinsic pinning inside thecrystallites themselves when the applied field is such that 
the Оих in the cross-section of опе crystallite is larger than Фо. With а теап radius of 0.8 /Lm 
[or the crystallites, this crossover occurs at about 10 О. 

Now we turn to the discussion of the feature ii) тепНопед аЬоуе. At temperatures below 
25 К, the Josephson сuпепts Ьесоте active. Their effect is that, а! 10 К, the shielding response 
of the system of grains amounts а! about 53%, while the FC susceptibility saturates at about 
45%. This difference is enough to ье significant and сап ье interpreted as the result of pinning 
Ьу the Josephson network. In fact, this pinning сап ье understood as а back shielding effect 
of the Josephson сuпепts against the decrease of local intemal field, due to the temperature 
dependence ofthe grain's system реrmеаЬШtу p,g. We Ьауе seen above that the response ofthe 
system consists of the two parts: (i) for ап applied field Н, the intemal field due to the grains 
seell Ьу the intergrain currents is H i = p,gH, and (ii) the intergrain currents system reacts 
to аН variation of Hi with а polarizability Xj and generates а magnetization БМj = хjБН •. 
Thus, when the temperature is decreased Ьу dT, the internal field decreases Ьу Н dp,g / dT 
and the Josephson network tends to screen this variation. Since the intergrain currents give по 
Meissner effect, we cOllsider their response as totally irreversible. Thus for а variation dT of 
tlle temperature, in а field Н, the variation of induction is 

dB = (1 + 41f'Xj) ( ~;. ) н Н dT. 

Оп the other hand, В = (l + 41f'XFC) Н. With p,g = 1 + 471'Xg, we fтаПу obtain 

т 

ХРС = Xg +41f' J Xj ~x.;. dT = Xg + xfC. (2.5) 

Те 

м [С = ХЗС н is the magnetization produced Ьу the Josephson currents due to variation of 
p,g with decreasing tempemture. As Xg is known оnlу in the limit Hde -+ О, Бq. (2.5) has Ьееп 
used to calculate ХРС versus т in the limit of low field. In order to do it, we started from 
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Fig. 6. XFC calculated with Eq. (2.5) [гот 
the values of Xg and Xj(O) (see the text) 

the values of Xg (Н -+ О) as derived above; for Xj, we have used the values given in Fig. 3 for 
the smallest field Hdc = 0.06 а. The result is plotted оп Fig. 6. The agreement of calcu!ated 
values with experimental data is rather satisfactory, although not perfect. This discrepancy is 
emphasized if Eq. (2.5) is reversed in order to calcu!ate Xj as а fиnction of Xg and XFC. The 
reason is that we have used here the simplest linear mode! of back shielding. In fact, as we will 
see later, the response of the currents system is strongly non-linear, with the susceptibility Xj 
decreasing with increasing I!.H, and this effect becomes stronger as the temperature increases. 
The result is that the calculated efficiency of back shielding is underestimated, since the va!ue 
of the experimental susceptibility is determined Ьу applying finite increments I!.H. 

2.2. Sample В 

Sample В was machined from one of the original cylinders, in form of а paralle!epiped 
of dimensions approximately 3 х 3 х 6 mm3 . Its caIculated volume is V ~ 52.6 тт3 and its 
demagnetizing field coefficient for а longitudinal fie!d is N ~ 0.19. In а longitudinal field, its 
caIculated moment for perfect flux expulsion is given Ьу 1 = 5.1 ± 0.2· 10-3. Н ст3 ·а. 

Measurements of the initial magnetization at 10 К аге in fair agreement witll this value. 
For Hdc above за and ир to З0а the ratio 1!.1/I!.H reaches а stable level about 3.2·10-3 ст3 

which correspollds to the response of the grains alone. With the density ratio of 88% for this 
sample using Eq. (2.1) one finds f = 0.46, yielding л = О.19т, i.e. the same value as derived 
for sample А. 

The shielding susceptibility was measured in this sample Ьу using а тоге sophisticated 
method, in order to reduce the effect of поп linearity. Лftег cooling the sample at the working 
temperature in the d.c. fie!d. the field was increased Ьу 5 successive steps I!.H, and 1!.1 was 
measured. At the lowest fields, I!.H = 10та and (to keep а good signaljnoise ratio) I!.H = 
= Hdc /50 at the highest ones. Then, the value of 1!.1 n/ L-n I!.H was extrapolated to I!.H = О 
Ьу least square fit. 

Like in the case of sample А, аН curves at Hdc :::; 1Оа merge at lligh temperatures to 
а common curve which corresponds to the flиx expulsion Ьу the grains. The main difference 
with the sample А is that in the sample В the Ollset of Josephsoll currents sllielding occurs at 
higher temperatures. тhis is cOllsistellt with the fact that sample В is more dense, resulting 
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in а better еоuрling between grains; moreover, its те is larger, whieh also inereases the total 
shielding magnetization. At low temperature, the magnetization eurve at H dc = 20 G reaehes 
а level slightly above 60%, whieh eorresponds to the low temperature level for the grains. 

The shielding response ofthe Josephson eurrents is obtained with the proeedure already used 
for the sample А. Here the demagnetizing faetor eannot ье negleeted (N ~ 0.19). Two kind 
of quantities are to Ье eonsidered: (i) the responses Ху and Х of ап equivalent sample without 
demagnetizing field (e.g. ап infinitely long eylinder with the same eross-seetion for instanee); 
here Ху is the response of the system of grains alone, without intergrain eurrents, and Х is 
the total response of the system .of intragrain plus intergrain eurrents, and (ii), the measured 
responses Ху and Х; they eorrespond to the measured moment for eaeh еше, normalized to 
the moment for total flux expulsion in the volume of the sample. The relation between both 
kinds of quantities is given Ьу 

М = _Х_ = -:--с---':-Х"'---:-=_ 
Н l-N 1 + 411'NX' 

А relation of the same kind holds for Xg and Xg • With the use of Еч. (2.3), we fina1ly obtain 

Х-Х 
Х - 9 

j - (1 - N м) /Lg' 
(2.6) 

where 71 = 1 + 411'Х, 71g = 1 + 411'Xg • Similar to the еше ofthe sample А, ап approximate eurve 
has Ьееп determined for Ху Ьу interpolation between the sma]] Н dc eurves at high temperatures, 
and the curve at H dc = 20G at low temperatures. ТЬеп the values of Xj have Ьееп derived 
from Еч. (2.6) and plotted оп Fig. 7. ТЬе set of eurves is similar to the set for sample А, exeept 
for the higher onset temperature of the intergrains currents. 

Field Cooled magnetization data, normalized to the value of the moment for fи1l flux 
expulsion, are reported in Fig. 8 as а fиnetion of field uр to 30G. At the lowest field and 
temperature, the FC magnetization does not exeeed 28% of its value for full flux expulsion. 
Furthermore, at low temperatures the eurves representing the field dependenee present а seeond 
maximum at about 5 G. We expeet that this eomplicated behavior is due to the baek shielding 
effeet of the intergrain eurrents, as diseussed for the sample А. То take them into aeeount, 
а relation similar to Eq. (2.5) (but with the demagnetizing effeet ineluded) should Ье derived. 
The intemal field is given as usual Ьу H i = Н - 411' N М, and the value of the loeal field seen 
Ьу the currents is Н! = /Lg H i . Thus, under а temperature variation dT, 

dHt _ d/Lg dM 
dT - dT (Н - 411' N М) - 411' N /Lg dT' 

With dB/dT = /Lj dHt/dT, and using the relation 

т 

М = XFC H = ~ J d(B - H i ) dT 
l-N 411' dT ' 

т" 

опе obtains after integration: 

т 
l-N 

XFC = 411'N (1- exp(-411'NI), 1 = J /Lj dXg dT 
1 - N (1 - /Lg /Lj) dT . 

(2.7) 

Те 
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Temperature, К 

Fig. 7. Josephson сuпепts shielding susceptibility as derived from 
the data апд the uэе of Eq. (2.6). Hdc = О (о), 0.1 (о), 0.5 (6), 

1 ('7), 2 (О), 5 (.) G 

M/H,1/41t 
О 

FIELD, G 

Fig.8. ре (Meissner) susceptibility ofthe sample В normalized to the 
moment for total flux expulsion, as а fиnction of field. Т "" 31 (о), 

30 (о), 28 (6), 25 (\1), 20 (О), 10 (.) К 
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Иеrе /-Lj = 1 + 4JrXj, with Xj reported оп Fig. 7, whereas the value of JLg was obtained using 
the relation /-Lg = (1- N)Тig/(l- NТig ) from the value ofXg as derived аЬоуе. 

The values of ХРС for Н -t О have been ca1cu1ated using the values of Xg as determined 
аЬоуе, and the values of Xj at Hdc = О. Тhe ca1culated value of Хрс was found to ье about 
-0.35 at Т = 10 К, whereas its measured value was about -0.28. Тhe discrepancy between 
measured and calculated values is larger here than in corresponding results [ос sample А. We 
ЬеIiеуе that the origin of this discrepancy is the same as in the case of sample А, i.e. it stems 
fют the nonlinear response effect. This effect is numerical1y larger in sample В since here 
the onset of Josephson currents occurs in а range of temperature where Xg sti1l varies strongly, 
contrary to the case of sample А. 

Тhe аЬоуе analysis shows (irrespectively to the above-mentioned discrepancy) that the back 
shielding effect leads to а stюng reduction of the field cooled susceptibility as compared with 
the susceptibility of the grains alone. It is then easy to understand the complex behavior of 
Хрс as а funtion of field: at 10 К for instance, the onset of back shielding occurs at about 
20 G, and its amplitude increases with decreasing field due to the increase of Xj' Starting fют 
the two-step behavior of Xg expected fют the theory of Wohllebeen et al. [28] (and seen in 
the data of sample А, where back shielding is less important), back shielding results оп the 
double maximum shape of the measured curves. 

3. DETAILED STUDY OF ТНЕ JOSEPHSON NE1WORК RESPONSE 

3.1. Detепninаtiоп of the gIobal critical сопевt 

In this subsection we wiIl present the procedure we used to extract the value of the 
macroscopic critical current in our sample В. This рюсеdurе is not quite trivial since we 
are interested in the dependence of the спНсаl current оп the background d.c. field in the 
sample, so we need to analyse the magnetization curves which depend both оп the cooling 
field H dc and оп the field variation ЬН. 

Magnetization has been recorded at 1 О and 20 К as а function of increasing I1H with the 
smallest possible field steps (ЬН = 10mG), and starting fют several FC states. From the 11....1( 

data, it is possible to derive the value of the current response l1....1(j as а function of I1H. For 
this, we use Eq. (2.6) which сап ье written as 

(3.1) 

where 11....1( 9 is the magnetization of the grains alone; тi and Тig are defined in Subsection 
2.2. The value of the grains system response is approximately derived in the same section: 
l1....1(g ~ 3.2·10-3 ·Н cm3·G at 10К and l1....1(g ~ 2.9·10-3 ·Н cm3·G at 20к. Ca1culated values 
of l1....1(j at 10 К are plotted in Fig. 9. Note the analogy of these results to the magnetization 
curves of classical type-II superconductors with strong pinning (the difference is that here I1H 
plays the role of Н). 

After cooling the sample at zerod.c. field, its response is obviously symmetric with respect 
to I1H. When it is cooled in а fmite d.c. field, it is not the case anymore, as was expJained in the 
previous section. ТЬе magnetic moment ofthe sample just after сооНng is А РС = А 9 +....1( зС 

where АзС is the positive moment due to the back shielding ьу the Josephson currents which 
have been developed during the cooling process (see Eqs. (2.3) and (2.6». So, the total moment 
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дН,а 

Fig. 9. Shielding moment of the Josephson currents after 
cooling the sample at 10 К in а d.c. field in the range 0-10 G. 
Т = 10 К, Hdc = О (о), 0.1 (о), 2 (д), 4 (V), 10 (О) G 

produced Ьу the intergrain currents after increasing the field Ьу АН is J(j = J(fc +AJ(j. It 
is this moment which vanishes when Je -+ О (at large enough АН), and thus AJ(j approaches 
-J(fc. In Fig. 10 we show the data recorded at Т = 10 К and Hde = 2G. Curves recorded 
at positive and negative АН both converge to the value corresponding to -J(fС: at 10 К the 
value -J(fc is about 1.1·10-3 е.т.и. 

When АН> Hde, it is natural to expect that the response ofthe Josephson network does 
not depend оп the initial state. А simple illustration сап ье given Ьу analogy with Bean-like 
pinning in type-II superconductors [19]. At large АН, when the induction proftle has penetrated 
ир to the center of the sample, the magnetization does not depend оп АН but опlу оп Je • If, 
as it is the case in real materia1s, J e varies with the induction in the sample, the magnetization 
depends оп the total Н, whatever the value of H de in which the sample wascooled. Actually, 
when plotted as а function of the tota1 field Н de + АН, the curves giving the total moment of 
network currents J(fC + AJ(j merge in their «large» field part (i.e. аЬоуе their maximum). 
The values have Ьееп calculated, with -J(fc = 1.1·10-3 ети and 0.7 ·10-3 ети for Hde = 2 
and 4 G, respectively. In order to obtain ап optimal overlap between the curves, the following 
values have Ьееп used for AJ(g: 3.25 ·10-3. Н cm3·G at Hde = О G, 3.22 ·10-3. Н cm3·G at 
Н de = 2 and 4 G. Indeed, the calculated values for AJ( j at large АН are extremely sensitive 
to those for AJ( g' This allows us to refine the determination of AJ( g' Note that the values 
quoted аЬоуе do not differ Ьу more than 1%, which is compatible with experimental accuracy 
and the possible variations of grains response with Н de' 

Finally, from the knowledge of the true Josephson shielding response in «large» fields, we 
сап now derive а rough evaluation of the critical current. Namely, аЬоуе the maximum of 

2094 



ЖЭТФ, 1997, 112, выn. 6(12) Low field magnetic response . .. 

2 

O~----~~-------------r--------------------~ 

-1 

_ .. i'C 
J 

-2 

дН,а 

Fig. 10. Shielding moment of the Josephson currents after сооling the 
sample at 10 К in а d.c. field Hdc = 2 а. Data are for positive and 
negative field steps. Т = 10 К, Hdc = 2 а, !!.н > О (!!.), !!.Н < О (\7) 
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Fig. 11. Calculated values of the avemged 
critical current Jc as а function of total field 
for strong field penetmtion. Тhe big square 
corresponds to the initial Jc as determined 
in subsection 3.2. Т = 10 (8), 20 (д) К 
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l1H,G 

Fig. 12. Josephson currents susceptibility at 10 К vs. applied variation I1Н of 
field, after cooling in d.c. field Hdc = О (о), 0.1 (О), 2 (..:::.), 4 ('\7), 10 (О) а. 
Тhe meaning of dashed and dot dashed Iines is explained in the text; Т = 10 k 

l1.Aj , we calcиlate the value Jc ofthe ауеrзgе critical сuпепt which woиld give the value of 
the measured moment Ьу use ofthe Веап formula (19) in а cylindrical geometry. For strong 
penetration, the magnetization is given in е.т.и. Ьу М = jcR/3. With R = O.15cm апд the 
values of the moment measured at 10 and 20 К with H dc = О G, we obtain the data displayed 
in Fig. 11. Note that the даш are limited to fields such that Н :::::: Н* = 41Г jcR below which 
the аЬоуе approximate evaluation is по longer relevant. 

3.2. Low field d.c. response 

We сап now concentrate оп the behavior ofthe Josephson сuпепts moment at small АН. 
For this discussion, the currents suscерtiЬШtу tl.Aj /l1H is plotted versus АН а! 10 and 20 К 
in Fig. 12 and 13, respectively. At 10 К, after zero field сооНng or сооНng in а small fieid 
H dc = 0.1 G, the response varies linearly with tlН for small values of tlН up to about 0.5 G. 
This linear slope of tlJ(j/tlН is considered as the result of classical Вean-like pinning with 
critical current density Jc = Н* /47rR, where 1/47rH* is the initial slope oftlle curve [19]. тhis 
initial slope is reported оп the рщ. 12 as the short-dashed Нпе which corresponds to Н* = 2 G, 
leading to Jc :::::: 3.7 А/ст2 • 

At larger АН, the behaviour of currents susceptibility tlJ( j / АН deviates from linear, which 
is the result ofboth the magnetic-field dependence ofthe critical current Jc , an intrinsic effect, 
and of the increasing degree of flux penetration into the sample, а purely size-dependent effect. 
UsuaIly опе uses the Вean model (generally with some B-dependent critical сuпепt) in ап 
appropriate geometry in orderto deconvolute these two effects. However, опе should keep 
in mind that the Вean model is а severe simplification of the problem of constant pinning 
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1iH. G 

Fig. 13. Josephson сuпеnts susceptibility at 20 К vs. аррliоо 
variation АН offield, after cooling in d.c. field Hdc = О (о), 

0.1 (о), 2 (~), 4 ('i7). Т = 20 К 

force, corresponding to the limit л - о (i.e. the London penetration depth is supposed to 
ье negligible with respect to the Веап penetration length). Рос the simplest sample shapes 
(thin slab ос cylinder) it mеans that the condition л «: R should ье fulfilled, which is usually 
the case. Howevec the situation is more complicated for samples of щиасе cross-section (like 
ош опе), where the effect of corners тау Ьесоmе important еусп at л «: R. Por such а 
geometry, the use о[ Веап modelleads to exactly the same relation between critical current, 
external field and measured magnetization as [or the cylindrical ones, whereas опе expects some 
difference iffiпitе-л corrections асе taken into account. At the present stage, we асе not able 
to evaluate these corrections and therefore the values of the magnetization сопеsропding to 
our experimental geometry with поп negligible л. Nevertheless, we expect that it lies between 
the curves for two extreme Iimits. The upper опе corresponds to the л _ о limit, where the 
magnetization is given simply Ьу the Bean's formula foc the cylinder: 

41ГМ/Н = -1 + Н/Н· - Н2/зн*2 for Н < Н· 

and 

41ГМ/Н = -Н* /3Н [ос Н> Н*. 

А lower limit (thought rather artificial) consists ofthe «double slaЬ. case in which the variation 
of magnetization is counted twice (опсе [ос each ршс of edges): 

47rMjH = -1 + Н/Н· [ос Н < Н· /2 
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and 

47ГМ/Н = -Н* /4Н for Н> Н* /2. 

Both curves асе plotted in the Fig. 12 (dot-dashed and long-dashed curves respectively) for 
Jc = 3.7 А/ст2 and дJ(j/ДН = -5.05·10-3 ст3 at дН -+ О. 

Let us now discuss the data starting from those obtained for low d.c. fields, H dc = О 

and 0.1 G. One сап see that, after the initiallinear part, the absolute value of the measured 
. susceptibility is always smaller than the calculated one. This corresponds to the decrease of 
Jc with increasing induction, as it is classically expected in granular materia1s, due to the 
suppression of intergrain critical currents Ьу magnetic field penetration into the Josephson 
junctions [9]. This «classical» behavior for granular superconductors is usually analyzed Ьу 
considering the volume-averaged Josephson medium as а kind of type-II superconductor in 
the dirty limit, provided its macroscopic penetration depth ЛJ is large as compared with the 
grains size [11,34]. 

At Н dc ;:: 2 G the behavior of дJ( j / дН is quite different: there is по initiallinear slope, 
but а monotonic curvature is present down to the smallest ДН. It is по longer possible to adjust 
а Bean like curve to the data. For instance, the Bean curve plotted оп the lowest дН data for 
H dc = 2 G is reported оп the Fig. 12 as а dashed line. It corresponds to а very small critical 
current of order О.2А/ст2 , and it is evident that the effective screening current becomes much 
larger with increasing ДН. Несе, contrary to the case of H dc = О G, the absolute value ofthe 
measured susceptibility is always larger than the calculated one for а constant shielding current 
corresponding to the limit дН -+ О. This means that, whereas at H dc = О the effective screening 
current density stays constant and then slowly decreases with increasing дН (which corresponds 
to classical Josephson pinning), at Hdc ;:: 2 G it increases with дН sublinearly (since а linear 
increase would correspond to а susceptibility independent of ДН). Such behaviour is quite 
unusual within the commonly accepted picture of screening in superconductors; indeed, we 
know that, for vanishing field excitations, the screening current тау Ье either i) linear in дН 
and reversible, as in the London (ос СатрЬеll [20]) shielding regime, ос ii) constant (equal to 
the initial critical current Jc ) and irreversible as in the case of the Bean-type critical state (ос 
of апу other known critical model, e.g Кiт model [32], exponential model [33], etc). 

The аЬоуе anomalous screening behaviour is еуеп тосе pronounced at 20 К where, even 
after zero field coo1ing, по initiallinear slope of дJ( j / дН сап Ье seen in the data. АН curves 
show the same anomalous behavior as the data at 10 К in fields from 2 G. This specific behavior 
is emphasized Ьу plotting the difference between the measured susceptibility дJ(j / дН and its 
value for total flux expulsion дJ(j(О)/ дН, versus дН оп а Log-Log scale. In such а plot, at 
least in the regime ofweak penetration, i.e. where дJ(j/ДН is larger than 0.8ДJ(j(О)/ДН, 
sublinear variation of the shielding current density results in а logarithmic sIope smaller tl1an 1 
for the curves of дJ(j/ДН (foc дJ(j/ДН smaller than 0.8ДJ(j(О)/ДН, we асе in а regime 
of strong penetration where it is по ]onger possible to relate simply the variations of the moment 
response to those of the shielding current). In Fig. 14, we have reported the three curves [ос 
which data асе found in the range аЬоуе 0.8ДJ(j(О)/ДН, i.e. at Т = 10К, H dc = О and 2 G, 
and Т = 20К, H dc = О G. 

At 10 К and Hdc = О G, the logarithmic slope is about 1 as expected, although at the 
smallest fields the curve crosses оуес to а smaller logarithmic slope closer to 0.5. At 20 К and 
Hdc = О G the logarithmic slope is about 0.4 at the lowest ДН. Approximately the same value 
of the s]ope characterizes the data obtained at 10 К and Hdc = 2 G, although the dispersion 
of data points at lowest дН makes its accurate determination difficult. 
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Fig. 14. Difference between the measured susceptibility and its value for perfect 
shielding for selected data at 10 and 20 К. The short dashed line represents а 
logarithmic slope 1 expected for а Bean critica1 state. о - Т = 10 К, Н = О G; 

д - т = 10 К, Н = 2 G; о - Т = 20 К, Н = О G 

The аЬоуе anomalous behaviour makes it tempting to try а simple Ansatz for the behavior 
of the response current density of the system versus induetion variations. Let us suppose that 
J СХ АВО< with о: between О and 1. The ease with о: = 1 еопеsропds simply to elassical sereening 
with penetration length л (sinee J сх АВ); the ease with о: = О сопеsропds to constant J, i.e. 
the elassical Веап case. Anomalous response arises for поп integer 0:. For very small excitation 
АН, the length of induetion penetration is small as compared with the size of the sample and 
we need to eonsider the effect ofthe excitation in the 10west order in АВ only. For the purpose 
of illustration we consider the simplest slab geometry. Then the induetion profile is dеtепniпеd 
Ьу the Maxwel1 equation 

dB = -4KJ! (АВ)О< 
dx АВ!' 

(3.2) 

where х is the eoordinate perpendicular to the edge of the sample. For ап externa1 field АН, 
the induction in the sample is given Ьу 

В( ) = ((1 - 0:)47Г J1 ( _») 1/(l-a) 
А х В а ХН Х , 

А ! 
(3.3) 

where хн is the coordinate of penetration and J 1 and АВ 1 are norma1izing faetors; АВ = АН 

for х = О, i.e. 

_ АВ! 1-а 
ХН - 4KJ1(1- О:/Н . 
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ТЬеn, integrating the field profJ1e (3.3) оуес х, we get 

Ф7ГДМ + дН H 1- a 
дН СХ:д , (3.4) 

where дМ ::: дJ( jV is the mеаn magnetization variation due to the field variation дн. 
Ifwe now compare the result (3.4) with the data shown in рщ. 14, we find values of а in 

the range 0.4-0.5 at both 10 and 20 К. 
ТЬиэ а simple choice for the relation between the screening current Jc and the induction 

variation дВ allows us to imitate the experimental results [ос the simplest protocol of а weak 
monotonic дН variation оп top of а homogeneous state of the network. Nevertheless, it is 
evident that дВ has по c]ear meaning if the variation of Н is non-monotonic ос if the initial 
state is obtained Ьу non-zero field cooling. Indeed, in the later case, induction in the sample 
varies during cooling due to the variation of {Lg with Т, giving the response дJ( зС as seen 
before. Furthermore, we will эее below that the response is irreversible еуеn for extremely low 
exitation fields. 

3.3. Irreversibility: very low field, low frequency а.С. response 

Problems of sensitivity limit the range of этаН excitations which сап Ье used in d.c. 
experiments. ТЬе preceding results clearly show the sublinear natиre of the low field response, 
but they do not allow its precise determination. In order to extend Ьу several orders of 
magnitude the range of our lower excitations investigation, we Ьауе been led to perform а.С. 
susceptibility measurements. ТЬе иэе of а.С. сеэроnэе measurements is always questionnable 
when equilibrium (or quasi-equilibrium) properties are under investigation, since the results 
сап Ье affected Ьу the time-dependent part of the response function. It has Ьееn shown that 
the latter is the response of а уесу good conductor with complex conductivity [35,36]. Неnсе, 
it is necessary to work at low frequency, in а range where the suscерtiЬШtу is roughly frequency 
independent. 

We present here preliminary results obtained оп а long cylinder obtained Ьу stacking several 
ofthe original sample В cylinders. Measurements were done at 20 К, at а working frequency of 
1.7 Hz in the equipment used for noise experiments [36]. ТЬе sample was simply shifted into the 
upper half of the third order gradiometer. At this temperature and frequency, we Ьауе verified 
that the in-phase susceptibility is almost frequency independent, which ensures that the results 
are mainly dependent оп the (quasi) static part ofthe response. ТЬе susceptibility was recorded 
using classical method of SQUID magnetometry. We used а.С. excitation fields in the range 
3· 10-2 - 30mG and the sample was cooled in d.c. fields from О to 8.8 G. From the data, 
the values of the Josephson network susceptibility was extacted using the method developed 
in Section 2, with the susceptibilities in Eq. (2.6) being complex quantities. Thе susceptibility 
measured at 4.2 К at the lowest а.С. amplitude was taken as the level for perfect diamagnetism. 
Fig. 15 displays а Log-Log plot of the out-of-phase susceptibility х'; уеrэиэ the amplitude of 
tl1e а.С. field, and for several values of the Ре static field. Thе response is irreversible down to 
the lowest а.С amplitudes, and the irreversibility increases with the superimposed d.c. field. АН 
curves follow а power law, with the same exponent close to 0.5. Going towards the smallest 
а.С. excitations, they show эоmе downward bend which could ье related with the approach to 
а linear regime (with х'; ::: О) below 0.1 mG, although the dispersion ofthe data is too high to 
conclude. ТЬе in-phase susceptibility х} is plotted as а function of H~~5 in рщ. 16. Here as 
well, the аnоmalоиэ nature of the response is clearly эееn. 4nxj behaves like (-1 + 8 + "у H~:) 
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н ,тОе 
а.С. 

Fig. 15. Out-of-phase susceptibility at 1.7 Hz as а function of а.С. field 
amplitude. Т = 20 К, Hdc = О (.), 2.2 (_), 4.4 (.6.), 8.8 (т) Ое 

where both the constant 8 апд the slope 'у increase with increasing superimposed static field 
H dc • The дерепдепсе of the harmonic susceptibility оп the а.С. field amplitude is а genuine 
proof of the existence of static irreversibility in the response. This is not astonishing Ьу itself, 
but these results stress the anomalous aspect ofthis irreversibility. For instance, in the classical 
Bean case with а weak penetration, it is kпоwп that 1 + 47rxj апд х'; are proportional to Нас 
whereas Figs. 15 and 16 clearly show the proportionality to H~1. А further evidence is provided 
Ьу plotting х'; versus 1 + 47rxj as displayed in Fig. 17. It сап ье shown that if the а.С. response 
is driven only Ьу static irreversibility, both are proportional. In the Веап case, the coefficient of 
proportionality is 4/ 37r. In the Fig. 17, the part of data which lies in the range of 20% variation 
of xj (where the relations for slab geometry are approximately уаНд) shows that х'; is indeed 
proportional to 1 + 47rxj, but with а bit smaller coefficient ~ 0.28 ± 0.03. 

In order to understand the mеапiпg of the аЬоуе results, we gепеralizе the crude ad hoc 
mодеl of subsection 3.2 to the irreversible case. In order to до it, we generalize the protocol 
of the Веап model. Namely, in the Веап model, the current is given Ьу а step function of the 
variation of induction, J == Jcsign(6B) according to the sign of 6В, as long as the induction 
variation is mопоtопоus. If the sign оС variation of В is reversed, J also changes sign, which 
сап ье writtеп in terms ofthe variation ofthe current density (with respect to the initial current 
distribution obtained after monotonous variation of the field, Jinit, 6J = -2Jinit0( -6Bnew ) 
where 0(х) == (1/2)(1 + signx) апд .fJ.Bnew = В - B init . Such а representation (which is 
not needed in the analysis оС the Веап modеl itself) will allow us to construct the necessary 
generalization of the relation between current апд variation оС the field used in Eq.( 3.2). 
Actually our goal here is rather limited: we are going to find а consistent description of the 
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Fig. 16. In-phase susceptibility at 1.7Hz as а function ofthe Power of 
а.С. field amplitude H~1. amplitude. Т = 20 К, Hdc = О (е), 2.2 (8), 

4.4 (А), 8.8 (") Ое 

simplest hysteresis cycle which consists of the initial increase of t.B from zero to t.Binit, then 
reversing the sign of the field variation until the value of t.B = -t.Вinit is reached, and then 
reversing dB / dt once more and finishing at t.B final = t.Binit . The description of this cycle 
will Ье consistent if we find that the value of the current density at the end-point, Jfinal' 
coincides with the one after the original increase of the field t.Binit , Jinit . Тhis simply means 
that the hysteresis loop is closed. It is easy to check that the аЬоуе condition will ье fulfilled 
Ьу the following choice of the t.J(t.Bnew ) dependence: 

J - . ( )21-O<J (t.Bnew) о ( ) t. - -slgn Jinit 1 t.B1 е -t.Вnеw , (3.5) 

where J1 and t.B1 have the same meaning as in Eq.(3.2). Actually the only difference between 
the Eq. (3.5) and the original used in the Eq. (3.2) is the coefficient 21-0. Тhe Bean model 
limit then corresponds to а: -t О, so the аЬоуе coefficient approaches 2 as it should Ье. Then 
instead of Eq. (3.2) we obtain 

dt.B/dx = ±21-".JiI t.B", (3.6) 

where .JiI = 47Г J1/ t.BJ. The induction рroШе, induced magnetization and harrnonic response 
are calculated in the Appendix. The main conclusions are that the fundamental components 
1 + 4nxj and х'; are both proportional to ho 1-0, and that their ratio R = х'; / (1 + 4nxj) 
decreases from 4/37Г to О when а: goes from О to 1. For а: = 0.5, we get (cf. Fig. 19) R ~ 0.25, 
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Fig. 17. Plot of 47ГХз' as а function of 1 + 47ГХ} for the different 
values of Hdc = О (о), 2.2 (о), 4.4 (6), 8.8 Ое. Т = 20 К, 

f = 1.7 Hz 

БА 

Fig. 18. Picture of а fractaJ J(БА) 

landscape. An example of а hysteresis 
loop is shown 

а value which is in good agreement with the data presented оп Fig. 17. Note that the degree of 
irreversibility (measured Ьу this ratio) is similar (although а bit lower) to the опе ofthe Веап 
model. It should Ье emphasized that the numerical coefficient in Eq. (3.5) was «fitted» in order 
to obtain consistent (i.e. closed) hysteresis 100Р; опе сап expect that ап analogous equation 
describing current variation after some more complicated history of the field variations will 
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Fig. 19. Values of 411Х" /(1 + 41ГХ') as а 
function of exponent а 

contain another (history-dependent) numerical coefficient instead of 21-<>. 
It сап ье seen from Figs. 15 and 16 that ..JiI = Фтг J1/ ДВ! increases with increasing 

ambient d.c. field. It is natural to expect а decrease of J1 with increasing H dc . The increase 
of ..JiI with Н dc means that ДВ! decreases more quickly than Jl when Н dc increases. The 
presence and behavior of the constant {j cannot ье predicted оп the basis of the above simple 
model. In fact, the latter neglects the possibility of elastic displacement of flux lines under the 
action of the extemal applied field. SUCll ап effect would result in а response analogous to 
the СатрЬеIl response due to the elastic displacement of vortices in their pinning potential in 
type-II superconductors [20]. Campbell's response is linear, so it would result in ап а.с. field 
independent positive contribution to х', whose amplitude would Ье inversely proportional to 
the strength of the restoring force of the pinning potential wells. It is natural to expect that 
the pinning force decreases with increasing ambient d.c. field in our granular system, due to 
the reduction of the junctions critical currents. Непсе, such ап effect would give а positive 
contribution to х', which would increase with increasing d.c. field. This corresponds rather 
well to the behavior of the offset {j seen in the data. 

4. COMPARISON WIТH AN EXISТING THEORY OF GAUGE GLASS: FRUSTRATION АТ Н .. О 

In this Section we compare the experimental results described above with the theoretical 
results available for the randomly frustrated Josephson networks. We start from а simple 
estimate forthe теап епещу Е} = Iilc /2e using the experimental value ofthe low-temperature, 
ZFC (Т = 10 К, H dc = О G) critical current density Jc ~ 3.7 А/ст2 • Using the estimate 
ао ~ 5мт for the теап size of the grains, опе could naively obtain lс ~ Jca6 ~ lMA and the 
corresponding low-temperature Josephson energy EJaive ~ 20 К (this value was derived from 
Jc measured at Т = lOK, but we do not expect much difference in the intrinsic Josephson 
energies at Т = 10 К and at Т -+ О since the bulk transition temperature in Lal.SSrO.2Cu04 is 
ТС ~ 32 К). However such ап estimate is in contradiction with the measured value ofthe glass 
transition temperature Tg ~ 29 К. Indeed, let us зssuте that the теап coordination number 
(number of «interacting neigbours») Z in the ceramics is around 6, as for а simple сиЫс lattice. 
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Then for the estimate ofthe relation between Е] and Tg опе сап use the simulation data [6,7] 
which give Tg ~ O.5EJ (Tg ) = 0.5EJo O - Ту/Те ), where we took into account the linear 
dependence of Е] оп Те - т close to the bulk transition temperature. As а result, опе gets 

(4.1) 

i.e., а factor 30 larger than the naive estimate аЬоуе. However we will show now that this 
discrepancy тау ье resolved if we assume that the current network producing the measured 
critical current density Je was actually strongly frustrated in spite of the absence of background 
d.c. field in this measurement. 

Тhe macroscopic critical current density Je for а strongly frustrated Josephson network 
was calculated in Ref. [5] within the mean-field approach (we are not aware ofany calculations 
ofthis kind Ьеуопд the scope ofthe mean-field theory). It was shown that frustration strongly 
reduces Je as compared to its уаlие Jo for ап unfrustrated system: 

Jc = 3VЗ'У (1 _ Т/Т )5/2 
Jo 8 g, 

where the factor 'у ~ 0.065 was obtained Ьу numerical solution of the slow сооНng 
equations [3,37,4, р. 183] describing the evolution of the glassy state under slow variations 
of temperature and magnetic field. In the low-temperature limit, this relation amounts to а 
factor 25 reduction ofthe Je value with respect to Jo. Correspondingly, the characteristic value 
of the critical current for ап individual junction will Ье obtained as 1е ~ 25Jea6 ~ 25рА and 
results in а Josephson соирНng energy EJo ~ 500 К, in а fairly good agreement with the аЬоуе 
estimate (4.1). 

ТЬе аЬоуе estimates show that the network of Josephson junctions in LaI.SSrO.2Cu04 is 
frustrated еуеп in the absence of an external magnetic field. А careful reader could question 
this conclusion since we Ьауе used some results from the mean-field theory which тау Ье а 
poor approximation for а 3D gauge-glass. We ЬеНеуе, however that the qualitative result of the 
аЬоуе estimates is sufficiently robust because а strong reduction of Je with respect to Jo should 
ье а general feature of а glassy network, so that unaccuracy due to mean-field approximation 
cannot compensate for а huge discrepancy obtained between E']aive and the estirnate (4.1). 
Additional evidence in favor of the glassy nature of our system is provided Ьу the simi1arity of 
the low-ili diarnagnetic response at Т = 20 К with zero ~ wel1 as non-zero Hde, as described 
in Section 3 аЬоуе, as wel1 as the low-frequency noise data obtained in Ref. [35] оп the same 
type of ceramics. 

What could Ье the origin ofthat frustration? We ЬеНеуе that most probably it is the result 
of the d-wave nature of supercollductivity in cuprates [15] and ralldomness of the сrystаПillе 
orientations in ceramics [13, 14]. It was shown there that the form of the effective phase-de­
pelldent Hamiltollian for such ceramics is of the same form as in (1.1) except for the fact that 
the random phases CXij at В = О are just О or 7r depending оп the mutual orientation of grains 
i and j. Тherefore such а system at В = О is equivalent to the ХУ spin-glass, with the low­
temperature state characterized Ьу а coni.pletely random orientation of phases Фi, as in the 
gauge-glass model with uniformly random distribution of CXij 's. 

Therefore the low-temperature state is characterized Ьу the presence of randomly 
distributed intergrain currents and, therefore, of the magnetic field generated Ьу these currents. 
lt means that the actual phases CXij will contain contributions due to the self-induced magnetic 
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field. Its relative importance is characterized Ьу the ratio of the corresponding magnetic flux 
penetrating elementary loops of the ceramics ФSf to the flux quantum Фо, i.e. just Ьу tlle 
parameter !3 L = 271' !z 1е / СФО where !Z is the characteristic inductance of an elementary loop 
[9]. Estimating the elementary inductance as!Z ~ 271'aoJLg and using Eq. (4.1) to estimate 1е , 
we obtain 

(4.2) 

so tlle self-field (screening) effects are relatively weak, though perhaps not always negligible. 
It is also of interest to estimate the effective penetration depth Лееr of а very weak magnetic 

field perturbation 8Н into the ceramics. Rougbly, the value of Лееr сап Ье estimated as 
ао / V1JL '" 15 Jlm. Another (llOpefully more accurate) estimate сап Ье obtained using те­
an-field results [5] which allow one to express Лееr via the critical current density Je : 

( Ф) 1/2 
"У С о 

Лееr = -8 2 -J-- ~ 25мт, 
1l' e~oMy 

(4.3) 

where we inserted (as compared with Ref. [5]) МУ ~ 0.35 and approximated the random nearest­
neigbour network Ьу а сuЫс lattice with coordination number Z = 6, which amounts to the 
rylation ~б = аи6 between the effective interaction range ~o and the intergrain distance ао. 

The characteristic magnetic field variation producing the critica1 current density Je at the 
boundary сап Ье estimated as АНе '" 41l' Лееr Je / С ~ 15 mG, whereas the numerical solution [5] 
gives 

v 
АНе = -2 41l'л ееr Jе ~ 30 mG. (4.4) 

С"У 

Within the theoretical approach ofRef. [5], АНе marks а crossover between reversible (although 
still non-linear at АН :::; АНе) and irreversible penetration of the magnetic field into the 
intergrain network. The value of АНе obtained in Eq. (4.4) is оп the lower border ofthe range 
of the field variations used to measure our d.c. magnetization curves, so we could just conclude 
tlшt we always have 8Н » АНе and thus are producing the Bean-like critical state. Indeed, 
the data at H dc = о, Т = 10 К look compatible with such an interpretation (cf. Fig. 14), where 
some deviations from the logarithmic slope 1 (wllich is the characteristic of а Bean state) are 
seen at lowest АН :::; 50 mG). However, as far as tlle data obtained at 10 К with d.c. fields 
H de ~ 2 G, or аll data at higher temperature (Т = 20 К), including d.c. and а.С. results at 
zero-Hde , are concerned (cf. Figs. 1,2-16), the low-field magnetization response is drastically 
different from Bean-type predictions, as explained at the end of Section 3. Qua1itatively, tlle 
most surprising feature of these data is the existence of а very broad range of АН within which 
the response is non-linear but still not like the critical-state one. We are not aware of апу 
microscopic theory which predicts fractional-power behaviour of the shielding susceptibility 
over such а broad range of АН variations. It cannot Ье excluded а priori that such а behaviour 
is related to а very wide range of intergrain critical currents, which might exist in ceramics 
(till now we have neglected inhomogenity of intergrain coupling strengths in our theoretical 
discussion). Moreover, we тау expect that the relative importance of such inhomogenities 
increases with the field and/or temperature (cf. Ref. [38]). 

In Section 5, we will try to formиlate а new phenomenological model appropriate for the 
understanding of our data (leaving its theoretical justification for а future study); this model 
will Ье seen to Ье ап interpolation between Campbell's and Bean's regimes of flux penetration 
into hard superconductors. 
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5. FRACTAL MODEL OF DIAМAGNEТIC RESPONSE 

We slюwеd at the епd of SuЬsесtiоп 3.3 that а simple gепега1izаtiоп, Eq. (3.6), of Bean's 
геlаtiоп Ьеtwееп variation of the applied magnetic induction !:J.B and current J results in 
reasonably good agreement with our data. However, contrary to the original Веап relation, 
the пеw опе was поt based оп апу physical picture; it was just а convenient description of 
the data. In this Section we propose а phenomenological model which provides а qualitative 
uпdеrstапdiпg of the irreversible diamagnetic behaviour mimicked Ьу Eq. (3.6). 

We start from the picture of поп-liпеаг response of the current J to а variation of the 
vector potentia1 БА derived in Ref. [5] within the теап-fiеld approximation and presented in 
Fig. 2 of that рарес. Несе the current induced Ьу а variation of БА is liпеас at уегу smaIl 
БА, then grows subIinearly, and final1y reaches its maximum уаlие J c at the critica1 БАс such 
that the differential response (dJ / dА)ЙАс ~ О. At БА > БАс the numerical instabiIity of 
tl1e slow cooling equations was detected and interpreted as ап indication of the absence of апу 
solution which would il1terpolate smoothly between zero and large О.е. :» БАс) values of БА. 
In otIler terms, some kind of «phase s!iP» was expected to Ьарреп in the model [5], leading to 
а new metastabIe state, which would Ьауе 10wer (free) energy at the new value of the vector 
potential А' = А + БА (in other terms, а state similar to the опе obtained Ьу the FC procedure 
at constant А', wllich does not carry macroscopic current). Further increase of БА' = А - А' 

again induces а macroscopic current ипtil it reaches the maximum Уа1ие Jc at БА' = БАс, and 
so оп. Thus tl1e whole J(БА) dependence emerging from the mean-field solution [5] is periodic; 
it leads immediately to the irreversibility of the response, since the inverse function БА(J) is 
multivalued: different vector potential values тау correspond to the same value of current. Of 
course, SUCll а periodic J(БА) dependence does not correspond to the usual СатрЬеIl-Веап 
picture, which would better ье represented Ьу 

(5.1) 

It is important to note that the J(БА) dependence Ref. [5] was obtained from the space-in­
dependent solution for the glassy correlation function Qjj(t, t') = (СОS(фj(t) - Фj(t'»); SUCl1 
ап approximation, being reasonable for the description of smooth «adiabatic» transformations 
in а system with 10ng-range interactions, will probably break down when the jump from 
опе metastable state to another happens. In other terms, the above-mentioned «phase slip» 
should Ьауе something to do with spatial1y inhomogeneous processes like vortex репеtгаtiоп 
in hard type-II superconductors. ТЬе probIem of the solution of the general history- and 
space-dependent system of integra1 equations (which тау Ье derived fol1owing the method 
of Ref. [5]) is formidabIe and the method to solve it is still unknown. Therefore we сап only 
speculate оп possible properties of its solution. ТЬе simplest idea would Ье that the macroscopic 
J(БА) response becomes (after averaging over inhomogenities ofthe space-dependent solution) 
simi1ar to the СатрЬеll-Веап type of the response (5.1). Indeed, our analysis of the low-field 
diamagnetic response at Т = 10 К and H ext = О (subsection 3.2) developed in Sесtiоп 4 оп the 
basis of SUCl1 ап assumption, is in reasonable agreement with the data. However other sets of data 
(for lligher temperature andjor 10wer field) are described Ьу completely different Ansatz (3.5). 
We wi11 now propose а (phenomenological) gепегаlizаtiоп of the J(БА) relation compatible 
with Eq. (3.5). ТЬе relation we are looking for should Ье ап intrinsic (i.e. iпdерепdепt оп 

the sample geometry) and general (i.e. usabIe for ап arbitrary magnetic history of the sample) 
relation between the сurrепt and variation of the vector potential. Remember that Eq. (3.5) 
was written for the simplest поптопоtопic variation of !:J.B, апd that it relates the true vector 
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J and the pseudovector 6В. So, in writing this equation, some additional inforrnation оп the 
geometry of the sample has Ьееп used (we use the simplest slab geometry). Thus а natural 
basic equation 5hould relate the current density J and the уапаНоп of the vector potential БА. 

In а generalized model, the diamagnetic current response should possess tWQ major 
properties: i) it тшt scale as soroe fractional power а ~ 0.5 with the amplitude of exitation 
field б В, and ii) it must ье strongly irreversible (as it follows from the analysis of the ratio 
411"X"/(1 - 411"Х') ~ 0.28). We consider these two conditions in sequence. 

ТЬе condition i) is rather easy to fulШI: it is enough to suppose that the differential response 
ofthe current to the variation ofthe vector potential БА is given Ьу а non-Hnear generalization 
of the London relation 

dJ _ с л-2 (J) 
dA - - 411" efJ ' 

where the current-dependent «effective penetration depth» i5 given Ьу 

(5.2) 

(5.3) 

ln the case of а monotonic field variation аррНед to ап initially uniform induction distribution, 
the Eqs. (5.2), (5.3) lead to the simple relation J сх: 6ва with а: :;:; (1 + 11:)-1. Indeed, with 
dA = 6В dx and approximating dAВ / dx Ьу 6В / ЛеfJ, оле obtains J сх: 6B1/(I+I<). Thus we 
need to choose 11: ~ 1 in order to reproduce the observed scaling with а ~ 0.5. 

However, the set of equations (5.2), (5.3) does not fulfill the second condition ii) аЬоуе: 
the corresponding 501utions are reversibIe, as it follows from the existence of а single-valued 
function БА(J) сх: Jl+21< which follows from Eqs. (5.2), (5.3). In other words, the system 
described Ьу Eqs. (5.2), (5.3) would exhibit nonlinearity and harmonics generation, but would 
not show finite X"(w) in the w -+ О limit. In order to avoid this inconsistency, we need to 
formulate а model with the same kind of scaling between БА and J as in Eqs. (5.2), (5.3), but 
with а nonmonotonic J(БА) dependence allowing for the irreversible behaviour. 

А model obeying very simiiar properties was formulated and studied in Ref. [4, Sect. 3.2] in 
а different physical context (one-dimensional spin-glass). Тhe low-energy spin configurations in 
this тodе! are described Ьу а phase variabIe 'Р(х) Е (-11",11") such that two such configurations 
(Iocal energy minima) which differ Ьу а phase shift бr.p(хо) = Ф in а region around 50те point 
хо, Ьауе а characteristic energy difference Е(Ф) сх: ф5 / 3 and а characteristic spatial extent of 
the phase deformation Х(Ф) сх: фl/З. Тhis scaling holds for the intermediate range of phase 
deformations 'ро ~ Ф ~ 7Г; at smaller Ф S 'ро ~ 1 the energy cost of deformation is о( ф2 , 
whereas at Ф '" 7г the energy growth obviously saturates due to 27Г periodicity. ТЬе аЬоуе Е(Ф) 
scaling leads to а subIinear growth of the characteristic «force» f(Ф) = dЕ/dФ о( ф2/ 3 with 
Ф in the same intermediate range. ТЬе таin contribution to the second derivative d2 Е / dф2 
(curvature ofthe energy valleys) comes from the smallest scale Ф '" 'Ро, i.e. [roт the curvature 
of individuallocal minima. lt was explained in Ref. [4, Sect. 3.2] that such а scaling means 
а fractal organization of the energy minima as а function of r.p with fractal dimensionality 
D f = 1/3. It means that the number of energy minima discernable оп а scale r.p grows as 
.f о( r.p-I/З at finer scales; new minima appear prirnarily due to the splitting the older (broader) 
ones. This picture emerged in Ref. [4, Sect. 3.2] from the microscopic analysis of the original 
Hamiltonian for а one-dimensional spin-glass model formulated in Ref. {39]. We сап borrow 
tlle qualitative features of this construction for our present purpose (leaving for future studies 
the рroЫет of its microscopic justification for the case of superconductive gJasses). 
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Suppose that the free energy F(БА) of the Josephson network ЬеЬауез (М а fиnction of 
vector potential variations with respect to а «virginl) state witll а homogeneous induction) in а 
way similar to Е(<р) at <р ~ 1г. Namely, suppose that the free energy is parabolic, БF ос (БА)2, 
at very small variations of vector potential БА ::; БАс!, but оп а larger зсше, БА » БАсl, it 
contains тапу 10саl minima whose characteristic free energies scale (with resPect to the lowest 
state with БА = О) as 

F(БА) ос (БА)li+l for БАс! ~ БА ~ БАс (5.4) 

with the exponent () Е (0,1) (зее the definition of БАс below). ТЬеп the characteristic value 
ofthe current J = (1/c)8FI8A scales as 

(5.5) 

in the зате interval of БА. At large БА ~ БАс variations, the growth of the induced current 
should saturate at the true critical current value Je , so we сап estirnate 

(5.6) 

Оп the other hand, weak БА ~ БАе ! leads 10 the usuaI linear London (or Campbell) response 
with ап effective penetration depth А!; matching at БА '" БАс! leads to the following estirnate: 

(5.7) 

ТЬе estimate (5.5) looks very much like the previous version defined Ьу (5.2), (5.3), so опе сап 
find the relation between the ехропепtз: 

() = 1/(1 + 2~) = al(2 - а) :::::: 0.3. (5.8) 

However the whole picture is substantially altered: the current is now supposed to ье ап 
(irregularly) oscillating function of БА (зее Fig. 18), thus only its envelope Jеhаr(БА) dеfшеd 
оп а scale БА follows the зсаНng relation (5.5). As а result, the inverse fиnction БА(J) is 
multivalued and the irreversibility of the response is ensured. Similar to the spin-glass model 
of Ref. {4, Sect. 3.2], the fractal dimensionality D f of the low-energy уаllеуз сап ье defined; 
it is given now Ьу D f = 1 - () :::::: 0.7. The proposed picture is based оп the existence of 
two substantially different scales of currents, Je ! and Je , and corresponding vector potential 
variations БАс! and 6Ас ; thus it сап ье compared with the usual Campbell-Веап picture of 
critical currents in the зате way as the thermodynamics of type-11 superconductors is compared 
with that of the type-1 опез. 

In order to describe quantitatively the diamagnetic response in the «fractall) range (5.4) 
we need to determine the distribution fиnction 9{J(БА)] (which would lead, in particular, to 
the estimate (5.5) [ог Jсhаr(БА». Moreover, in general, а relation of the type of (5.5) could 
ье nonlocal (i.e. tlle current depends оп the 6 А(х) distribution in зоте region of зрасе, whose 
size mау depend оп БА itself (зее again Ref. {4, Sect. 3.2]). We leave this complicate probIem 
for future studies, апд just note here that merely the existence of relation (5.5) is sufficient 
for the existence of some «natural. properties of the response (like the presence of а closed 
hysteresis loop, as it was азsumед in subsection 3.3). 
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6. SUMМARY AND CONCLUSIONS 

In this paper, we have presented experimental results оп the low temperature (10 and 
20 К) response of the granular НТс superconductor Lal.gSrO.2Cu04 to small field excitations. 
The general properties of the magnetic response were investigated in two samples (А and В) 
ditfering Ьу the strength of the coupling between grains. Ву cooling the samples in various 
d.c. fields ир to 20 G and applying small field increases, we were аЫе to measure the sllielding 
response ofthe material and to derive а method, inspired Ьу the work of Dersh and Blatter [22], 
to extract from the data tl1e polarizability of the intergrain currents system. The field cooled 
magnetization was measured in fields ир to 20 G. Analysis of the results leds to the conclusion 
that i) the structure of the grains is polycrystalline, resulting in а step decrease of the FC 
magnetization with increasing field, which сап Ье interpreted оп the basis of the model Ьу 
Wobllebeen et al. [28]; ii) self shielding (pinning) Ьу the intergrain currents when lowering the 
temperature strongly reduces the value of the FC magnetization; iii) there is по macroscopic 
Meissner magnetization due to the system of intergrain currents. 

Further detailed study of the response of the Josephson network was performed in sample 
В. It was shown that tI1e response is asymmetric with respect to the sign of variation of the 
applied field after field cooling; this is due to the shielding currents pinned during cooling. The 
macroscopic critical current is found to Ье strongly reduced Ьу moderate values of the external 
d.c. field, about 2 G. 

Very low field magnetization measurements were performed Ьу applying field steps of 
10mG ос low frequency а.С. fields in the range 50J.LG to 30mG, after cooling in d.c. fields 
ир to 8.8 G. The results show that the response is strongly nonlinear, the shielding current 
growing sublinearly with increasing applied field. Furtherrnore, the а.С. results show that it 
is strongly irreversible down to the smallest excitations used. It is shown that а non-linear 
relation between the shielding current and the induction, J сх Ава with а ~ 0.5, together 
Witl1 а natural assumption about the existence of а closed hysteresis loop, give predictions in 
а reasonable agreement with the data. 

Theoretical analysis of оис experimental results was developed оп the frame of the existing 
«gauge-glass,) theories. It was show that the extremely low value of the low-temperature, 
zero-field critical current density ис ~ 3.7 А/ст2 at 10 К) together with the rather high 
temperature of the transition to the 10w-temperature glassy state, сап ье coherently interpreted 
оnlу under the assumption that the Josephson network is strongly frustrated еуеп at zero applied 
field. This contradicts the usual assumption that frustration in the interactions arises опlу due to 
the 10саl magnetic induction, but supports the hypothesis of the existence of а large proportion 
of 7r-junctions in the granular system. These 7r-junctions are possibly due to the d-wave nature 
ofthe pairing, combined with the randomness ofgrain orientations in Lal.8SrO.2Cu04 ceramics. 

Finally, а new model of diamagnetic response in the glassy state of granular superconductors 
was developed in order to describe the anomalous (fractional-power) behavior of the shielding 
current response. This model, based оп the idea of а fractal organization of the free energy 
landscape in the granular network, сап provide а qualitative account for the main features of 
the anomalous response. Its further development will Ье the subject of future studies. 

We are grateful to L. В. lotfe for many important discussions which helped to clarify а 
питЬес of issues considered in this paper. Research of М. V. F. was supported Ьу the DGA 
grant NQ 94-1189, Ьу the joint grant NQ М6М300 from the International Science Foundation 
and the Russian Goverment, and Ьу the grant NQ 95-02-05720 from the Russian Foundation 
for Fundamental Research. 
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APPENDIX 

The hysteretic behavior ofthe current as а [ипсНоп ofthe induction variations is represented 
Ьу the relation: 

А] = ±2(l-a)v J (IABI) а 
е Ве ' 

(Al) 

v = О when starting [сот zero induction state, and 1 otherwise. А] = J - Jo and АВ = В - Во 

wl1ere Jo and ВО are the (old) values just before tl1e last reversal of the sign of variation of 
в. The Ansatz (Аl) ensures that we have а stable closed hysteresis 100р, and that there is по 
hysteresis [ос о: = 1 which describes the London case. The induction рroШе is determined Ьу 
the Maxwell equation which leads, for the сзsе of weak penetration, to 

(А2) 

wl1ece JiI = 47Г Je / в,: ; х is the distance [сот the edge of the sample. After increasing applied 
field from О to ho , starting from zero induction state, the induction рroШе is given Ьу в-а dB = 
= - JiI dx, leading to 

В 

1 f BI-a - h 1- a 
Х = -- ~-ad~ = _ о 

JiI (l - o:)JiI ' 
ho 

where 

в = (h~-a - (1 - o:)JiI х) 1/<1-<» • (АЗ) 

Field penetrates till х = Xho = h(~-a /(1 - o:)JiI. 
When h decreases from ho, we get (во - B)-<>dВ = -21- adx. Непсе: 

В,,-8 f c<>d~ = - 2 1 - а .)(1 _ 0:) «Во - В)I-а - (ho - h)l-a) . 

ho-h 

Modification of induction relative to ВО extends ир to Xh = (ho - h)I-<> /2 1-а JiI. For 
0< Х < Xh, 

( 
ho _ h 1-а ) I/(I-a) 

В = во - 2 (-2-) - (1- o:)Jilx , (А4) 

where ВО is given Ьу Eq. (АЗ). When h = -ho is reached, Eq. (А4) gives simply В = -ВО. 
After reversing the sign of variation of h оп се more, the ргоШеs are simply symmetrical of 
those given Ьу Eq. (А.4). 

The average induction сап Ье derived now. After some a1gebra, опе obtains 

(B)=2~o:h~-a[I-2C-~/ho)2-a] for ho>O, 
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and 

(А.5Ь) 

For а sinusoidal excitation h = ho cos""t, оnе gets 

(В) = J!ih~-Q [1-2 (1-Cos""t)2-a] for 2mг<""t«2n+l)7Г, 
ho 2-0: 2 

(А.6а) 

(В.) = J!ih~-a [-1+2 (1+COs""t)2-а] for (2n-l)7Г<""t<2n7Г. 
hl) 2-0: 2 

(А.6Ь) 

Since (B}/ho = 1 + {M}/ho, the Fourier transformation of Eqs. (А.6а) , (А.6Ь) gives the 
values of 1 + 47ГХ' and 47ГХ". This сап ье done numerically. Figure 19 displays the ratio 
47ГХ" /1 + 47tX' as а function of 0:. 
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