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The properties of the low excitation field magnetic response of the granular high temperature
(HT,) superconductor La; gSryp.2CuO4 have been analyzed at low temperatures. The response
of the Josephson currents has been extracted from the data. It is shown that intergrain
current response is fully irreversible, producing shielding response, but do not carry Meissner
magnetization. Analysis of the data shows that the system of Josephson currents freezes into a
glassy state even in the absense of external magnetic field, which is argued to be a consequence of
the d-wave nature of superconductivity in La; gSro.2CuQ4. The macroscopic diamagnetic response
to very weak variations of the magnetic field is shown to be strongly irreversible but still qualitatively
different from any previously known kind of the critical-state behaviour in superconductors. A
phenomenological description of these data is given in terms of a newly proposed «fractals» model
of irreversibility in superconductors. ’

1. INTRODUCTION

Granular superconductors (SC) are composed of a very large number of small (micron-size)
superconductive grains which are coupled together due to the Josephson tunnelling (or, in some
cases, due to the proximity effect). These systems are inherently disordered due to randomness
in the sizes of grains and in their mutual distances. Usually the strength of Josephson coupling
between grains is rather weak, so the maximum Josephson energy of the contact between two
grains is much below the intragrain superconductive condensation energy. Therefore granular
SC can be considered as systems with a two-level organization: their short-scale properties
are determined by the superconductivity of individual grains, whereas the macroscopic SC
behaviour is governed by the weak intergrain couplings. In the treatment of the latter, one
can neglect any internal structure of SC grains and describe them just by the phases ¢; of their
superconductive order parameters A; = |A|; exp(i¢;). As a result, the macroscopic behaviour of
granular SC can be described by a classical free energy functional of the form (cf. Ref. [1-3]):

1 ij 1 1
H=3 %:EJJ cos(¢; — ¢j — ouij) + /dJr (QIVA]2 ~ i ([VA]Hm)) , (1.1)
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where

G55 = 2n Ad
@)
1
is the phase difference induced by the electromagnetic vector potential A and @y = 7rhc/ e,
whereas the coupling strengths E’J’ are proportional to the maximum Josephson currents: EY =
= (h/ 2e)I;;. The vector potential A in Eq. (1.1) is the sum of the vector potential A, of the
external magnetic field H..; and of the Josephson currents-induced vector potential A;,.q. In
the absence of external magnetic field, the lowest-energy state for the «<Hamiltonian» (1.1) is,
clearly, a macroscopically superconductive state with all phases ¢; equal to each other. Thus
that granular SC system looks similar to the random XY ferromagnet with randomness in the
values of the coupling strengths E” ’s (apart from the possible role of the induced vector potential
A;,q which will be dicussed later) within this analogy the role of XY «spin components» is
taken by S, = cos¢;, Sy = sing;.

The situation becomes a lot more complicated in the presence of non-zero external
magnetic field H..;, which makes the system randomly frustrated (since magnetic fluxes
penetrating plaquettes between neighbouring grains are random fractional parts of ®;). When
the external field is sufficiently strong, H.., > Hy, = ®,/a3 (here ao is the characteristic
intergrain distance), the random phases a;; become of the order of  or larger, which means
complete frustration of the intergrain couplings — i.e. the system is then expected to resemble
the XY spin-glass. Actually the random Josephson network in a magnetic field is not exactly
1dent1ca1 to the XY spin-glass due to the following reasons [1]: i). The effective couplings E” =
=EY % exp(ia;;) between «spins» S; of the frustrated SC network are random complex numbers
whereas in the XY spin-glass model, they are real random numbers. ii). Generally the phases
a;; depend on the total magnetic induction B = H,; + B;yg4, i.e. the effective couplings E
depend on the phase variables ¢; determining the intergrain currents I;; = IfJ sin(¢; —¢; — a”)
In some cases the effects produced by the self-induced magnetic field B;,,; are weak and can
be neglected (the quantitative criterion will be discussed later on), so that phases a;; can be
considered as being fixed by the external field.

The model described by the Hamiltonian (1.1) with fixed a;;’s and H.,: > H, is usually
called «gauge glass» model. It is expected on the basis of the analytical [2-5] as well as
numerical [6, 7] results that the gauge glass model in 3D space exhibits a true phase transition
into a low-temperature glassy superconductive (nonergodic) state. The mean-field theory of
such a low-temperature state shows [3, 5] that it is characterized by the presense of a finite
effective penetration depth for the variation of an external field, nonzero macroscopic critical
current, and the absense of a macroscopic Meissner effect. The full model (1.1) with a’s
containing contribution from B,, 4 is sometimes called «gauge glass with screening» [8]. The
effect of screening on the presence and properties of the phase transition into a glassy state is not
completely clear; some numerical results [8] indicate the absence of a true phase transtion in
a 3D model with screening. Quantitatively, the strengh of screening is determined by the ratio
Br =2nZI.[c®y where Z is the characteristic inductance of an elementary intergrain current
loop [9]. In the ceramics with #; <« 1, screening effects become important on a long-dis-
tance scale ~ ap/+/B only (i.e. they are similar to the strongly type-1I superconductors with
disorder).

Apart from its relevance for the description of granular superconductors, the gauge glass
model with screening is rather often considered (e.g. Ref. [10]) as a simplified model describing
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the large-scale behaviour of disordered bulk type-II superconductors in the mixed state (so-
called vortex glass problem). Actually it is unclear a priori how these two problems are related;
an obvious difference between them is that the basic ingredient of the latter is the vortex lattice
which is clearly an anisotropic object, whereas the former does not contain any prescribed
direction in the 3D space. On the other hand, the granular superconductor in a moderate
magnetic field H.,; < H, may be considered as a kind of disordered type-1I superconductor,
where the notion of a hypervortex (which is the macroscopic analogue of the Abrikosov vortex)
can be introduced [2,11]. Therefore, the macroscopic properties of a granular network at
H..; < H, may resemble those of the vortex glass; in such a scenario a phase transition
between vortex glass and gauge glass phases would be expected in a granular superconductive
network at H,..; ~ Hy (cf. Ref. [1] for a more detailed discussion of this subject).

Recently, it was noted that granular superconductors may become glassy even in the
absence of external magnetic field, if a large enough part of Josephson junctions are anomalous,
i.e. their minimum Josephson coupling energy corresponds to a phase difference A¢p = =
instead of 0 (so-called w-junctions). Two completely different origins of w-junctions were
propoesed: mesoscopic fluctuations in dirty superconductors [12] and the pairing with non-zero
momentum [13, 14]. Recent experiments revealing the d-wave nature of pairing in high-tem-
perature superconductors [15]} indicate the possibility of observing glassy superconductive
behaviour in HTSC ceramics in virtually zero magnetic field. Note that ceramics with equal
concentrations of usual and 7w-junctions are completely equivalent (if screening effects can be
neglected) to the XY spin-glass. Contrary to the 3D gauge glass model, the XY spin-glass
in 3D is expected to have no true thermodynamic phase transition at finite temperature [7];
recently, it has been suggested that the XY spin-glass and d-wave ceramic superconductor
might have a new equilibrium ordered phase, the so-called chiral-glass phase [16]. However,
these issues are hardly relevant for the measurable response at temperatures much below «bare»
glass transition temperature T}, which we consider in this paper.

Experimental studies of granular superconductors reveal [9, 17] an appearance of magnetic
irreversibility (a difference between Meissner and shielding magnetizations or, in other terms,
between field cooled (FC) and zero field cooled (ZFC) magnetizations) below some temperature
Ty, which is lower than the SC transition temperature 7, of the grains. However, detailed
analysis of the magnetic response in such systems is usually complicated by the mixing of
contributions from individual grains and from the intergrain currents. The goal of this paper is to
develop a method which makes it possible to extract from the raw data on d.c. magnetic response
the intergrain contribution and to compare its behaviour with existing theoretical predictions.

The compound La, 3Sry ,CuQ, was chosen in this study for experimental convenience,
since its critical temperature (~ 32 K) is within the optimal temperature range of our noise
and a.c. susceptibility measurements setup. The sample was fabricated by standard solid state
reaction of La,0;, SrCO; and CuO [18]. Mixed powder was pressed into pellets which were
sintered in air at 920°C for 12 hours. The material was then submitted to three cycles of
regrinding, sifting to 20um, pressing and sintering again at 1100°C for 12 hours. Samples
prepared in two successive runs were used in this study. In the first one (sample A), pellets
1 mm thick and 10 mm diameter were obtained, with a density about 80% of the theoretical
bulk value. In the second one (sample B), cylinders of diameter 6 mm and length 5 to 6 mm
were prepared with a density ratio about 88%. In both preparations, grains sizes were in the
range 1-10um. Room temperature X -ray powder diffraction patterns showed the presence of
a small amount (< 5%) of the non superconductive compound La,_;, Sr;, Cu,0s.

The rest of the paper is organized as follows. In Section 2 the general analysis of the
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magnetic response data obtained on two different samples (A and B) of La; §Sry ,CuQ, ceramics
is presented and the intergrain (Josephson) contribution to the overall response is extracted.
Section 3 is devoted to the detailed study of the magnetic response of Josephson intergrain
network in the low-field range. It is found that the macroscopic critical current is suppressed
considerably (by a factor 2), in a magnetic field of only about 2G. The lower-field d.c.-response
to field variations of order 0.05-0.5 G was analyzed for the FC states obtained at Hp¢c = 0-10 G
and two temperatures, 10 and 20 K. The data at T' = 10 K and Hg¢ = 0 and 0.1 G are shown to
be compatible with the Bean critical-state picture [19] and the low-field critical current value
is identified. The rest of the data are in a sharp contrast with Bean-model predictions: the
screening current grows sublinearly (approximately as a square root) with increasing exitation
field. Very low field, low frequency a.c. measurements are presented, which reveal the strongly
irreversible nature of that anomalous response. A new phenomenological model is proposed for
the treatment of these data. Its first predictions are found to be in a reasonable agreement with
the data. In Section 4, the theoretical analysis of our experimental results is given in terms of the
existing theories of «gauge-glass» state. It is shown that the observed transition temperature to
the low-temperature state of the network and the magnitude of the (low-B, T') critical current
are in sharp contradiction with the (usual) assumption that the zero-field granular network
is unfrustrated. On the contrary, under the assumption of a strongly frustrated network at
B =0, all basic measured parameters of the ceramic network are in mutual agreement. We
believe that these estimates indicate the existence of a large proportion of 7w-junctions in the
La, gSry ,CuQ4 ceramics, possibly due to the d-wave nature of superconductivity in cuprates.
The Section 5 is devoted to the development of a new model of diamagnetic response in glassy
superconductors, which is necessary for the description of the anomalous data described at the
end of Section 3. This new model (in some sense, intermediate between the Bean [19} and
the Campbell [20] ones) is based on two ideas: i) the existence of two characteristic «critical»
currents (J.; and J. > J.1), and ii) the fractal nature of free energy valleys in the ceramic
network. Our conclusions are presented in Section 6, whereas some technical calculations can
be found in the Appendix.

For convenience, the e.m.u system of units will be used for experimental data, and Gaussian
units for the theoretical discussions.

2. GENERAL PROPERTIES OF D.C. MAGNETIC RESPONSE

The d.c. magnetization was measured by the classical extraction method. Two SQUID
magnetometers were used: one a home made apparatus used in several previous spin-glass
studies [21], the other a commercial system (Cryogenics S500).

In this section, we describe successively the static magnetic response of samples A and B
and present a preliminary treatment of these data, in order to distinguish between the magnetic
response of individual grains and intergrain currents {9, 22] (a detailed study of the latter is the
subject of the next section). Firstly, we present the results obtained after cooling the samples in
various d.c. fields and applying small field increases. Secondly, we will derive from the results
the response of the Josephson currents as a function of field and temperature. Finally, we will
show that the behavior of the field cooled susceptibility can be satisfactorily accounted for if
the system of Josephson currents does not carry Meissner magnetization. It will be shown that
the same interpretation accounts fairly well for the FC results which, at first sight, are rather
different for the samples A and B.
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Fig. 1. Magnetic moment of the sample A as a function of field applied in the zero
field cooled state (e.m. units of moment correspond to cm*G). Hpmaz = 0.5 (0),
1 (O), 1.5 (A) G. The curves for field loops 0-Hnq-0 are superimposed

2.1. Sample A

Sample A is a 1 mm thick pellet with an approximately ellipsoidal shape of 2 x 6 mm?. Its
calculated volume is V =~ 8.5 mm? and the demagnetizing field coefficient for the field parallel
to the longitudinal axis is N ~ 0.06 [23].

Fig. 1 displays the magnetic dipole moment of the sample cooled to 10 K in zero field
and submitted to cycles 0 — H,,,. — 0 for several values of H,,,; up to 2G. At the lowest
increasing fields, the moment increases initially with a slope P;. Above 1.5 G, it approaches
a slope P;. The remanent positive moment saturates for H,,,, > 1 G.The calculated moment
of the sample for perfect volume shielding in an homogeneous field is (e.m.u. system)

- HV — _ -3 3

Owing to the error in the evaluation of the volume, this value is determined with an accuracy
of only £5%. Nevertheless, it is in fair agreement with the slope P, in Fig. 1. On the other
hand, the slope P, is about 53%, a rather small value since the density ratio of the sample
is about 80%. At such low temperatures (in comparison with 7T, =~ 32 K), where the lower
critical field of the grain’s material is above 100 G, one would expect expulsion of the field by
the grains with a penetration depth A. The expected value for the magnetization M = A /V
of the system of uncoupled grains system can be calculated as [24]:

M 1 f
H 4r1-fN—(1-fim’
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where f is the volume fraction of the superconductive material and n is the demagnetizing
field coefficient for the grains. For an estimate, we assume grains to be spherical (n = 1/3)
and, using M/H = 0.53-1/4x and N = 0.06, we find f =~ 0.41. This value is considerably
below the volume fraction of the sample filled by grains (=~ 0.8); we assume that the difference
is due to the intergrain penetration depth X being comparable to the grain size r and estimate
an effective value of \ as

3
f=041=038 (l - %) yielding A =0.2r.

Taking an average size of 5 um for the grains, we obtain A =~ 500 nm. Values reported for the
mean penetration depth in La, gSry ,CuQ, are about 200 nm [25]. The value found here is larger
than the expected mean value for the homogeneous material, indicating that the grains are not
monocrystalline. This will be confirmed below by the results of field-cooling experiments.

The shielding susceptibility is plotted in Fig. 2, as a function of temperature and for several
values of the ambient FC field. The measurements were performed according to the following
procedure: the sample was cooled in a field H;. down to the working temperature and the
moment was measured after waiting 300 sec; then the field was increased by a small amount
AH < H;./10 and the moment was measured again after waiting 300 sec. The figure displays
the experimental shielding susceptibility normalized to the value for total shielding, i.e.:

_ M(H+AH) - A(H) 4r(1 - N)
AH 1% )

The curves show the double step usually ascribed to the action of both intragrain currents
and Josephson intergrain currents [26]. At high temperature, the onset of grains diamagnetism
occurs at about 32 K. Above 25 K, the response corresponds to the diamagnetism of the grains.
At a fixed temperature, it is Hy. independent for Hy. < 5G, and decreases for increasing
H,;. > 5G. Below 25 K, the onset of Josephson currents manifests as a second step of the
diamagnetic response. This second step appears at a decreasing temperature as H,. increases.
At the lowest temperatures, the diamagnetic moment amounts to about 100% of flux expulsion
at Hy. = 0 and decreases with increasing Hy.. At Hy. > 8 G, the flux expulsion saturates at
a value slightly above 50% which corresponds roughly to the level of 53% determined above
for the grains response.

The susceptibility in Fig. 2 contains the contributions of grains and Josephson currents.
The contributions can be separated on the line of the work by Dersh and Blatter [22]. The
induction in the sample is given by B = H +4n(M,+ M;) where M, and M stand respectively
for the magnetization of grains and of the Josephson currents. It should be noted that the
magnetization due to macroscopic circulating currents in a superconductor is sample-size
dependent, i.e. the corresponding susceptibility is not a local quantity. At the macroscopic scale
of the circulating currents, the magnetization M, can always be written as x ¢ Hjocqa1, Where
X¢(H) is homogeneous over the sample. In what follows, we consider quantities averaged over
the volume of the sample: in that case, M is the averaged moment per volume unit due to the
currents. The demagnetizing field effect will be neglected in the calculations. We have verified
that, owing to the small value of the demagnetizing factor, this does not modify the essential
features of the result while allowing a simpler derivation (the effect of demagnetizing factor will
be taken into account when analyzing the data from the sample B). We get

X sh

M, = x,(H +4nM;).
2084



XAT®, 1997, 112, eun. 6(12) Low field magnetic respanse. . .

AM/AH, 1/4%

0

0.2 ch
mem X (H—0)

(H—0)

AH < H/10

Q t=300s

1 . L . 1

10 ' 20 30 20
Temperature, K

Fig. 2. Shielding susceptibiliy of the sample A as a function of temperature, normalized to
the moment for complete shielding. Curves are arranged in the same ascending order as in
the legend. Hgq. = 20,07, 14.34, 8.60, 5,73, 2.87, 1.99, 1.42, 0.85, 0.57, 0.28, 0.14, 0.06 G

Then
M=M;+M;=xH+M;p,, pg=1+4rx,,
and
M= T @2

Eq. (2.2) must be considered with care since x, is history and field dependent. In fact it is
well-adapted to the description of the result of zero (or small) field cooling experiments. More
generally, we must consider the response to field increments 6 H to obtain x = 6 M /§H . Then,
the polarizability? x; of the Josephson network reads

X~ Xg
Xj=—. (23)
! Hg
Note that we can equivalently consider the response of the currents system in an homogeneous
medium with permeability u,. If the applied field is varied by 6 H, the Josephson network sees
a variation of internal field 6H; = u,0H and develops a polarization 6M; = x;6H;. Then,
we recover Eq. (2.3).

Y The susceptibility, which in the usual sense is a local quantity representing (B — H)/ H, has no meaning
in the case of circulating currents in a conductor. We speak rather of a polarizability x; which represents
the average value (B — H )/H, and describes the global effect of the currents over the whole volume of
the sample.
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Fig. 3. Josephson currents susceptibility in the sample A as a function of

temperature. Values have been calculated from data of Fig. 2 and using Eq. (2.3).

Hgy. = 5.73 (9), 2.87 (0), 1.99 (m), 1.42 (O), 0.85 (a), 0.57 (¥), 0.28 (A), 0.14 (V),
0.06 (0) G

The value of x, could be determined in principle if we were able to obtain a packing of
disconnected grains equivalent to the packing of the sintered sample. In practice this was not
possible. Indeed, mechanical grinding resulted in breaking a large part of the grains and thus
modifying the characteristics of the material. Nevertheless, it is possible to extract x,, at least
approximately, from the data of Fig. 2. At high temperature, above the onset of intergrain
currents at ~ 25 K, the shielding susceptibility x5 is due to the grains alone, independent on
H,, below ~ 6 G. At low temperatures, for H;. above ~ 6 G, the x,, curves superpose and
there is no manifestation of the onset of intergrain currents. Thus, here also, x, represents
the response of the grains alone. Hence, the response x, of the grains can be reasonnably
approximated by an interpolation between these two limits. The interpolation curve, obtained
by a smoothing procedure between both curves at Hy. =0 G and Hy. = 20G is displayed on
Fig. 2 (dashed curve). The values of x; derived from Eq. (2.3) are plotted versus temperature
in Fig. 3, for Hg. < 6G.

Note that the dependence of x; on Hy., seen in the figure is supposed to reflect the
behavior of the initial shielding properties of the Josephson network with the increase of Hy,.
Nevertheless, the nonlinearity of the response due to the correlative increase of the value of AH
(AH = H/10) cannot be excluded: this aspect will be studied in detail in sample B. Finally,
one can note the similarity of our data with the results of earlier numeric simulations on a
gauge glass system [17].

Above we have dicussed the system’s responses to the variation of magnetic field at fixed
temperature (i.e. shielding responses) and extracted from these data the polarizability x; of
the intergrain system. Now we turn to the description of the results of the field cooling
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Fig. 4. FC (Meissner) susceptibility of the sample A as a function of temperature

for fields up to 20 G. Curves are arranged in the same ascending order as in the

legend. Hq. = 20.07, 14.34, 8.60, 5.73, 4.01, 2.87, 1.99, 1.42, 0.85, 0.57, 0.4,
0.28, 0.2, 0.14, 0.08, 0.06, 0.02, 0.01 G

measurements. FC (Meissner) magnetization was measured by the standard procedure between
10 and 40 K for fields from 0.01 to 20 G. The results are reported in Fig. 4 versus temperature
and Fig. 4 versus applied field. Data are normalized to the value of the moment for 100%
shielding.

Even at the smallest field, the flux expulsion rate is no more than 45%, less than the
53% shielding by the grains. At low fields, below 1 G, there is an approximate affinity between
the curves of M/H versus T. M/H can be extrapolated linearly to H — 0. The result is
plotted in Fig. 2 (solid circles): one can see that the extrapolated FC susceptibility superposes
exactly with the low d.c. field shielding susceptibility above 25 K. Therefore, at low d.c. field
above 25K, the response of the grains system is reversible and it is well described by the low
d.c. field shielding curves; this justifies the hypothesis used above for the calculation of x;.
On the other hand (see Fig. 5), the behavior of the FC susceptibility as a function of H is
not trivial. M /H decreases with increasing field and reaches a stable level (about 25% at the
lowest temperatures) at roughly 1 G. Whatever the temperature, this decrease is centered at
a constant value of the field, about 0.1-0.3G. Above 5 G, M/H decreases once more with
increasing field. Note an essential difference between the FC results presented on Fig. 4 and the
shielding results above (Fig. 2): the FC curves do not show any increase of the response M /H
with the temperature decrease below 20 K, where the intergrain coupling grows considerably
(as it is seen from Fig. 2). This means that the network of intergrain currents does not produce
Meissner (FC) magnetization, whereas it does produce shielding magnetization.

The behavior of the FC susceptibility x ¢ = M pc/H as a function of the applied field H
depicted in Fig. 5 shows two nontrivial features: i) crossover between two plateaus (at low and

2087



L. Leylekian, M. Ocio, L. A. Gurevich, M. V. Feigel’man XOT®, 1997, 112, evin. 6(12)

M/H, 1/Ar

0.1 T T T T T T T T T T T T T T T T
0.0

-0.1r 1

s b

-0.4 -
-0.5 PSR S S S Y SV S G S ST S W U Y U S SN N U S W Y A S SO S S A W
0.01 0.1 1 10 100
D.C. FIELD, G

Fig. 5. FC (Meissner) susceptibility of the sample A as a function of field
for selected temperatures. Curves are arranged in the same ascending order as
in the legend. T = 36, 30, 28, 26, 24, 22, 20, 18, 16, 13.5, 10.5 K

moderate values of H), which takes place between 0.1 and 1 G independent of temperature, and
i) the value of the low-field x p¢ is noticeably lower than the Meissner response of uncoupled -
grains (45% versus 53%). These features can be understood in terms of (i), a polycrystalline
structure of the grains, which can be suspected from the large values of the penetration depth
obtained from the results of Fig. 1, and (ii), self-shielding (pinning of the magnetic flux) by
the Josephson currents when lowering the temperature in an applied field.

We start from the feature i); the curves of FC magnetization in Fig. 5 are rather similar to
those which were measured by Ruppel et al. [27] in YBaCuO ceramics. The authors interpreted
their results on the basis of a theory of the flux expulsion by strongly anisotopic randomly
oriented crystallites as derived by Wohllebeen et al. [28]. We stress that the model is not based
on any activated flux creep mechanism. It is thus well-adapted to the analysis of our results:
indeed, flux creep effects can hardly be invoked here since the temperature has no apparent
effect of on the characteristic field related to the decrease of magnetization. The starting point
of the model is that, provided the size b of the crystallites is such that A\j < b < Ay, the
longitudinal magnetization of a crystallite whose c-axis makes an angle o with the field is given
by M = —(H /4~)y cos® a, where v is a factor close to 1, depending on the ratio A /b. After
averaging over «, one obtains

It must be stressed that the system of intragrain crystallites is a strongly-coupled system, contrary
to the system of grains which composes the ceramic. Therefore, a grain consists of an ensemble
of interconnected Josephson loops surrounding crystallites whose planes are nearly along the
field and are thus transparent to the field. At low fields, this system will expel the flux with a
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penetration depth depending on the junction coupling energy. Nevertheless, when the field is
such that a loop sees a flux larger than ~ @, /2, the macroscopic magnetization of the Josephson
currents vanishes and the system reacts as an ensemble of disconnected crystallites {29]. The
characteristic field of this crossover is such that {28]

Hp,s,

o = 0.1. 24

Recently determined values for the penetration depth in La, ¢Sty ,CuQ4 [30] are /\" = 150 nm
and A; = 1500 nm. Older measurements indicate a higher anisotropy, up to a factor 14 [31].
We can thus reasonnably consider that the model can be applied in our case. Taking H,, =
= 0.3 G, we obtain s, = 7.4-10~% cm?. With s, ~ 7b? this leads to a mean diameter b = 1.5 um
for the crystallites. Above H,,, the system acts as an ensemble of crystallites whose average
- susceptibility is (y/3)(1/4x). With the density ratio f = 0.8, taking v+ = 1 and supposing
spherical crystallites we obtain from Eq. (2.1) 47 M/H = 0.31 which is above the experimental
value (the latter being about 0.25). Nevertheless, it must be noted that we have neglected here
the effect of the factor v and used a rather unrealistic spherical approximation for the shape of
crystallites. Finally, it has been seen that above 5 G, the FC magnetization starts to decrease
once more with increasing field although H,, is larger than 100G in La, gSrg ,CuQy. This can
be due to intrinsic pinning inside the crystallites themselves when the applied field is such that
the flux in the cross-section of one crystallite is larger than ®p. With a mean radius of 0.8 um
for the crystallites, this crossover occurs at about 10 G.
Now we turn to the discussion of the feature ii) mentioned above. At temperatures below
25 K, the Josephson currents become active. Their effect is that, at 10 K, the shielding response
of the system of grains amounts at about 53%, while the FC susceptibility saturates at about
45%. This difference is enough to be significant and can be interpreted as the result of pinning
by the Josephson network. In fact, this pinning can be understood as a back shielding effect
of the Josephson currents against the decrease of local internal field, due to the temperature
dependence of the grain’s system permeability 11,. We have seen above that the response of the
system consists of the two parts: (i) for an applied field H, the internal field due to the grains
seen by the intergrain currents is H; = p,H, and (jii) the intergrain currents system reacts
to all variation of H; with a polarizability x; and generates a magnetization M; = x;0H;.
Thus, when the temperature is decreased by dT', the internal field decreases by H dpu,/dT
and the Josephson network tends to screen this variation. Since the intergrain currents give no
Meissner effect, we consider their response as totally irreversible. Thus for a variation dT" of
the temperature, in a field H, the variation of induction is

d
dB = (1+4ry;) (—d%fi) HdT.
H

On the other hand, B = (1 +4wxrc) H. With p, = 1 + 4nx,, we finally obtain

T
d
ch=xg+47r/xj al‘TidT=xg+xf0. 2.5)
Tc

MFC = xFC H is the magnetization produced by the Josephson currents due to variation of
jt, With decreasing temperature. As x, is known only in the limit Hy. — 0, Eq. (2.5) has been
used to calculate x o versus 7' in the limit of low field. In order to do it, we started from
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the values of x,(H — 0) as derived above; for x;, we have used the values given in Fig. 3 for
the smallest field Hy. = 0.06 G. The result is plotted on Fig. 6. The agreement of calculated
values with experimental data is rather satisfactory, although not perfect. This discrepancy is
emphasized if Eq. (2.5) is reversed in order to calculate x; as a function of x, and xrc. The
reason is that we have used here the simplest linear model of back shielding. In fact, as we will
see later, the response of the currents system is strongly non-linear, with the susceptibility x;
decreasing with increasing AH, and this effect becomes stronger as the temperature increases.
The result is that the calculated efficiency of back shielding is underestimated, since the value
of the experimental susceptibility is determined by applying finite increments AH.

2.2. Sample B

Sample B was machined from one of the original cylinders, in form of a parallelepiped
of dimensions approximately 3 x 3 x 6mm?®. Its calculated volume is V =~ 52.6 mm? and its
demagnetizing field coefficient for a longitudinal field is N = 0.19. In a longitudinal field, its
calculated moment for perfect flux expulsion is given by A =5.1+0.2-1073- H cm*.G.

Measurements of the initial magnetization at 10K are in fair agreement with this value.
For H,. above 3G and up to 30 G the ratio A# /AH reaches a stable level about 3.2-10~% cm?
which corresponds to the response of the grains alone. With the density ratio of 88% for this
sample using Eq. (2.1) one finds f = 0.46, yielding A = 0.19r, i.e. the same value as derived
for sample A.

The shielding susceptibility was measured in this sample by using a more sophisticated
method, in order to reduce the effect of non linearity. After cooling the sample at the working
temperature in the d.c. field, the field was increased by 5 successive steps AH, and A.# was
measured. At the lowest fields, AH = 10mG and (to keep a good signal/noise ratio) AH =
= H,./50 at the highest ones. Then, the value of A#,,/ 3" AH was extrapolated to AH =0
by least square fit.

Like in the case of sample A, all curves at H;. < 10G merge at high temperatures to
a common curve which corresponds to the flux expulsion by the grains. The main difference
with the sample A is that in the sample B the onset of Josephson currents shielding occurs at
higher temperatures. This is consistent with the fact that sample B is more dense, resulting
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in a better coupling between grains; moreover, its size is larger, which also increases the total
shielding magnetization. At low temperature, the magnetization curve at Hy. = 20 G reaches
a level slightly above 60%, which corresponds to the low temperature level for the grains.
The shielding response of the Josephson currents is obtained with the procedure already used
for the sample A. Here the demagnetizing factor cannot be neglected (IV = 0.19). Two kind
of quantities are to be considered: (i) the responses x, and x of an equivalent sample without
demagnetizing field (e.g. an infinitely long cylinder with the same cross-section for instance);
here x4 is the response of the system of grains alone, without intergrain currents, and x is
the total response of the system .of intragrain plus intergrain currents, and (ii), the measured
responses X, and 7; they correspond to the measured moment for each case, normalized to
the moment for total flux expulsion in the volume of the sample. The relation between both
kinds of quantities is given by
X X

1-N 1+4rNy

M -
H
A relation of the same kind holds for x, and X,. With the use of Eq. (2.3), we finally obtain

X - X,

Xj = U_—J—V—ﬁ’ (2.6)

where iz = 1 +4nx, i, = 1 +47x,. Similar to the case of the sample A4, an approximate curve
has been determined for Y, by interpolation between the small H,, curves at high temperatures,
and the curve at Hy. = 20G at low temperatures. Then the values of x; have been derived
from Eq. (2.6) and plotted on Fig. 7. The set of curves is similar to the set for sample A, except
for the higher onset temperature of the intergrains currents.

Field Cooled magnetization data, normalized to the value of the moment for full flux
expulsion, are reported in Fig. 8 as a function of field up to 30G. At the lowest field and
temperature, the FC magnetization does not exceed 28% of its value for full flux expulsion.
Furthermore, at low temperatures the curves representing the field dependence present a second
maximum at about 5 G. We expect that this complicated behavior is due to the back shielding
effect of the intergrain currents, as discussed for the sample A. To take them into account,
a relation similar to Eq. (2.5) (but with the demagnetizing effect included) should be derived.
The internal field is given as usual by H; = H — 47N M, and the value of the local field seen
by the currents is H; = p, H;. Thus, under a temperature variation dT,

dH; _ dp, dM

-(-1—1:-=—d—f(H—47rNM)—47rN ﬂgﬁ.

With dB/dT = y; dH,/dT, and using the relation

T
_XecH _ 1 [d(B—Hi)
M 1-N 47r/ dT dT;
Tc
one obtains after integration:
1-N ’ d
= T - Hj Xg
= (1 - —4nNT = =L dT.. .
Xro = g (1~ e (~4xND), I /I_N(l_”m) Xeqr. @)
Tc
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Here p; = 1+ 47y, with x; reported on Fig. 7, whereas the value of pu, was obtained using
the relation p, = (1 — N)g, /(1 — NE,) from the value of X, as derived above.

The values of X for H — 0 have been calculated using the values of X, as determined
above, and the values of x; at H4. = 0. The calculated value of Xz was found to be about
—0.35 at T = 10 K, whereas its measured value was about —0.28. The discrepancy between
measured and calculated values is larger here than in corresponding results for sample A. We
believe that the origin of this discrepancy is the same as in the case of sample A, i.e. it stems
from the nonlinear response effect. This effect is numerically larger in sample B since here
the onset of Josephson currents occurs in a range of temperature where x, still varies strongly,
contrary to the case of sample A.

The above analysis shows (irrespectively to the above-mentioned discrepancy) that the back
shielding effect leads to a strong reduction of the field cooled susceptibility as compared with
the susceptibility of the grains alone. It is then easy to understand the complex behavior of
Xrc as a funtion of field: at 10K for instance, the onset of back shielding occurs at about
20 G, and its amplitude increases with decreasing field due to the increase of ;. Starting from
the two-step behavior of x, expected from the theory of Wohllebeen et al. [28] (and seen in
the data of sample A, where back shielding is less important), back shielding results on the
double maximum shape of the measured curves. '

3. DETAILED STUDY OF THE JOSEPHSON NETWORK RESPONSE

3.1. Determination of the global critical current

In this subsection we will present the procedure we used to extract the value of the
macroscopic critical current in our sample B. This procedure is not quite trivial since we
are interested in the dependence of the critical current on the background d.c. field in the
sample, so we need to analyse the magnetization curves which depend both on the cooling
field H,. and on the field variation 6 H.

Magnetization has been recorded at 10 and 20K as a function of increasing AH with the
smallest possible field steps (§ H = 10 mG), and starting from several FC states. From the A_#
data, it is possible to derive the value of the current response A#; as a function of AH. For
this, we use Eq. (2.6) which can be written as

AN —AMA,

oS d-voE,

3.1

where A#, is the magnetization of the grains alone; 7 and R, are defined in Subsection
2.2. The value of the grains system response is approximately derived in the same section:
AN, ~32107* Hem® G at 10K and AA, =~ 2.9-1073- H cm®-G at 20K. Calculated values
of A#; at 10K are plotted in Fig. 9. Note the analogy of these results to the magnetization
curves of classical type-II superconductors with strong pinning (the difference is that here AH
plays the role of H).

After cooling the sample at zero d.c. field, its response is obviously symmetric with respect
to AH. When it is cooled in a finite d.c. field, it is not the case anymore, as was explained in the
previous section. The magnetic moment of the sample just after cooling is A pc = A+ A FC
where A f € is the positive moment due to the back shielding by the Josephson currents which
have been developed during the cooling process (see Egs. (2.3) and (2.6)). So, the total moment
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Fig. 9. Shielding moment of the Josephson currents after
cooling the sample at 10 K in a d.c. field in the range 0-10 G.
T =10K, Hg. = 0 (0), 0.1 (O), 2(A), 4 (V), 10 (0) G

produced by the intergrain currents after increasing the field by AH is A ; = A f CrAM - It
is this moment which vanishes when J. — 0 (at large enough AH), and thus A_# ; approaches
Ny 4 f C. In Fig. 10 we show the data recorded at T'= 10 K and H,. = 2 G. Curves recorded
at positive and negative AH both converge to the value corresponding to — A4 f C. at 10K the
value — A ¥FC is about 1.1-107* e.m.u.

When AH > Hy,, it is natural to expect that the response of the Josephson network does
not depend on the initial state. A simple illustration can be given by analogy with Bean-like
pinning in type-II superconductors [19]. At large AH, when the induction profile has penetrated
up to the center of the sample, the magnetization does not depend on AH but only on J.. If,
as it is the case in real materials, J,. varies with the induction in the sample, the magnetization
depends on the total H, whatever the value of Hy. in which the sample was-cooled. Actually,
when plotted as a function of the total field Hy. + AH, the curves giving the total moment of
network currents A f CHraM ; merge in their «large» field part (i.e. above their maximum).
The values have been calculated, with —.//(fc =1.1.10"3 emu and 0.7-10—3 emu for Hy. =2
and 4 G, respectively. In order to obtain an optimal overlap between the curves, the following
values have been used for AA,: 3.25-1073- Hem®- G at Hy. =0G, 3.22-1073- Hem®-G at
Hy. =2 and 4 G. Indeed, the calculated values for AL# ; at large AH are extremely sensitive
to those for A#,. This allows us to refine the determination of A.#,. Note that the values
quoted above do not differ by more than 1%, which is compatible with experimental accuracy
and the possible variations of grains response with Hy,.

Finally, from the knowledge of the true Josephson shielding response in «large» fields, we
can now derive a rough evaluation of the critical current. Namely, above the maximum of
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Fig. 11.

Calculated values of the averaged

critical current J, as a function of total field
for strong field penetration. The big square
corresponds to the initial J. as determined
in subsection 3.2. T = 10 (m), 20 (A) K
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Fig. 12. Josephson currents susceptibility at 10K vs. applied variation AH of
field, after cooling in d.c. field Hg. = 0 (0), 0.1 (O), 2 (&), 4 (V), 10 (Q) G.
The meaning of dashed and dot dashed lines is explained in the text; T = 10 k

AA ;, we calculate the value jc of the average critical current which would give the value of
the measured moment by use of the Bean formula [19] in a cylindrical geometry. For strong
penetration, the magnetization is given in e.m.u. by M = fCR/3. With R = 0.15cm and the
values of the moment measured at 10 and 20 K with Hy. = 0 G, we obtain the data displayed
in Fig. 11. Note that the data are limited to fields such that H ~ H* = 4nJ.R below which
the above approximate evaluation is no longer relevant.

3.2. Low field d.c. response

We can now concentrate on the behavior of the Josephson currents moment at small AH.
For this discussion, the currents susceptibility A.#; /AH is plotted versus AH at 10 and 20 K
in Fig. 12 and 13, respectively. At 10 K, after zero field cooling or cooling in a small field
H,;. = 0.1 G, the response varies linearly with AH for small values of AH up to about 0.5 G.
This linear slope of A#;/AH is considered as the result of classical Bean-like pinning with
critical current density J. = H* /47 R, where 1 /47 H* is the initial slope of the curve [19]. This
initial slope is reported on the Fig. 12 as the short-dashed line which corresponds to H* = 2 G,
leading to J, =~ 3.7 A/cm?.

At larger AH, the behaviour of currents susceptibility AL# ; /AH deviates from linear, which
is the result of both the magnetic-field dependence of the critical current J,., an intrinsic effect,
and of the increasing degree of flux penetration into the sample, a purely size-dependent effect.
Usually one uses the Bean model (generally with some B-dependent critical current) in an
appropriate geometry in order to deconvolute these two effects. However, one should keep
in mind that the Bean model is a severe simplification of the problem of constant pinning
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Fig. 13. Josephson currents susceptibility at 20 K vs. applied
variation AH of field, after cooling in d.c. field Hy. = 0 (o),
0.1 (), 2(a),4 (V). T = 20K

force, corresponding to the limit A — 0 (i.e. the London penetration depth is supposed to
be negligible with respect to the Bean penetration length). For the simplest sample shapes
(thin slab or cylinder) it means that the condition A\ < R should be fulfilled, which is usually
the case. However the situation is more complicated for samples of square cross-section (like
our one), where the effect of corners may become important even at A\ <« R. For such a
geometry, the use of Bean model leads to exactly the same relation between critical current,
external field and measured magnetization as for the cylindrical ones, whereas one expects some
difference if finite-\ corrections are taken into account. At the present stage, we are not able
to evaluate these corrections and therefore the values of the magnetization corresponding to
our experimental geometry with non negligible A\. Nevertheless, we expect that it lies between
the curves for two extreme limits. The upper one corresponds to the A — 0 limit, where the
magnetization is given simply by the Bean’s formula for the cylinder:

4rM/H = -1+ H/H* — H*/3H** for H<H"
and
4xM/H =—-H*/3H for H>H*.

A lower limit (thought rather artificial) consists of the «double slab» case in which the variation
of magnetization is counted twice (once for each pair of edges):

4xM/H = —1+H/H* for H<H*/2
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and
47rM/H=—Hf/4H for H> H*/2.

Both curves are plotted in the Fig. 12 (dot-dashed and long-dashed curves respectively) for
Je =37 A/cm? and AA;/AH = —5.05-107 cm® at AH — 0.

Let us now discuss the data starting from those obtained for low d.c. fields, H;. = 0
and 0.1 G. One can see that, after the initial linear part, the absolute value of the measured
_susceptibility is always smaller than the calculated one. This corresponds to the decrease of
J. with increasing induction, as it is classically expected in granular materials, due to the
suppression of intergrain critical currents by magnetic field penetration into the Josephson
junctions [9]. This «classical» behavior for granular superconductors is usually analyzed by
considering the volume-averaged Josephson medium as a kind of type-II superconductor in
the dirty limit, provided its macroscopic penetration depth \; is large as compared with the
grains size [11, 34].

At Hi. > 2 G the behavior of A4 ; /AH is quite different: there is no initial linear slope,
but a monotonic curvature is present down to the smallest AH. It is no longer possible to adjust
a Bean like curve to the data. For instance, the Bean curve plotted on the lowest AH data for
H,;. =2 G is reported on the Fig. 12 as a dashed line. It corresponds to a very small critical
current of order 0.2 A/cm?, and it is evident that the effective screening current becomes much
larger with increasing AH. Here, contrary to the case of Hy. = 0 G, the absolute value of the
measured susceptibility is always larger than the calculated one for a constant shielding current
corresponding to the limit AH — 0. This means that, whereas at H;. = 0 the effective screening
current density stays constant and then slowly decreases with increasing AH (which corresponds
to classical Josephson pinning), at Hy. > 2 G it increases with AH sublinearly (since a linear
increase would correspond to a susceptibility independent of AH). Such behaviour is quite
unusual within the commonly accepted picture of screening in superconductors; indeed, we
know that, for vanishing field excitations, the screening current may be either i) linear in AH
and reversible, as in the London (or Campbell [20]) shielding regime, or ii) constant (equal to
the initial critical current J.) and irreversible as in the case of the Bean-type critical state (or
of any other known critical model, e.g Kim model [32], exponential model [33], etc).

The above anomalous screening behaviour is even more pronounced at 20 K where, even
after zero field cooling, no initial linear slope of A#; /AH can be seen in the data. All curves
show the same anomalous behavior as the data at 10 K in fields from 2 G. This specific behavior
is emphasized by plotting the difference between the measured susceptibility A#; /AH and its
value for total flux expulsion A.#;(0)/AH, versus AH on a Log-Log scale. In such a plot, at
least in the regime of weak penetration, i.e. where A#;/AH is larger than 0.8 A4 ;(0)/AH,
sublinear variation of the shielding current density results in a logarithmic slope smaller than 1
for the curves of A# ;/AH (for A# ;/AH smaller than 0.8 A4 ;(0)/AH, we are in a regime
of strong penetration where it is no longer possible to relate simply the variations of the moment
response to those of the shielding current). In Fig. 14, we have reported the three curves for
which data are found in the range above 0.8 A.#;(0)/AH, i.e. at T = 10K, Hy. =0and 2 G,
and T =20K, Hy. =0 G.

At 10 K and Hy. = 0 G, the logarithmic slope is about 1 as expected, although at the
smallest fields the curve crosses over to a smaller logarithmic slope closer to 0.5. At 20 K and
H 4. = 0G the logarithmic slope is about 0.4 at the lowest AH. Approximately the same value
of the slope characterizes the data obtained at 10 K and Hy. = 2 G, although the dispersion
of data points at lowest AH makes its accurate determination difficult.
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Fig. 14. Difference between the measured susceptibility and its value for perfect

shielding for selected data at 10 and 20 K. The short dashed line represents a

logarithmic slope 1 expected for a Bean critical state. o — T' = 10 K, H = 0 G;
A—T=10K,H=2G,0—-T=20K H=0G

The above anomalous behaviour makes it tempting to try a simple Ansatz for the behavior
of the response current density of the system versus induction variations. Let us suppose that
J o< AB®* with a between 0 and 1. The case with a = 1 corresponds simply to classical screening
with penetration length X (since J o« AB); the case with o = 0 corresponds to constant J, i.e.
the classical Bean case. Anomalous response arises for non integer a. For very small excitation
AH, the length of induction penetration is small as compared with the size of the sample and
we need to consider the effect of the excitation in the lowest order in AB only. For the purpose
of illustration we consider the simplest slab geometry. Then the induction profile is determined
by the Maxwell equation

dB AB\*
EE_"%L(Ei)’ 3.2

where z is the coordinate perpendicular to the edge of the sample. For an external field AH,
the induction in the sample is given by

_ 1/(-a)
Amm=(9§£¥ﬁuy—m> , (3.3)

where z g is the coordinate of penetration and J; and AB,; are normalizing factors; AB = AH
forz =0, i.e.

_— ABf

TH 4 (1= a)
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Then, integrating the field profile (3.3) over x, we get

4rAM + AH

g X AHTS, (3.4)

where AM = AL#/V is the mean magnetization variation due to the field variation AH.

If we now compare the result (3.4) with the data shown in Fig. 14, we find values of « in
the range 0.4-0.5 at both 10 and 20 K.

Thus a simple choice for the relation between the screening current J. and the induction
variation AB allows us to imitate the experimental results for the simplest protocol of a weak
monotonic AH variation on top of a homogeneous state of the network. Nevertheless, it is
evident that AB has no clear meaning if the variation of H is non-monotonic of if the initial
state is obtained by non-zero field cooling. Indeed, in the later case, induction in the sample
varies during cooling due-to the variation of u, with T, giving the response A4 FC a5 seen
before. Furthermore, we will see below that the response is irreversible even for extremely low
exitation fields.

3.3. Irreversibility: very low field, low frequency a.c. response

Problems of sensitivity limit the range of small excitations which can be used in d.c.
experiments. The preceding results clearly show the sublinear nature of the low field response,
but they do not allow its precise determination. In order to extend by several orders of
magnitude the range of our lower excitations investigation, we have been led to perform a.c.
susceptibility measurements. The use of a.c. response measurements is always questionnable
when equilibrium (or quasi-equilibrium) properties are under investigation, since the results
can be affected by the time-dependent part of the response function. It has been shown that
the latter is the response of a very good conductor with complex conductivity [35, 36]. Hence,
it is necessary to work at low frequency, in a range where the susceptibility is roughly frequency
independent.

We present here preliminary results obtained on a long cylinder obtained by stacking several
of the original sample B cylinders. Measurements were done at 20 K, at a working frequency of
1.7 Hz in the equipment used for noise experiments [36]. The sample was simply shifted into the
upper half of the third order gradiometer. At this temperature and frequency, we have verified
that the in-phase susceptibility is almost frequency independent, which ensures that the results
are mainly dependent on the (quasi) static part of the response. The susceptibility was recorded
using classical method of SQUID magnetometry. We used a.c. excitation fields in the range
3.1072 - 30mG and the sample was cooled in d.c. fields from 0 to 8.8 G. From the data,
the values of the Josephson network susceptibility was extacted using the method developed
in Section 2, with the susceptibilities in Eq. (2.6) being complex quantities. The susceptibility
measured at 4.2 K at the lowest a.c. amplitude was taken as the level for perfect diamagnetism.
Fig. 15 displays a Log-Log plot of the out-of-phase susceptibility x;-’ versus the amplitude of
the a.c. field, and for several values of the FC static field. The response is irreversible down to
the lowest a.c amplitudes, and the irreversibility increases with the superimposed d.c. field. All
curves follow a power law, with the same exponent close to 0.5. Going towards the smallest
a.c. excitations, they show some downward bend which could be related with the approach to
a linear regime (with X}' = () below 0.1 mG, although the dispersion of the data is too high to
conclude. The in-phase susceptibility x; is plotted as a function of HY.} in Fig. 16. Here as
well, the anomalous nature of the response is clearly seen. 47rx; behaves like (—1+6+yH?)
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Fig. 15. Out-of-phase susceptibility at 1.7 Hz as a function of a.c. field
amplitude. 7" = 20 K, Hg. = 0 (o), 2.2 (H), 44 (»), 8.8 (V) Oe

where both the constant § and the slope « increase with increasing superimposed static field
H,.. The dependence of the harmonic susceptibility on the a.c. field amplitude is a genuine
proof of the existence of static irreversibility in the response. This is not astonishing by itself,
but these results stress the anomalous aspect of this irreversibility. For instance, in the classical
Bean case with a weak penetration, it is known that 1+ 47rX; and x;-’ are proportional to H,

whereas Figs. 15 and 16 clearly show the proportionality to H3. A further evidence is provided
by plotting x;-’ versus 1+ 47rX;. as displayed in Fig. 17. It can be shown that if the a.c. response
is driven only by static irreversibility, both are proportional. In the Bean case, the coefficient of
proportionality is 4/37. In the Fig. 17, the part of data which lies in the range of 20% variation
of X;- (where the relations for slab geometry are approximately valid) shows that X;" is indeed
proportional to 1 + 47rx9, but with a bit smaller coefficient =~ 0.28 £ 0.03.

In order to understand the meaning of the above results, we generalize the crude ad hoc
model of subsection 3.2 to the irreversible case. In order to do it, we generalize the protocol
of the Bean model. Namely, in the Bean model, the current is given by a step function of the
variation of induction, J = J.sign(AB) according to the sign of AB, as long as the induction
variation is monotonous. If the sign of variation of B is reversed, J also changes sign, which
can be written in terms of the variation of the current density (with respect to the initial current
distribution obtained after monotonous variation of the field, Jin;t, AJ = —=2J:0::0(—=AB 1 e0)
where ©(z) = (1/2)(1 + signz) and AB,., = B — B;,;;. Such a representation (which is
not needed in the analysis of the Bean model itself) will allow us to construct the necessary
generalization of the relation between current and variation of the field used in Eq.( 3.2).
Actually our goal here is rather limited: we are going to find a consistent description of the
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Fig. 16. In-phase susceptibility at 1.7 Hz as a function of the power of
a.c. field amplitude H%3. amplitude. T =20 K, Hy. = 0 (o), 2.2 (m),
44 (a), 88 (¥) Oe

simplest hysteresis cycle which consists of the initial increase of AB from zero to AB;,,;;, then
reversing the sign of the field variation until the value of AB = —AB,,,;; is reached, and then
reversing dB/dt once more and finishing at AB{;,q = AB;n. The description of this cycle
will be consistent if we find that the value of the current density at the end-point, Jyfinal,
coincides with the one after the original increase of the field AB;,;;, Jin:t- This simply means
that the hysteresis loop is closed. It is easy to check that the above condition will be fulfilled
by the following choice of the AJ(AB,..,) dependence:

AJ = —sign (Jinit)2' " Jy <£3Eﬂ> O(—ABpew), (3.5)
AB;

where J, and AB; have the same meaning as in Eq.(3.2). Actually the only difference between
the Eq. (3.5) and the original used in the Eq. (3.2) is the coefficient 2!~%. The Bean model
limit then corresponds to o — 0, so the above coefficient approaches 2 as it should be. Then
instead of Eq. (3.2) we obtain

dAB/dz = £2'~* o AB®, (3.6)

where & = 47 J,/AB{. The induction profile, induced magnetization and harmonic response
are calculated in the Appendix. The main conclusions are that the fundamental components
1 +4mx’; and x} are both proportional to ho'~*, and that their ratio R = X5 /(1 + 4mx;)
decreases from 4/37 to 0 when « goes from 0 to 1. For o = 0.5, we get (cf. Fig. 19) R = 0.25,

2102



XIT®, 1997, 112, eéun. 6(12) Low field magnetic response. . .

4my
0.15 T T T
ga"
&
0.10 J
0.05 y
0 .
0.6 0.8
1 +47rxjf

Fig. 17. Plot of 47y as a function of 1 +4my; for the different
values of Hg. = 0 (0), 2.2 (O), 44 (»), 8.8 0e. T = 20 K,
f = 17 Hz

Fig. 18. Picture of a fractal J(6A)
landscape. An example of a hysteresis
loop is shown

a value which is in good agreement with the data presented on Fig. 17. Note that the degree of
irreversibility (measured by this ratio) is similar (although a bit lower) to the one of the Bean
model. It should be emphasized that the numerical coefficient in Eq. (3.5) was «fitted» in order
to obtain consistent (i.e. closed) hysteresis loop; one can expect that an analogous equation
describing current variation after some more complicated history of the field variations will
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contain another (history-dependent) numerical coefficient instead of 21—,

It can be seen from Figs. 15 and 16 that &/ = 4rxJ,/AB{ increases with increasing
ambient d.c. field. It is natural to expect a decrease of J; with increasing H;.. The increase
of o with H,;. means that AB{ decreases more quickly than J, when H,. increases. The
presence and behavior of the constant § cannot be predicted on the basis of the above simple
model. In fact, the latter neglects the possibility of elastic displacement of flux lines under the
action of the external applied field. Such an effect would result in a response analogous to
the Campbell response due to the elastic displacement of vortices in their pinning potential in
type-II superconductors [20]. Campbell’s response is linear, so it would result in an a.c. field
independent positive contribution to x’, whose amplitude would be inversely proportional to
the strength of the restoring force of the pinning potential wells. It is natural to expect that
the pinning force decreases with increasing ambient d.c. field in our granular system, due to
the reduction of the junctions critical currents. Hence, such an effect would give a positive
contribution to x’, which would increase with increasing d.c. field. This corresponds rather
well to the behavior of the offset § seen in the data.

4. COMPARISON WITH AN EXISTING THEORY OF GAUGE GLASS: FRUSTRATION AT H =0

In this Section we compare the experimental results described above with the theoretical
results available for the randomly frustrated Josephson networks. We start from a simple
estimate for the mean energy E; = hl./2e using the experimental value of the low-temperature,
ZFC (T = 10 K, Hy. = 0 G) critical current density J, ~ 3.7 A/cm?. Using the estimate
ao =~ 5um for the mean size of the grains, one could naively obtain I, ~ J.a} ~ 1uA and the
corresponding low-temperature Josephson energy E?‘“”‘ = 20 K (this value was derived from
J. measured at T = 10K, but we do not expect much difference in the intrinsic Josephson
energies at T'= 10 K and at T' — 0 since the bulk transition temperature in La; gSrg ,CuQ, is
T. =~ 32 K). However such an estimate is in contradiction with the measured value of the glass
transition temperature T, =~ 29 K. Indeed, let us assume that the mean coordination number
{(number of «interacting neigbours») Z in the ceramics is around 6, as for a simple cubic lattice.
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Then for the estimate of the relation between E; and T, one can use the simulation data [6, 7]
which give T, = 0.5E,(T,) = 0.5E;(1 — T,/T.), where we took into account the linear
dependence of E; on T, — T close to the bulk transition temperature. As a result, one gets

EJ(, 2T,
75; [=1,/T. ~ 600 K, “.1)
i.e., a factor 30 larger than the naive estimate above. However we will show now that this
discrepancy may be resolved if we assume that the current network producing the measured
critical current density .J, was actually strongly frustrated in spite of the absence of background
d.c. field in this measurement.

The macroscopic critical current density J. for a strongly frustrated Josephson network
was calculated in Ref. [5] within the mean-field approach (we are not aware of any calculations
of this kind beyond the scope of the mean-field theory). It was shown that frustration strongly
reduces J, as compared to its value Jy for an unfrustrated system:

!ﬁ 3\/—7(1 __T/T )5/2
Jo

where the factor v+ =~ 0.065 was obtained by numerical solution of the slow cooling
equations [3,37,4, p. 183] describing the evolution of the glassy state under slow variations
of temperature and magnetic field. In the low-temperature limit, this relation amounts to a
factor 25 reduction of the J, value with respect to J,. Correspondingly, the characteristic value
of the critical current for an individual junction will be obtained as I, ~ 25J.a2 ~ 25uA and
results in a Josephson coupling energy E;, = 500 K, in a fairly good agreement with the above
estimate (4.1).

The above estimates show that the network of Josephson junctions in La, gSr; ,CuQ, is
frustrated even in the absence of an external magnetic field. A careful reader could question
this conclusion since we have used some results from the mean-field theory which may be a
poor approximation for a 3D gauge-glass. We believe, however that the qualitative result of the
above estimates is sufficiently robust because a strong reduction of J, with respect to J, should
be a general feature of a glassy network, so that unaccuracy due to mean-field approximation
cannot compensate for a huge discrepancy obtained between E”‘"”e and the estimate (4.1).
Additional evidence in favor of the glassy nature of our system is provided by the similarity of
the low-AH diamagnetic response at 7' = 20 K with zero as well as non-zero Hy,, as described
in Section 3 above, as well as the low-frequency noise data obtained in Ref. [35] on the same
type of ceramics.

What could be the origin of that frustration? We believe that most probably it is the result
of the d-wave nature of superconductivity in cuprates [15] and randomness of the crystalline
orientations in ceramics [13, 14]. It was shown there that the form of the effective phase-de-
pendent Hamiltonian for such ceramics is of the same form as in (1.1) except for the fact that
the random phases o;; at B = 0 are just 0 or 7 depending on the mutual orientation of grains
1 and j. Therefore such a system at B = 0 is equivalent to the XY spin-glass, with the low-
temperature state characterized by a completely random orientation of phases ¢;, as in the
gauge-glass model with uniformly random distribution of a;;’s

Therefore the low-temperature state is characterized by the presence of randomly
distributed intergrain currents and, therefore, of the magnetic field generated by these currents.
It means that the actual phases o;; will contain contributions due to the self-induced magnetic
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field. Its relative importance is characterized by the ratio of the corresponding magnetic flux
penetrating elementary loops of the ceramics @, to the flux quantum @, i.e. just by the
parameter 8, = 2n £, /c®, where Z is the characteristic inductance of an elementary loop
[9]. Estimating the elementary inductance as & ~ 2mwaou, and using Eq. (4.1) to estimate I,
we obtain

_4Ar%augl. _ 8musa0Ey
c® @3

BL 0.1, 4.2)

so the self-field (screening) effects are relatively weak, though perhaps not always negligible.
It is also of interest to estimate the effective penetration depth \.., of a very weak magnetic
field perturbation §H into the ceramics. Roughly, the value of )., can be estimated as
ao//BrL ~ 15um. Another (hopefully more accurate) estimate can be obtained using me-
an-field results [5] which allow one to express A.., via the critical current density J.:

1/2
7 cPo
Acer = IV ~ 25 3 4,

(8772 choug) Hm ( 3)

where we inserted (as compared with Ref. [5]) u, =~ 0.35 and approximated the random nearest-
neigbour network by a cubic lattice with coordination number Z = 6, which amounts to the
relation §§ = a2 /6 between the effective interaction range & and the intergrain distance ay.

The characteristic magnetic field variation producing the critical current density J. at the
boundary can be estimated as AH, ~ 4w\ .. J./c = 15 mG, whereas the numerical solution [5]
gives

AH, = ->4xA..,J. ~ 30 mG. (4.4)
2cy

Within the theoretical approach of Ref. [5], AH, marks a crossover between reversible (although
still non-linear at AH < AH_.) and irreversible penetration of the magnetic field into the
intergrain network. The value of AH, obtained in Eq. (4.4) is on the lower border of the range
of the field variations used to measure our d.c. magnetization curves, so we could just conclude
that we always have § H > AH_ and thus are producing the Bean-like critical state. Indeed,
the data at Hy. = 0, T = 10 K look compatible with such an interpretation (cf. Fig. 14), where
some deviations from the logarithmic slope 1 (which is the characteristic of a Bean state) are
seen at lowest AH < 50 mG). However, as far as the data obtained at 10 K with d.c. fields
H,. ~ 2 G, or all data at higher temperature (7" = 20 K), including d.c. and a.c. results at
zero-H., are concerned (cf. Figs. 12-16), the low-field magnetization response is drastically
different from Bean-type predictions, as explained at the end of Section 3. Qualitatively, the
most surprising feature of these data is the existence of a very broad range of AH within which
the response is non-linear but still not like the critical-state one. We are not aware of any
microscopic theory which predicts fractional-power behaviour of the shielding susceptibility
over such a broad range of AH variations. It cannot be excluded a priori that such a behaviour
is related to a very wide range of intergrain critical currents, which might exist in ceramics
(till now we have neglected inhomogenity of intergrain coupling strengths in our theoretical
discussion). Moreover, we may expect that the relative importance of such inhomogenities
increases with the field and/or temperature (cf. Ref. [38]).

In Section 5, we will try to formulate a new phenomenological model appropriate for the
understanding of our data (leaving its theoretical justification for a future study); this model
will be seen to be an interpolation between Campbell’s and Bean’s regimes of flux penetration
into hard superconductors.

2106



XKOTD, 1997, 112, ¢ein. 6(12) Low field magnetic response. . .

5. FRACTAL MODEL OF DIAMAGNETIC RESPONSE

We showed at the end of Subsection 3.3 that a simple generalization, Eq. (3.6), of Bean’s
relation between variation of the applied magnetic induction AB and current J results in
reasonably good agreement with our data. However, contrary to the original Bean relation,
the new one was not based on any physical picture; it was just a convenient description of
the data. In this Section we propose a phenomenological model which provides a qualitative
understanding of the irreversible diamagnetic behaviour mimicked by Eq. (3.6).

We start from the picture of non-linear response of the current J to a variation of the
vector potential A derived in Ref. [5] within the mean-field approximation and presented in
Fig. 2 of that paper. Here the current induced by a variation of A is linear at very small
6A, then grows sublinearly, and finally reaches its maximum value J. at the critical A, such
that the differential response (dJ/dA)sa, — 0. At 64 > §A,. the numerical instability of
the slow cooling equations was detected and interpreted as an indication of the absence of any
solution which would interpolate smoothly between zero and large (i.e. > 6 A.) values of § A.
In other terms, some kind of «phase slip» was expected to happen in the model [5], leading to
a new metastable state, which would have lower (free) energy at the new value of the vector
potential A’ = A + A (in other terms, a state similar to the one obtained by the FC procedure
at constant A’, which does not carry macroscopic current). Further increase of A’ = A — A’
again induces a macroscopic current until it reaches the maximum value J, at §4’ = § A, and
so on. Thus the whole J(6 A) dependence emerging from the mean-field solution [5] is periodic;
it leads immediately to the irreversibility of the response, since the inverse function § A(J) is
multivalued: different vector potential values may correspond to the same value of current. Of
course, such a periodic J(§A) dependence does not correspond to the usual Campbell-Bean
picture, which would better be represented by

Jop(6A) = J(6A)I(BA. — 6A) + JO0(6A — 6A,). 3.0

It is important to note that the J(6A) dependence Ref. [5] was obtained from the space-in-
dependent solution for the glassy correlation function Q;,(t,t') = (cos(¢;(t) — ¢;(t'))); such
an approximation, being reasonable for the description of smooth «adiabatic» transformations
in a system with long-range interactions, will probably break down when the jump from
one metastable state to another happens. - In other terms, the above-mentioned «phase slip»
should have something to do with spatially inhomogeneous processes like vortex penetration
in hard type-1I superconductors. The problem of the solution of the general history- and
space-dependent system of integral equations (which may be derived following the method
of Ref. [5]) is formidable and the method to solve it is still unknown. Therefore we can only
speculate on possible properties of its solution. The simplest idea would be that the macroscopic
J(8 A) response becomes (after averaging over inhomogenities of the space-dependent solution)
similar to the Campbell-Bean type of the response (5.1). Indeed, our analysis of the low-field
diamagnetic response at T = 10 K and H.,; = 0 (subsection 3.2) developed in Section 4 on the
basis of such an assumption, is in reasonable agreement with the data. However other sets of data
(for higher temperature and/or lower field) are described by completely different Ansatz (3.5).
We will now propose a (phenomenological) generalization of the J(6A) relation compatible
with Eq. (3.5). The relation we are looking for should be an intrinsic (i.e. independent on
the sample geometry) and general (i.e. usable for an arbitrary magnetic history of the sample)
relation between the current and variation of the vector potential. Remember that Eq. (3.5)
was written for the simplest nonmonotonic variation of AB, and that it relates the true vector
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J and the pseudovector AB. So, in writing this equation, some additional information on the
geometry of the sample has been used (we use the simplest slab geometry). Thus a natural
basic equation should relate the current density J and the variation of the vector potential A.

In a generalized model, the diamagnetic current response should possess two major
properties: i) it must scale as some fractional power o & 0.5 with the amplitude of exitation
field 6B, and ii) it must be strongly irreversible (as it follows from the analysis of the ratio
4rx" /(1 — 4mx') = 0.28). We consider these two conditions in sequence.

The condition i) is rather easy to fulfill: it is enough to suppose that the differential response
of the current to the variation of the vector potential § A is given by a non-linear generalization
of the London relation

dJ £33

EA— eff(J), (52)

where the current-dependent «effective penetration depth» is given by
Aesr = M|J/ )", (5.3)

In the case of a monotonic field variation applied to an initially uniform induction distribution,
the Egs. (5.2), (5.3) lead to the simple relation J oc AB* with a = (1 + x)~'. Indeed, with
dA = ABdz and approximating dAB/dz by AB/).fs, one obtains J o ABYU*9) Thus we
need to choose k = 1 in order to reproduce the observed scaling with o = 0.5.

However, the set of equations (5.2), (5.3) does not fulfill the second condition ii) above:
the corresponding solutions are reversible, as it follows from the existence of a single-valued
function §A(J) « J'*2% which follows from Egs. (5.2), (5.3). In other words, the system
described by Eqgs. (5.2), (5.3) would exhibit nonlinearity and harmonics generation, but would
not show finite x"(w) in the w — 0 limit. In order to avoid this inconsistency, we need to
formulate a model with the same kind of scaling between § A and J as in Egs. (5.2), (5.3), but
with a nonmonotonic J(8A) dependence allowing for the irreversible behaviour,

A model obeying very similar properties was formulated and studied in Ref. [4, Sect. 3.2} in
a different physical context (one-dimensional spin-glass). The low-energy spin configurations in
this model are described by a phase variable ¢p(x) € (—m, 7) such that two such configurations
(local energy minima) which differ by a phase shift ép(z¢) = @ in a region around some point
o, have a characteristic energy difference E(®) x ®°/3 and a characteristic spatial extent of
the phase deformation X (®) o ®'/3. This scaling holds for the intermediate range of phase
deformations ¢y € ® < 7; at smaller ® < ¢y < | the energy cost of deformation is o @2,
whereas at ® ~ 7 the energy growth obviously saturates due to 27 periodicity. The above E(®)
scaling leads to a sublinear growth of the characteristic «force» f(®) = dE/d® o« ®*/* with
@ in the same intermediate range. The main contribution to the second derivative d>E/d®?
(curvature of the energy valleys) comes from the smallest scale @ ~ (g, i.e. from the curvature
of individual local minima. It was explained in Ref. [4, Sect. 3.2] that such a scaling means
a fractal organization of the energy minima as a function of ¢ with fractal dimensionality
D; = 1/3. It means that the number of energy minima discernable on a scale ¢ grows as
A x ¢~ /3 at finer scales; new minima appear primarily due to the splitting the older (broader)
ones. This picture emerged in Ref. [4, Sect. 3.2] from the microscopic analysis of the original
Hamiltonian for a one-dimensional spin-glass model formulated in Ref. [39]. We can borrow
the qualitative features of this construction for our present purpose (leaving for future studies
the problem of its microscopic justification for the case of superconductive glasses).
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Suppose that the free energy F(6A) of the Josephson network behaves (as a function of
vector potential variations with respect to a «virgin» state with a homogeneous induction) in a
way similar to E(y) at ¢ < 7. Namely, suppose that the free energy is parabolic, §F « (64)3,
at very small variations of vector potential 64 < 6A., but on a larger scale, 6A > 60A., it
contains many local minima whose characteristic free energies scale (with respect to the lowest
state with 64 = 0) as

F(5A) x (6A)°*" for 6A., < 6A € 6A, (5.4)

with the exponent 8 € (0, 1) (see the definition of A, below). Then the characteristic value
of the current J = (1/c)dF /DA scales as

54 \°
Jchar(‘SA) ~ Jcl (6Ac1> (55)

in the same interval of  A. At large 6 A > § A, variations, the growth of the induced current
should saturate at the true critical current value J,., so we can estimate

6A; ~ 6A(J.) ). ‘ (5.6)

On the othef hand, weak 6 A « 6A,, leads to the usual linear London (or Campbell) response
with an effective penetration depth A;; matching at A ~ § A, leads to the following estimate:

4
§Act ~ —CiJc,,\f. 5.7

The estimate (5.5) looks very much like the previous version defined by (5.2), (5.3), so one can
find the relation between the exponents:

8=1/(1+2x)=0a/(2-a)=0.3. (5.8)

However the whole picture is substantially altered: the current is now supposed to be an
(irregularly) oscillating function of A (see Fig. 18), thus only its envelope J .-(6.A) defined
on a scale A follows the scaling relation (5.5). As a result, the inverse function § A(J) is
multivalued and the irreversibility of the response is ensured. Similar to the spin-glass model
of Ref. [4, Sect. 3.2], the fractal dimensionality D of the low-energy valleys can be defined;
it is given now by Dy = 1 — 8§ =~ 0.7. The proposed picture is based on the existence of
two substantially different scales of currents, J.; and J., and corresponding vector potential
variations § ., and 6 A.; thus it can be compared with the usual Campbell-Bean picture of
critical currents in the same way as the thermodynamics of type-II superconductors is compared
with that of the type-I ones.

In order to describe quantitatively the diamagnetic response in the «fractal» range (5.4)
we need to determine the distribution function Z[J(6A)] (which would lead, in particular, to
the estimate (5.5) for J.x,.r(6A4)). Moreover, in general, a relation of the type of (5.5) could
be nonlocal (i.e. the current depends on the § A(z) distribution in some region of space, whose
size may depend on § A itself (see again Ref. [4, Sect. 3.2]). We leave this complicate problem
for future studies, and just note here that merely the existence of relation (5.5) is sufficient
for the existence of some «natural» properties of the response (like the presence of a closed

hysteresis loop, as it was assumed in subsection 3.3).
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6. SUMMARY AND CONCLUSIONS

In this paper, we have presented experimental results on the low temperature (10 and
20 K) response of the granular HT, superconductor La; gSry ,CuQ, to small field excitations.
The general properties of the magnetic response were investigated in two samples (A and B)
differing by the strength of the coupling between grains. By cooling the samples in various
d.c. fields up to 20 G and applying small field increases, we were able to measure the shielding
response of the material and to derive a method, inspired by the work of Dersh and Blatter [22],
to extract from the data the polarizability of the intergrain currents system. The field cooled
magnetization was measured in fields up to 20 G. Analysis of the results leds to the conclusion
that i) the structure of the grains is polycrystalline, resulting in a step decrease of the FC
magnetization with increasing field, which can be interpreted on the basis of the model by
Wohllebeen et al. [28]; ii) self shielding (pinning) by the intergrain currents when lowering the
temperature strongly reduces the value of the FC magnetization; iii) there is no macroscopic
Meissner magnetization due to the system of intergrain currents.

Further detailed study of the response of the Josephson network was performed in sample
B. It was shown that the response is asymmetric with respect to the sign of variation of the
applied field after field cooling; this is due to the shielding currents pinned during cooling. The
macroscopic critical current is found to be strongly reduced by moderate values of the external
d.c. field, about 2 G.

Very low field magnetization measurements were performed by applying field steps of
10mG or low frequency a.c. fields in the range 50 4G to 30 mG, after cooling in d.c. fields
up to 8.8 G. The results show that the response is strongly nonlinear, the shielding current
growing sublinearly with increasing applied field. Furthermore, the a.c. results show that it
is strongly irreversible down to the smallest excitations used. It is shown that a non-linear
relation between the shielding current and the induction, J o< AB® with a = 0.5, together
with a natural assumption about the existence of a closed hysteresis loop, give predictions in
a reasonable agreement with the data.

Theoretical analysis of our experimental results was developed on the frame of the existing
«gauge-glass» theories. It was show that the extremely low value of the low-temperature,
zero-field critical current density (J. ~ 3.7A/cm? at 10 K) together with the rather high
temperature of the transition to the low-temperature glassy state, can be coherently interpreted
only under the assumption that the Josephson network is strongly frustrated even at zero applied
field. This contradicts the usual assumption that frustration in the interactions arises only due to
the local magnetic induction, but supports the hypothesis of the existence of a large proportion
of w-junctions in the granular system. These 7-junctions are possibly due to the d-wave nature
of the pairing, combined with the randomness of grain orientations in La; 3Sry ,CuQO, ceramics.

Finally, a new model of diamagnetic response in the glassy state of granular superconductors
was developed in order to describe the anomalous (fractional-power) behavior of the shielding
current response. This model, based on the idea of a fractal organization of the free energy
landscape in the granular network, can provide a qualitative account for the main features of
the anomalous response. Its further development will be the subject of future studies.

We are grateful to L. B. Ioffe for many important discussions which helped to clarify a
number of issues considered in this paper. Research of M. V. F. was supported by the DGA
grant Ne 94-1189, by the joint grant Ne M6M300 from the International Science Foundation
and the Russian Goverment, and by the grant Ne 95-02-05720 from the Russian Foundation
for Fundamental Research.
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APPENDIX

The hysteretic behavior of the current as a function of the induction variations is represented
by the relation:
|AB|

AJ = 20w g [ 1 A.l
(&) , A1)

v = 0 when starting from zero induction state, and 1 otherwise. AJ = J—J, and AB = B—B,
where J, and B, are the (old) values just before the last reversal of the sign of variation of
B. The Ansatz (A.1) ensures that we have a stable closed hysteresis loop, and that there is no
hysteresis for & = 1 which describes the London case. The induction profile is determined by
the Maxwell equation which leads, for the case of weak penetration, to

dAB _ pi-av g |AB|?, (A2)

dx

where &/ = 4rJ. /B2 ; z is the distance from the edge of the sample. After increasing applied
field from 0 to h,, starting from zero induction state, the induction profile is given by B~*dB =
= — .o/ dz, leading to

B
I (..., B-_pl-
T L R TR
ho
where
B= (b —(-a)az)/". (A.3)

Field penetrates till = zp,, = hy™* /(1 — ).
When h decreases from hy, we get (By — B)~%dB = —2!=*dz. Hence:
B.—B
1 cogem |
2o of 2o (1 — o)

ho—h

((By— B)'=* — (hog — h)' ™).

xr =

Modification of induction relative to B, extends up to z, = (hy — h)!~% /2“"Jal. For
0<z<uzp,

1/(1—a)

1—a
B=Bo—2<<h"2—h) —(l—a).,t/x) , (A.4)

where B, is given by Eq. (A.3). When h = —h is reached, Eq. (A.4) gives simply B = — B,.
After reversing the sign of variation of A once more, the profiles are simply symmetrical of
those given by Eq. (A.4).

The average induction can be derived now. After some algebra, one obtains

2—a
(B) = = _p2-e [1 —2 (Lﬂ) ] for ho >0, (A52)
2-« 2
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and
o 1+h/h,\
(B) = ———hf,“"‘ —-1+2 ——/ for hg <O. (A.5b)
2—a 2
For a sinusoidal excitation h = hy coswt, one gets

(B) A hl @ [1 5 (1 — coswt

T 2-a 2

h_o 2—-a

l—a + 2-a .
(B) _ Ahy | |, (Lt coswt for (2n—Dr <wt<2nm.  (A6b)
h() 2—-a 2

2—a
) } for 2nw < wt < 2n + D, (A.6a)

Since (B)/ho = 1+ (M) /hy, the Fourier transformation of Egs. (A.6a), (A.6b) gives the

values of 1 + 4wy’ and 4nx”. This can be done numerically. Figure 19 displays the ratio
4rx" /1 + 4xx' as a function of .
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