XKXIBTD, 1997, mom 112, ¢oin. 2(8), cmp. 400-428 © 1997

SMALL ANGLE BHABHA SCATTERING AT LEP1.
WIDE-NARROW ANGULAR ACCEPTANCE

N. P. Merenkov

National Science Center «Kharkov Institute of Physics and Technology»
310108, Kharkov, Ukraine

Submitted 19 November 1996

Analytical method is applied for the description of small angle Bhabha scattering at LEP1.
Inclusive event selection for asymmetrical wide-narrow circular detectors is considered. The QED
correction to the Born cross section is calculated with leading and next-to-leading accuracy in
second order of perturbation theory and with leading accuracy in third order. All contributions in
the second order due to the photonic radiative corrections and pair production are calculated
starting from essential Feynman diagrams. Third-order correction is computed by means of
the electron structure function method. Second and third-order leading corrections suitable for
calorimeter event selection are investigated. Numerical results illustrate the analytical calculations.

1. INTRODUCTION

The small-angle Bhabha scattering (SABS) process is used to measure the luminosity
of electron-positron colliders. At LEP1 an experimental accuracy on the luminosity of
bo /o < 0.1% has been reached [1]. However, to obtain the total accuracy, a systematic
theoretical error must also be added. Accurate determination of the SABS cross section
therefore directly affects some physical values measured at LEP1 experiments [2,3].
Considerable attention has therefore been recently devoted to the Bhabha process [3-11]. The
accuracy that has been attained however, is still inadequate. According to these evaluations, the
theoretical estimates are still incomplete and their accuracy is far from that which is required.

The theoretical calculation of SABS cross section at LEP1 involves two slightly different
problems. The first one is the description of experimental restrictions used for event selection in
terms of final particles phase space. The second consists in the writing of matrix element squared
with the required accuracy. There are two methods for theoretical investigation of SABS at
LEP!: a method based on Monte Carlo calculation [3-5,7] and analytical method [6,9-11].

The advantage of the Monte Carlo method is that it can model different types of
detectors and event selection [3]. This method, however, cannot use the exact matrix element
squared based on essential Feynman diagrams because of the infrared divergence. Therefore,
some additional procedures (YFS factor exponentiation [12], utilization of electron structure
functions [13]) must be used in order to eliminate this problem and to take into account the
leading contribution in the higher orders. Careful attention must be given at this point because
of the possibility of double counting. In any case, the next-to-leading second-order correction
remains uncertain, and this is a transparent defect of the Monte Carlo method.

The advantage of the analytical method is that it can use the exact matrix element squared.
The infrared-problem in the context of this approach can be solved in the usual way by taking into
account the virtual, real soft, and hard photon emission and pair production in every order of
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perturbation theory. Any questions about double counting do not arise in analytical calculations.
The defect of this method is its low mobility relative to the change in the experimental conditions
for event selection. Nevertheless, the analytical calculations are very important because they
allow one to check many Monte Carlo calculations for different «ideal» detectors.

Analytical formula for SABS cross sections at LEP1 until now were published for inclusive
event selection (IES) when circular symmetrical detectors record only final electron and positron
energies [10,11]. They define first- and second-order corrections to the Born cross section
with leading (of the order of (a.L)™) and next-to-leading (of the order of a™L"~!) accuracy,
as well as third-order correction with leading accuracy only. These contributions will have to
be computed in order to reach the required per mille accuracy for SABS cross section at LEP1.
Note that such an accuracy selects only collinear (like two-jets, final-state configuration) and
semi-collinear (like three-jets one) kinematics.

The case of calorimeter event selection (CES) called in Ref.3 CALO1 and CALO?2 for
symmetrical and wide-narrow angular acceptance, was considered by the author. The results are
being preparing for publication. The latters include the first-order correction with leading and
next-to-leading accuracy, as well as second- and third-order corrections with leading accuracy
only. Thus, the CES problem of the analytical method is the calculation of next-to-leading,
second-order correction.

In this paper we perform full analytical calculation for IES with the wide-narrow angular
acceptance. The first- and second-order corrections are derived with next-to-leading accuracy
starting from the Feynman diagrams for two-loop elastic electron-positron scattering, one-loop
single-photon emission, two-photon emission and pair production. The third-order correction
is obtained with leading accuracy with the help of the electron structure function method. The
results for leading second- and third-order corrections in the case of CES are also given.

The contents of this paper can be outlined as follows. In Section 2 we introduce the
«observable» cross section o.,,, with allowance for the cuts at angles and energies, and obtain
the first-order correction. In Section 3 we investigate the second-order corrections. They
include the contributions of the processes of pair production (real and virtual) considered
in Section 3.1 and two-photon (real and virtual) emission. In Section 3.2 we consider the
correction due to the one-side two-photon emission and in Section 3.3 we consider the
correction due to opposite side two-photon emission. The expression for second-order photonic
correction is given in leading approximation only, while next-to-leading conribution to it is
written in Appendix A for symmetrical and wide-narrow detectors. The latter does not contain
an auxiliary infrared parameter. In Section 4 we derive the full, leading, third-order correction
using the expansion of electron structure functions. In Section 5 we present the numerical
results suitable for 1ES. In Appendix B we give some relations which were used in the analytical
calculations and which are very useful for numerical calculation.

2. FIRST-ORDER CORRECTION
We introduce the dimensionless quantity
1 2
= WQlaezm (1)

where Q? = €26? (¢ is the beam energy and 6, is the minimal angle of the wide detector). The
«experimentally» measurable cross section o, is defined as follows:
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do(e*+e” —met+e  +X)
dz\dz,d2qi d*qs- ’

am=/wm@ww%#ﬁ% P

where X is undetected final particles, and z,(x), and gi- (gi) are the energy fraction and
the transverse component of the momentum of the electron (positron) in the final state. The
functions ©f take into account the angular cuts and the function © takes into account cutoff
on the invariant mass of the detected electron and positron:

=6(0; —0_)0(6— —01), ©;=0(0s — 6:)0(6+ — 62),©0 = 0(z122 — z),

0_ = u, 0 |q2 | (3)
I|€ :L'zE .

In the case of symmetrical angular acceptance

6=, 6,=6, p=2>1

6,
but for wide-narrow acceptance
0;
93>04>02>91, pi=-0—>1.
1
For numerical calculation one usually takes
0.034 0.034
6, =10.024, 6;=0.058, 6,=0.024+ BT 0, =0.058 — BT

The first-order correction X; includes the contributions of the virtual and real soft and
hard photon-emission processes

% =Zyes +2H + 3y, G

The contribution due to the virtual and real soft photon (with energy less than Ae,A <« 1 ) can
be written as follows ( in this case z; = z; = 1, qi + g5 = 0):
dz 3 €03z
ZV+S:27['/ |:2(L 1)1nA+ 5L—2 s L=lnw, (5)
o3
where z = q3-2/Q?, and m is the electron mass.

The second term on the right side of Eq. (4) represents the correction due to the hard
photon emission by the electron. In this case we have

X=~(-=z,kb), z=1, k' +qi +¢- =0, z. <z <1-A4A (6)

This expression can be derived by integration of the differential cross section of single-photon
emission over the region

p§<z<p§, P’ <z = (g2<:cp3, —l<cosp <1, @)
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where ¢ is the angle between the vectors q- and q3-, in the same way as it was done in Ref. 10
for the symmetrical angular acceptance. But at this point we would like to indicate the main
features of the method which is used largely in the Section 3 and which is based on the separate
calculation of the contributions due to collinear kinematics and semi-collinear kinematics [14].

In collinear kinematics an emitted photon moves inside the cone within polar angles 6., <
< 6y < 1 centered along the electron momentum direction (initial: k||p; or final: k||q,). In
semi-collinear region a photon moves outside this cone. Because such a distinction no longer
has physical meaning, the dependence on the auxiliary parameter 8, disappears in the total
contribution. This is valid for IES and for CES.

Inside collinear kinematics it is negessary to keep the electron mass in the differential cross

section
3 + 2 2 2
do_.__2as[l :v_2m<12+93>]dr,

w2q? | sty ¢ \s? #
dqdPqd3k
dr="2EPE Cs0p g —k—q —q) ®)
€1w2e

where ¢ = p; — k — q, 81 = 2(kq1), t: = 2(kp\), s = (2pip,), and p;(p,) is the 4-momentum
of the initial electron (positron). If the photon moves inside the initial electron cone

si=z(l —2)e0%, t,=-m*1-z)1+n), ¢=-2* =—62,

m? 036 63
dI‘—Tewm(l—m)dxdndH 0<U=TZLT< ey )

and one can derive the following expression after integration over 7:

2
PA
2a°
Okllps = 73
Qi
I

The right side of Eq. (10) corresponds to the contribution of the narrow strip with the width
2¢/zA(1 — x) centered around the line z = 2, in (2, z)) plane, where A = 6,/6,. In fact, the
condition 8, < 6, for the initial electron cone can be formulated as follows:

N1 —z)? - (/Z — /2)

1+ z? 0362
-z m2 1—

0(z’p2 — 2) . (10

Vz—zi| <Ml —1), —1<cosp<—1+ NG (11)
If photon moves inside the final electron cone
$) = —— mmz(l +¢), ti=—(1-2z)0, ¢*=—-€0> =—¢?,
2 a6 B2
dr = Tena(l - p)ded(—=, 0< (< 22 (12)
s T m

and integration over ¢ leads to
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Pi l1-a
20° [ dz 1+ 6%z 2z
ok[lq,=-Q—?‘/-;/(lz[l~ml — 1—:1:]' (13)

The right side of Eq. (13) corresponds to the contribution of the strip with the width 2,/z %
* xz?(1 — )X around the line z; = z22 in plane (z;,z). The condition 6., < @, for the final
electron cone can be formulated as |r| < 6,, where r = k/w — q; /€, and the latter reads as

N1 - 1) = (Vz1 = 2/2)?
2x./72) )
Having contributions due to the collinear regions, we now must find the contribution due
to the semi-collinear regions. If m = 0 on the right side of Eq. (8) then the differential cross
section suitable for this case can be written as follows:
oPdpdzdz (1 + z?) 1 z
1Q%2(z) — 12) 21 +z2+2/zizcosp 2z + a2z + 2w\ /Z12C08 ¢

When integrating the first term in the brackets on the right side of Eq. (15) one must use the
restriction 6., > 6, or

Wz —avz] <zl —z)A, —1<cosp< —1+ (14)

do =

dz. (15)

IVzr = Vzl > (1= 2)A, —1<cosp< 1,

LA =2)? - (/E- \/_)2

IWVzi —Vz| < (1=2)A, | >cosp > — Nz (16)
and for integration of the second term one must use the restriction |r| > 6, or
Vz1 = zvz] > (1 —x)A, —1<cosp <1,
IVz — avz < a1 —2)A, 1>cosp > —1+ i U x);x:/_(z%z —2vE) (17)
The integration (15) over the region (16) gives
20’ 7 40 =)
Uﬁ@?/ / ¢ A2+L2>9m+L303 ] (18)

Analogously, the integration of right side of Eq. (15) over the region (17) gives

o 1—
203 1+ 2? z
=_ +
Q%/ / ——da (In = L1>. (19)
I
The values L, which enter into Egs. (18) and (19) are defined as follows:

a*(z — 1)(p} = 2)
(x — 2)(xp3 = 2) |’

(z = 2)(apd — 2)
¥z — z)(xp} — 2)|’
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In addition, the following notation for the 8-functions is used:

=(x) _

0 = (z’p} — 2), By =1=6 =0(z - z*pd).

Thus, the £ may be represented as the sum of (10), (13), (18), and (19) divided by the
factor 4ra?/Q? or

1+
/dz/ il [+ 690 - )+ K@, 23, 1)] d, 20)
27r
K@,z pn 1) = S (1 g8y 4 1, 4 60, + 5L

1+ 22
Here the short notation for the §-functions is used:
6 =0’} ~2), 6;=0(pt-2), B =1-6%, Gi=1-6

It is easy to see that £ for the wide-narrow detectors can be derived from £ for
symmetrical detectors (see Ref. 10) by changing the z-integrations limits

o P4
/ dz — / dz @1
1 o}

and by substituting p; for p under integral sign.
The third term on the right side of Eq. (4) describes the photon emission by a positron.
It can be derived by full analogy with £ except for the restrictions on the variables z and z;:

Il <z<pl a*p)<z <z?pl (22)

The contribution of collinear kinematics (k||p, and k||q;) to the single hard photon emission cross
section corresponds to the integration over the regions inside the strips with a width 2,/z(1-z)A
and 2\/2.1-2(1 — )\, respectively. It can be written as follows:

_ |+ .'L' 629% 2z (z)
Tulpa lax = —“/ / {( n— = 7 | A’ X

2
x (m 9";’” - ) A42} : 23)
m l1—-x2
where
AR =6 — 0, Ap=04—0, (24)

The contribution of the semi-collinear kinematics can be derived by integration (15), taking
into account the restrictions (16), (17), and (22). The latter corresponds to regions outside the
narrow strips near z; = z and z, = x2z, respectively. The result is
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P —a
20° [ dz 1+z? z N L T (@) L~
AT / 2 / T da [In 55 (8 + AF) + Toag + (L) - 2In2)dn +
| z,

—_ z) z —_ =
+ L0, - 65”) + Lo (s — 02)] : (5)
where
I, =m|Eoei-2a2| £ | 2)alp - 2)
(zp} — 2)(@pl — 2)|’ z2(xp] — 2)(zp3 — 2)|’
+ _ . |E-2?p)epi - 2)| (z — p})(@p} — 2)
Ly=1In , =In| P20 T 22 26
Ve - 0@ -0 T T (0 - 2@ - 2) (26)
The Ty is the sum of (23) and (25) divided by 47wa?/Q%
y T+
a dz T z ~
=g [5G [ Tode (- e+ a3) + Rz zipn )], @)
1 T,
e 1— 2 T g )T z TIN\T ] T
K= (1 T ;:3 (Agy + AD) + ALy + 88T, + (—9-2 ' 0I5 + (64 — 6,)La.

As one can see, the auxiliary parameter 6, disappears in the expressions for ¥ and Ty,
and the large logarithm acquires the correct appearence. Thus, the separate investigation of
contributions due to collinear and semi-collinear kinematics simplifies the calculations and
gives a dipper understanding of the underlying physics. This approach is very important for the
study of CES when it needs to describe events that belong to the electron (or positron) cluster
in a different way compared with events that do not belong to it.

The different parts on the right side of Eq. (4) depend on the auxiliary infrared parameter
A but the sum does not. It has the form

P3 1

1+ 2%~
m= gl [ 5] -ta+ [ (€= DP@@a+a)+ 720K ) ol +
27 22 l—z
1 T
pid L L4 g2
+ z_j —l+/((L~1)P1(x)(1+9§1))+———1 _ZK)dw , (28)
P} T
where
1+ z? 3
P(z)= 1_139(1—3!:—A)+(21nA+§)(5(1—z), A—0.

In order to eliminate the A-dependence, one can use the relations

1 T, 1 + 2 1 ﬁ/p’l . ,
/Pl(fb')d:c = _/ T iz, /P1 @8 dz = 7 / 2 e,
l—z =2
T, 0 by J
(29
1 \/E/ml+ ) ﬁ/p,1+ X
[ piia ey’ | o [ e
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() _ ()
where Ay, = Agy — Ay
The right side of Eq. (28) is the full first-order QED correction to the Born SABS cross
section at LEP1 for IES with switched-off vacuum polarization effect. The latter can be taken
into account by inserting the quantity [1 — I1(—zQ?)]~? under the sign of the z-integration.
(For I see Ref. 3 and the bibliography cited there).

3. SECOND-ORDER CORRECTION

The second-order correction contains the contributions due to two-photon (real and
virtual) emission and pair production. As in the symmetrical case, one needs to distinguish
between the situations in which additional photons attach only one fermion line (one-side
emission) and two fermion lines (opposite-sides emission) in the corresponding Feynman
diagrams.

3.1. The contribution of pair production

Consider at first the contribution of the electron-positron pair production ZP%" to the
second-order correction:

gpoir = ye'e” 4y, (30)

To avoid writing some formulas which have the same structure for symmetrical and wide-narrow
angular acceptance we will often refer the reader to Ref. 11 in which the details of computation
are given for the symmetrical case.

From Section 2 we can write the expression for x¢"¢” when the created electron-positron
pair moves in the electron momentum direction, using the result of Ref.11 for z¢ ¢ Tt needs
only to change the z-integration limits: (p?, 1) — (p2, p3) and substitute p; for p everywhere
under the integral sign. We can write the result as follows:

ps

1
-y a? dz 4 2 [ dx
cem o & [42 1+ 2In(l —z,) - =

x 47r2/ZZL L 3n( zc) 3/1—$

,D§ Ie

-—x) 17 8
63" | — 3 §C2 =

1 .
40 8 5 dx =) (20
— 2 1n(l — + 21 —z)+ [ —— =
5 n( Tc) 3 n“(l —z.) /1—&093 <9

T

- §-ln(1 —x)) +

1
+ / [LR@1+6) + 62,0, 2 p9) + Oo(a) + da(@, 25 p9)] de (31)

T

R(z)=(1+x) (lnx— l) +1 $x(4+7:v+4x2)a

3 6
113 142 2, 4 4 2(1 + z2)
o) = ——t—g— P~ — — —(1+2)In(l —z) + =— 2
Ci(z, z; p3) 9 3T 3% T3 3( z)In(l — z) 3(l—x)x
2 a2
x[Zln Lng—z‘—3Li2(l—x)]+<8x2+3w—9——§— 7 )ln:c+
xp5 — z l-=z
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6 2.2 )\2
+__—_2(51“ ) In? 2 + Ry in EB
- p
122 133 4 2 3 21+ z?) ©2)
=_ 4 20 2+———1+ — )+ Y po(1 — )+
Cy(x) 5 9 3 s ( L)lll(l ) ) —L»h(1 —x)

1 8 13 _
+—3— (—81’2 — 322 —-20+ = + l_—z> Inz +3(1+ x)lnzx, R(z) =2R(xz) + %(l + ),

A1+ 2?)
3(1 —x)

(z —2”)(py — 2)(z — 1)
(z — 2)2(22p? — 2)

(z = 2%)(p — 2)(z — DI

T2p3 — 2

dy(z, 23 p3) = + R(z)In

The right side of Eq. (31) does not contain infrared auxiliary parameters because it includes
the contributions due to the real and virtual pair production. The contribution of the hard pair
takes into account the collinear and semi-collinear kinematics.

If the created electron-positron pair is emitted in the positron momentum direction, the
corresponding expression requires more modifications. The source of such modifications is the
semi-collinear kinematics, as we saw in Section 2 for the single-photon emission.

The straightforward calculation shows that for the contribution of the semi-collinear region
p+||p— (we use here notation p. for the 3-momentum of the positron (electron)) we must include
in Eq. (28) of Ref. 11 the expression

(z — p)(p§ — 2) @ . | (2 — 2P’ p; — 2)
Ay T+ A 11 5 T A In + A, In
R (P e ] Il P oo ey
2 2
= (z = PPy —2)| | @) ey | (2 — 2203 (xp; = 2)
+(@s — 0,)In | —— L2208 T2 @l gLy , 33
R e (s | AR A TP ey 33)

instead of the expression in curved brackets and change the upper limit of the z-integration:
p— p3.

For the contribution of the semi-collinear region p+||q; the corresponding expression is
(see Eq.-(33) in Ref. 11)

2 2
(m 10 |G PP 2) ”22)(2”“, z ) + (@ - 0y ln | PE =D (34)
A T302P4 A=

and for the semi-collinear region p—||p: (see Eq. (38) in Ref. 11) the corresponding expression

is

(z — 2’3’ pf — 2)
S i3p}

p3(z — z2p3)
p3(z — 22p3)

A (m v +1n (35)

) + @ — 6 In

In the symmetrical limit we have p3; = ps = p, p» = 1, and
Ay = 0P =2)0(z—1), AL — 82 —2), By — 8(z—2p?), 04,6,,65) =0, (36)

and Egs. (33)-(35) reduce to the corresponding expressions derived in Ref. 11.

The modification of the contributions due to virtual, real, soft and hard collinear pair
production includes the change of the z-integral upper limit: p — p3 and a trivial change of
the -functions under the integral sign: 8(z2p?* — z) — Afé), 1 — Ag. The sum of all the
contributions has the form
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P

2 "

>:e+e_=f—2/fl-;-L L {Aa(1+ 5 1n(1 — 20) - / LED |+ ag (—1—7-——@ -

Yis z
1

40 8 / d 20

- = - + 21n%(1 — + [ 9% j= (Y O -
5 In(l =)+ 3 In'(1 x,_.)) /1—$A42 : ln(l z)

Te

1
+ / LR)Aa A5+ ALCi(x, 2 p2)+ A (Colz) +aalz, 25 p2)) +B) 657 x

T,

21+ 2 | (@?p] — 2)(pj — 2) (z’p3 — 2)pi Z
(3 oot n| ST + ey n | S22 ) + (s — 04) x
2(1+2%)  |(zpi — 2)(z — pd) (0} — 2)pi )
1 + R(z)In|—— ,
(3(1 “2) (et - 2 - p) @0
37)
L _20te) (2 —pd)? 2= p}
Aoz, 2 p2) = 31 =2) n G —2pd)? +2R(z)In a2

Using Eq. (36) we can verify that the right side of Eq. (30) goes over to the corresponding
expression for symmetrical angular acceptance.

3.2. The contribution of the one-side two-photon emission

In this section we give the analytical expressions for all contributions to the second-order
correction which appear due to the one-side two-photon (real and virtual) emission. The master
formula, which does not contain the infrared auxiliary parameter A, is written only for the
leading.approximation, and next-to-leading contribution to it is given in Appendix A.

As before we differentiate between the radiation along the electron and positron momentum
directions:

L,=I"+%,, = TStV 4 §(STVIH | gHH

Zyy F Zs+vy T Es+vyH Y EHH- (38)

The contribution of the virtual and real soft photons is the same for electron and positron
emission:

pz

2 ‘d

— (S+V)2 z
Z(S+V)2 Z 2 /—“zzL

3 45] (39)

9
x [L (2ln2A+3]nA+§) —4]n2A—7lnA+3(3—§(2—T6—

The virtual and real soft photon correction to the single hard photon emission differs for a
photon that moves along the electron momentum direction and positron direction. In the first
case the corresponding contribution can be derived with the help of the result for a symmetrical
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detector (see Eq. (50) in Ref. 10) using the substitutions (p3, p3) instead of (p?, 1) for the 2-
integration limits and p; instead of p under the integral sign. Therefore,

) o
S(S+VH - %5 / / L+a? ) {(21nA— Inz+> ) [K(x 2 p3, )+(L— 1)(1+a‘-‘”>)] +

1, (1 —x)? (@) =) [1
+ = - +(1+ -2+ — + +
2ln T A+ 29 (1+65")-2+Inz—2InA)+6; 2Llnw
2 ' z(l-z)+4zng
+ 2InAlnz —InzIn(l —z) —Inz — Lp(1 — 1) — L+ 27) . (40)

In order to obtain the expression for £ s+yyy we must change in the right side of Eq. (39):

i) the limits of z-integration: (pﬁ, pg) — (p%, 1),

. ~ —(z)

i) K(@,2:05,1) = K(@,2: papa), 62 — 8%, 5 =55, 1l—Aan  (41)
The contribution of two hard photons emitted in the electron momentum directon may be
obtained in the same way as Z5*V)H  ysing the known result for symmetrical detectors (see
Eq. (54) in Ref. 10):

l—z—A

sHH = / dx / dz 1 (42)
471.2 a;l(l —z — 3 )1 —z,)?’

THH =40 + B+ Co{ ",

- L (z2p3—2)? (1-z\)’(1-z—1xy)
A=1pB <5 +In z2(z(1—m1)p§—z)2> +(In p +74,
=_ oL, |#E=D(pi-2) (=1} (z—(1-2,)*) (plz(l-21)—2)’
B=b (Eﬂn (P3(1=21)2=2)2 (2= (1=21))2(2—2(1-11))* (322~ 2) ) ¥
+Cln (1 —z))x +6g,

z(l —z —x) @3)

- z(p}(1—2))’—2)?
C=b (“2‘“ =z (e(l—2n-2) (2 (-2)-7)

=2(1—z)B-2z(1—z,)y,

>_

where

y=1+('-2)?, B=z'+1-z), (=2"+(-=z)*

va=zzi(l — 2 —31) — 2}(1 — 7 — 21)* = 2(1 — 2B,
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bp=zx(l —z—2)) —23(l — 2 — z1)? — 2z(1 — z1)y.

Unfortunately, it is impossible to give such a simple prescription as (41) in order to obtain
Ty u from Egs. (42) and (43). In the case of radiation of two hard photons along the positron
momentum direction additional detailed analysis of semi-collinear kinematics is required. All
essential points of such an analysis are given in Section 2, and the reader can make all
calculations with the help of the formulas given in Appendix B of Ref. 10. The final result
is

l—z—A

Inn
S 2/ / a / g, g @

Iyg = AA(:L‘) + CA(I —z)) 4 BA4 + (02"‘) (1:)) + (ggl —zy) 0§I—m|))c+ ('054 — 0,)b,

s =@ =) (0= e = 2 — 2)
R s ry ey pune v | KRt s Ty ey g v g4
c=~Bin (Piz(l — 1) = 2)(p3(1 — 21)* — 2)*(pi(1 — x)) — 2)
TP G2 (U = 21) — 2)(02(1 — 21)? — 2221 — 31) — 2) |

(p3z? — 2)(p3a? — 2)
2 (pz(l — 1) — 2)(P3z(1 — z1) — 2)

+7a4,

) yen Lz U=z = 2)

T

/I='yﬂ<§+]n

z2(p2 — 2)(p} — 2)
(P31 = ;) — 2)(P3(1 — 7)) — 2)

Y
)+(ln (I — z)°xy t 65,

z(l —z —x)

§=75<£2'-+1n

2(p4(1 11)2—2)"(1)2(1 T1)2~2)?
z1)—2)(pi(1—z1)—2)(p3(1—x1)—2)

)-

As one can see, the separate contributions to the right side of Eq. (38) depend on the infrared
auxiliary parameter A but £¥7 and Z,., do not. The elimination of A-dependence analytically
required considerable effort. The leading terms are given below (for the next-to-leading terms
see Appendix A):

C =10 (L
—2(1 —z )8+ m).

o 1 1
2
L _ [0 dz 2 1 (z) dt xr t)
A —m/?L /dr S+ )Pz(:c)+/—t-P1(t)P1 (?) 69|, (45)
I Te
R pid 1 ld
I, = ;%E/’—z /dz [ (Agy + A(””))Pz(x)+/ Pl(t)Pl( )Afttz) ) (46)
1 x

where
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! 2
P@) =P P =/%P,(t)P1 (%) =m{[(21nA+%) —442] §(1—1z) +

1+ 22 3 1
+ 2 1 2]11(1—x)—lnx+—2- +§(1+w)lnw——1+x

- T

81—z — A)} , (47)

1
/Pz(x)dx =0.

0

The expressions (45) and (46) are not convenient for numerical calculations. The suitable
expressions can be written as follows:

T Pi VZ/ps
sl = :?.__ 2/dzL2/Pz(x)dx /(—gL2 / I:PI(w)g( )+ PZ(x)} dz o, (48)
Pz 0 my T
d 2 d \/Z/Pn
z$7= / zﬁ/P(z)dz—/ Zr / [Pl(:v)g( )+ P2(x)] dz b +
Pz d \/—/Pz l
+ [ Zp2 / [Pl(w)g (%) +~P2(w)] de ¢, (49)
z T 2

mi; T

where

2

1
g) =y + 5 +2In(l —y), may = max(s}, aled),

_ 2 2 — 2 2
mys = max(l, z,p;), mix = max(l, z_p3).

The last two formiulas can be derived with the help of the relations given in Appendix B. The
integration over the z-variables in Eqs. (45) and (46) can be performed with the help of the
formulas

/ Py(y)dy = Fy(@), / Pl(y)g( )dy F, (), / Py = —gla), <1, (50)

22 72 P
Fy(z) = -2z — vy +(z+ T)In(l—)—~ +4In(1 — x)ln

=+ 4La(z), (51)

2 2 2 2

T, 2 T, T T, T

=_2c + + + + =<l nN—-+|22.+=—-20 — —
Fy(x) o Qr+z°)Inzx (xc 2) n(1~z)2 (a: ) T 2) X

\ 1 —
x In(x — x.) + 4L;»(x) + 4L (1

x) z, <z <. (52)

c

412



XOT®, 1997, 112, guin. 2(8) Small angle Bhabha scattering. . .

Therefore, the second-order leading contribution to the SABS cross section at LEP1 can be
expressed in terms of one integral over the z-variable.

It is useful to note that for CES the leading contributions in all orders of perturbation
theory take into account the emission of photons in initial state only. Thus, the corresponding
correction due to the one-side two photon (real and virtual) emission is

1 d z.
s =5 (5) / 2L {Fz(xc)+[Fz(£) B c)]eé ’}, (3)

7

o i

l 2 ( d z.
=t eps =5 (3) /‘ZLze( c>+/ Zr [Fz (‘/{:) Fz(a:c)]éﬂ -

T
o} 1

/‘%2[ ( ) - R »}5‘;" : .69

3.3. Second order correction due to the opposite-side photon emission
In this section we calculate analytically the expression for
1 =3fiy +2d,, vV + 5l (5%)

The quantity £7 does not depend on the infrared auxiliary parameter A because it contains all
contributions due to the virtual, real, soft and hard photon emission.

The first term on the right side of Eq. (55) takes into account only the «opposite-side»
virtual and real soft photon corrections

Pa
2 ~
Y = %/%L [L(41112A+6111A+ 3) —6—14InA - 81n2A] . (56)
3

The contribution of one-loop virtual and real soft photon corrections to the hard single-
photon emission can be written as follows:

2 z 3
E§+V= %/‘f—z {2(L—l)1nA+§L—2] X

S

‘El

[(1 + 0L — 1) + K (z, 2 p3, 1)] , (57)

/)
S+V _ a? [dz 3
1

2
x / ”’; [+ XL ~ 1)+ K@, 23 1, )] di. (58)
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In order to find the contribution of the two opposite-side hard photon emission to %7,
it is convenient to use the factorization theorem for the differential cross sections of two-jets
processes in QED [16]:

—A —A
a? dz 1+ 2? l + 22
I = ——3/ ; /dxl / day — 2<I>(231,z p3, D®(32, 2; pa, p2), (59
47 z l—z; 11—
0 .’J‘.

0@, 2 ps, 1) = (Aot + AL — 1+ T )

(A3 +A(m )t Ay Ly + AS] 'Ly +

—=(x)

+ (@5 ﬂ”ﬂ’i:z_)(z_iﬂ

(z —z)(p} - 2)
D(z, 23 pa, p2) = (A + AGNL — 1) + K (, 23 pa, p2), (61)

— 6L+ (5 —6))In

(60)

w=6—01, A =6 =6, 6,=0(1-2), 6 =06@-2).

The A-dependence of the separate terms on the right side of Eq. (55) can be eliminated
analytically in the whole sum. The leading contribution is expressed in terms of the electron
structure functions as follows:

1 1

d T T2
0t =2 / L / dz, / 422 Py() Pu(x2) by + A (A + AEP) | (62)

0 T, g
e

The next-to-leading contribution to X7 is given in Appendix A.
The form of X7 suitable for numerical counting can be written in terms of the functions
Fy(z) and Fy(z) in the same manner as it was done at the end of Section 3.2:

pz
. 2
b= /d‘zL2 [4(1)F2(93c)+2(1)< (ﬁ> F(a:c)) 857 —
4r p3

2
P
2

P
/ & 22<1>( (Q F(a:a) oc+ [ G (Fg (f) F(xc)>§‘f"
1 1

2

o] S () n () () (D) - ()]
|-

e - (58) () -+ ()
() () (D) - ()]
] S (D)-n () (D) (L) - ()] @
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On the right side of Eq. (63) the quantities in brackets are suitable for CES, when only the
initial state radiation is taken into account.

4. THIRD-ORDER CORRECTION

Within the required accuracy only the leading contribution to the third-order correction
must be kept. The latter becomes more important than the next-to-leading one for LEP2
because of the increase in the energy. In order to evalulate it, one can use the iteration up to
third order of the master equation for the electron structure function [13]:

D(z, cters) = DN (z, epy) + D5 (, egy). (64)

The iterative form of non-singlet component of Eq. (64) is

DN (@, agy) = 8(1 = @) + Z - (52)" r@er,

2
. (65)
P@o-oPE=P@®, P@sPw=[RoR(T)T
Y .
Up to the third-order the singlet component of Eq. (64) is [13]
DS(x,aeff) = _1_' (a;ff )2R(m) + l' (%—L)J [2P| ® R(z) — 2R(alc)] , (66)

where R(z) is defined by Eq. (31). The effective coupling aeff in Egs. (64)- (66) represents the
integral of the running QED constant

O‘eff _adt 3 _ ol -1 .
/271'(1—at/37r) 2ln (1 37r> : (67)

The nonsinglet structure function describes the photon emission and pair production
without allowance for the identity of final fermions, while the singlet structure function is
responsible just for the identity effects.

Up to the third order the electron structure function has the form

alL

D, L)= 5(1—w)+—P1() (E) (Pz(x)+2P1(:c)+R(x)) 3(02‘7’:)

x [EPs(z) + Py(z) + §P, (@) + %R(m) +R (x)] , R (@)=P,®R@). (68)

For the functions Ps(z) and R" (z) see Ref. 13.
The factorization form of the differential cross section [16] leads to

oo 1 1
st =/ Z—f / dz, / dz,C(x1, L)C(x2, L), (69)
0 T

25
)
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C, L) = D(t)D( )Ag‘,), Clza, L) = D(t)D( )Ag‘;.

T, Z;

The expansion of C(z;, L) is

C(zy, L) = 6(1 — z)A8 + Z—le)m‘“ +Ag) +

aL\’ -
+ (ﬁ) Caz)(AF! )+A31)+/—A(1)Cz($1,t) +

T,
) -

aL’ @) dt =
+ I Ci(z)(A3)"7 + Az) + TAM'CS(xlat) ) (70)

L z,

1 1 1 —
Ca(@) = 3P@) + 3Pi(@) + 3R@), Cale,t) = PP (7)),
1 4
Cs(@) = gPy(@) + 3 Po(@) + 2-Pi(a) + S R@) + 1R @), G

Ca@, )= AOC: () +CoP (3),

and the same for C(x,, L) with the substitution x, instead of x; and A(”) (A4) instead of
A5 (Aa).
Because of the 0- functions under integral sign one has to distinguish between

f dtt=' A(t)B(z/t)Al) and f dtt='B(t)A(z /t)AD.

In the case of CES one must take into account the initial-state radiation only. Therefore,
instead of (70) we can write

(72)

(@) al aL\’ aL\’
Cces(x, LY =Ay)" [6(1 —x))+ —Pi(x)+ | — | Cox)+ | =— ] Ci(zy)
27 27 2T

and likewise for C(xz,, L).
The last step is to write the third-order contribution on the right side of Eq. (69):

3 oo
/Z—jL /da: Z + /d:clzz , (73)
0 T, X

1
© z dt
= 28 + A3 A3 + AT AL)Cs(z) + / T(A“’Asl +A0An)Ci(z, 1),

T
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z,= [(A31 + A(m))(Au +43") + (8 + 45080 + A7) P@)Ca(a) +
) ® @ A1) o @) 0] =
+ Py(2) A Ap + A3 + ADAY + A A3,] ~Ca(@1, ).
When writing the expressions for Z, and Z, it is assumed that A3;A4; = Ag. In the case of CES
the expressions for Z; and Z, can be written as follows:

Zi= (858 + 85780)Cs(x), 2y = (Azz’A"””+A‘$"A‘I))Pl<x)cz(xl) (74)

Using the relations given in Appendix B we can represent the right side of Eq. (73) in the
form suitable for numerical calculations as double integral over the z- and z-variables. It can
be written as follows:

st=sd+53+3) + 52, (75)
where the superscript (subscript) shows the number of additional particles (real and virtual)
emitted by the electron (positron). The one-side emission contributes to the right side of Eq. (75)

as

T, 1

P _
(6% 3 dz s
S+ 5= (Z) /?L —2/Fp(z)dw+2/ﬂ(m)dw -

pi 0 T,
Vz/ps d Vz/ps
- 5(3:‘ ? / pr(x zc)dx / Zngf;IL) / Fpr(x,a:c)dw+
Py ; Vz/p
/ fo?(f” / For(z,20)dz (76)

1 T

where

4 4 8 4 5 »

5@ = 3P0+ 3P0+ 5A@, B =GR+ 3R @), ~
1 1 2 c 4 .1 c

Fyr(a,70) = g (@) + 5 @) [— +g (‘%)} +P(@) [ﬁ (=)

2 sz, 1 2 1 /x, 1 .,
+ g (=) +=r (= + “+-g(=) |+ =
39(93) 2 ( 1)} E() [9 29(;1,-)] 3R @,
r(z, 1)“/R($)d£——29—2+z+72+; 3 <g+2z+z2>lnz,

f(z) = —Fx(2).
2 XOTD, Ne2 (8) 417
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In the case of CES the corresponding contribution can be derived by inserting the functions
F;, , F; ,and F;, on the right side of Eq. (76) instead of functions F},, F.., and F,,, respectively,
where

. 4
F,(z) = Cs@), Fi(z)= P3<x>+ P2($)+ =Pi@),

2 1 .
F.(z) = ZR(z) + -R'(z).
9 3
The contribution of the opposite-side emission to the right side of Eq. (75) is

T,

o= (1) [0 |] (om0 )

pi ()
\/:’:‘/PJ
(z :) Tc
+4 / R’ @)de - B, / (H@ 20 + 29 )hiws V3 po)) do | -
d \/_/PL
/-2- g / (H@ 20+ 29 (52) has V20 do +
l T,
\/—/Pz

; / TR / (@20 +29 (%) bt v/ ) do +
1

T

pi
+ (Pl(z)G (ﬁ; ﬁ) +g (ﬁ; \/—E> h (a:; ﬁ)) dzt(ps < ps)| +
T pa T P4 p3
T P3P
- .
/ (re((2) s (22)s (5 ) e o] -
P2 T P 1
T P2 . i
o, Vz/p |
- / / Pl(sc)G \/E) +9 <x— ﬁ) h (x; ﬁ)) dzt+(p3 & p3)| —
P2 zr p2 p3
T:p3p2 71 ]
1 Vz/1
L’ / (P,(x)G( ‘/;) +g (‘”— f) h( ‘f)) dz+(ps o 1|, 77
P4 T ps 1
2.p4 seps
where

1 1 1
g(a;b) = g(a) — g(b), G(a;b) = G(a) — G(), G(z)= §f(z) + 39(2) + 51"(2),
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H(z;z.) = P,(x) [2f (Ze) + 30 () +r (% 1)] +9 () 1P@) + R@),

Vz/p

| Fron(3)-
1+2? 3, (\/_/p z)(l—x) Vz | zp vz

Note that the substitutions inside the straight brackets concern either the limits of z-
integration or the expressions under the z-integral sign.

In the case of CES the right side of Eq. (77) requires the following modifications: i) the
coefficient at Py(z) must be reduced eight times, the coefficients at Py(z) and R” (z) must be
reduced four times; ii) it must be assumed that 4 = 0 and H' (z, z.) must be inserted instead
of H(z,z.), where

H (2, 2.) = P(z) Bf (Z;i) + zg (ﬁ) + lr (:v_c_; 1)

h(z; v/z/p)

+29(2) (@) + R@).

5. THE NUMERICAL RESULTS

The numerical calculations were carried out for the beam energy € = 46.15 GeV, and the
limited angles of the circular detectors were taken from Eq. (3). The Born cross section

o
_4ra? [dz 2 2
= [ 5 (1-43)

P

(in the symmetrical wide-wide case the limits of integration are 1 and p3) is 175.922 nb for the
ww angular acceptance and 139.971 nb for the nn and wn angular acceptances.

The results of our calculations of the QED correction with the switched-off vacuum
polarization are shown in Tables 1-3. For comparsion we give also the corresponding numbers
derived by the help of Monte Carle program BHLUMI [3].

As one can see from Table 1 there is an approximately constant difference on the level
of 0.3%. between our analytical and Monte Carlo results within first-order correction. The
possible reason for this effect is as follows. In the analytical calculation we systematically ignore
the terms with % ~ |t|/s as compared with unity. It is well known, however, that such terms
have double logarithmic asymptotic [17] and parametrically equal (a|t|/7s) 1n2(|t|/ s) which
is just 0.1%. for the LEP1 conditions. Monte Carlo BHLUMI program, to the best of our
knowiedge, takes into account all first-order contributions [18].

Table 2 gives the absolute values of the second-order correction to the SABS cross section,
with allowance for the leading and next-to-leading contributions. The correction due to the
pair production is small, in agreement with the results of the Ref. 6. The second-order photonic
correction is represented as a sum of the leading contribution and next-to-leading one. As one
can see, the next-to-leading part is not negligible.
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Table 1
The SABS cross section (in nb) with first- and second-order photonic correction

First-order correction Second-order correction
z. |BHLUMI ww| ww nn wn |BHLUMI ww| ww nn wn

0.1 166.046 166.008|130.813|134.504 166.892 166.958|131.674|134.808
0.3 164.740 164.702|129.797(133.416 165.374 165.447{130.524|133.583
0.5 162.241 162.203|128.001|131.428 162.530  [162.574|128.474|131.127
0.7 155.431 155.390(122.922/125.809 155.668 155.597|123.206|125.225
0.9 134.390 134.334|106.478|107.945 137.342 137.1531108.820|109.667

Table 2
The second-order absolute correction to the SABS cross section (in nb)
Pair production Two-photon emission
Te | WW nn wn ww nn wn

0.1 0.007 |—0.004| 0.015 | 0.742+ 0.208 |0.679 + 0.182| 0.249 + 0.091
0.3 {—0.033/—0.033|—0.020| 0.546 +0.199 |0.556 + 0.171} 0.069 + 0.098
0.5 {—0.058/—0.050|—0.041| 0.140 + 0.231 }0.291+0.182|—0.314+ 0.134
0.7 |—0.090|—0.074}—0.069{—0.027 + 0.234|0.117 + 0.187{—0.571 + 0.170
0.9 |—0.142{—0.115|-0.115| 2.961 — 0.142 |2.458 — 0.116| 1.822 — 0.090

Table 3
Leading third-order correction and SABS cross section as obtained in this work

Third-order correction SABS cross section at LEP1

T, ww nn wn ww nn wn

0.1 |—0.055/—0.047|—0.006|166.910{131.623| 134.817
0.3 |—0.065|—0.053|—-0.018/165.349| 10.438 | 133.545
0.5 |-0.036|—-0.040| 0.004 |162.472|128.384| 131.090
0.7 | 0.089 | 0.058 | 0.124 |155.596{123.190| 125.310
0.9 | 0.291 | 0.220 | 0.331 |137.307|108.927| 109.893

Table 3 gives the absolute value of the leading third-order correction and the SABS
cross section with all corrections obtained in this work. The third-order correction takes into
account the three-photon emission and pair production which is accompanied by single-photon
radiation. At large values of x. this correction is comparable with the second-order next-to-
leading correction. This effect increases under the conditions of LEP2.

6. CONCLUSION

In this paper we give the analytical calculation of the QED correction to SABS cross section
at LEP1 for the case of inclusive event selection and wide-narrow angular acceptance. They
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include the leading and next-to-leading contributions in first and second orders of perturbation
theory and leading contribution in third order. The leading contributions in the case of
calorimeter event selection are obtained for any form of the final electron and positron cluster.
The result is represented in the form of a manifold integral with definite limits, and the functions
under integral sign have no physical singularities. No problem arises with infrared divergence
and double counting. : '

The selection of essential Feynman diagrams, utilization of Sudakov’s variables, relevant to
this problem, impact factor representation of the differential cross section due to the ¢-channel
photon exchange, and the electron structure function method and investigation of underlying
kinematics were very useful in this work. We emphasize separately the simplifications connected
with the impact factor representation, which allows us to represent the differential cross sections
of two-jet processes in QED in factorized form. The latter allows us to use the cutoff #-functions
for the final electron and positron independently at the level of differential cross section. The
calculation does not require to go to c.m.s. of the underlying subprocess (as in Ref. 6) and
avoids the corresponding complications.

At this point, we wish to comment on the analytical calculation of the leading contribution
due to the photon emission and pair production carried out in Ref, 6. Authors of those articles
used as the master formula for description of the QED corrections to the SABS cross section
due to the initial-state radiation the representation valid for the cross sections of Drell-Yan
process [19], electron-positron annihilation into muons (or hadrons) [20], and large-angle
Bhabha scattering [21]. In this set, however, the SABS process has a very particular feature:
only for it two different scales exist. The first one is the momentum transfer squared ¢; this
scale defines the cross section. The second scale is the full c.m.s. energy squared s = 4€? and
6% ~ |t|/s < 1 has the status of a small correction.

The t-scale physics is very simple and is defined by the peripheral interaction of the electron
and positron due to the one-photon exchange, provided that the momentum transfer is strictly
perpendicular; t = —q2. The s-scale physics is more complicated. At the Born level it is seen
as a contribution of the annihilation diagram and also permits the energy and longitudinal
momentum exchange for the contribution of the scattering diagram. The first-order QED
correction for the s-scale cross section includes the contributions of the box diagrams, the large-
angle photon emission and the up-down interference because both, the eikonal representation
for the scattering amplitude and the factorization form of the differential cross section break
down. In the second order large-angle pair production and two-photon emission appear.

The structure function used in Ref. 6 controls the t-scale cross section only and is not
related to s-scale cross section because physics of different scales evolves by its own laws. This
is well known from the analysis of such different problems of physics as, for example, higher
twist corrections in QCD [22] and turbulence phenomenon in hydrodynamics [23].

On the other hand, only the scattered diagram contributes to the Born cross section used in
Ref. 6. But every time when the annihilation diagram as compared with the scattering diagram is
neglected, one must automatically neglect 62 as compared with unity everywhere including the
Born cross section and the experimental cuts in order to be consistent. Taking into account these
arguments, we must simplify the master formula in Ref. 6 by eliminating the terms proportional
to £ ~ |t|/s < | and £ in the numerator of Eq. (5) and in the cutoff restrictions. It then
becames adequate to the one obtained in Ref. 10 and the one used in this work.

Numerical evaluations show a good agreement with Monte Carlo calculations within first-
order correction, but an agreement for higher-order corrections will require additional efforts.
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APPENDIX A

Let us first consider the next-to-leading second order A-independent contribution due to the
one-side, two-photon emission. We first give the analytical expression for the symmetrical case,
because it was not published until now. (I do not give special notation for the next-to-leading
contribution to X, keeping in mind that only such terms are considered in this Appendix):

pe
_ _ _lyaN? [dz

I =%, =g (—) /;Z—L Y, _ (A1)
1

l—z

+
Y= y+/dx A+/dw1 [—4 (9<E>zl+zz)+( o Lre

1—231
0

T _ 2(1 +x)
_ L+ @] +20(1 Il)l + 9(1 z)|
(l—zl)z)(4 o 13 ) 5) T
1+ 22 (@ i 1 2 x ﬁ/p_mdml
—4_"=7 / dzy =I5+ =In + / Ll ),
l—z ° ) T2 1l -z Ty
_ 1-vZ/p 0

45
y =12+ 10¢ — i 161n*(1 — z.) — 281n(1 — z.),

. 1+22
A=(1+65) [2(5+2:1:)+4(x+3)1n(1—x)+4 ——Inz| +
1+a2 [(3 1,  (-a)
+2 S—Inz | K@, zp1)—sIn*z — o——— +
— [(2 nz) K(z,z;p,1) Iz T
27 — — Dz = 2)(p* - 2)
+ - @ |22 214 (z p +
2In(l — x) (GP In oz n G —272@—2)

. 4
+g® —'6 In(l—2)+ =2 _ (1 - 2)Inz +
Fl1- 1—2z

+ 42 —z)+4
4oLt <—%ln2z+3lnxln(l—x)—Liz(l—x)~m(l o) +dzine

1-z 2(1 + z2?)
+ )2 - 2 _

L e (vVz — zp) t ol Vz—xp|, |x(@p®—2) ’
1+22 p—z p z2p? — 2

(z2p? — 2)(zp* — 2)

b=l (z(1 — z1)p? — 2)z(z + 2))p? — 2)|’

?

‘(1 —z)(1—z—z\)(z P2 — 2)2
3z (1 — z()p? — 2)?
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b =1n (z —2)(z = (1L =2z = (z + 2,))
2 z-U-z))ez—-—z(l=-z )z +2)—2)z(@+z)—2)
I 1)’ p* — 2)((z + z1)?p? — 2)(zp? — 2)

(z +z1)p? — 2)((1 — 2)p? — 2)(@2p? — 2) |’

(1 — z)2zzi(z — D(z — ) (z = (1 - 21)?)?
22(z — (1 — 21))*(z — (1 — ,))?

(p* = 2)(@(1 — z1)p* — 2)?
(z%p? — 2)((1 — 21)?p? — 2)?

l4=1In +In

)

i =1n (1 = z1)’p’ — 2)°

’ (1 —z)2(z(l — 21)p* — /(1 —z))p? — 2)F|’
= 1n (zp® = )& + 21)*0* — 2)°

6 (@2p? — 2)z(@ + )Pt — 2)(z + 2)p? — 2)|

For the wide-narrow angular acceptance we need to consider only the case of the positron
emission X, because the corresponding expression for the electron emission =" is Eq. (A.1)
with (p3, p3) as the limits of z-integration and p; instead p under the integral sign.

The analytical expression for X, has the form

1

(;) /dZLA (A2)

1

AY =yAp + /dil? Ay

2
44+ 3z) + 6(z + 3)In(l — 2) + (.'1:—1+4 11 _“;)mx] ¥

() 1+2? —@) 2
+Ay; | (1—2)(3+ Inz)+2(z+3) In(1— x)+4 h +A42—1——£><

2
x4+ 1+ ) -y +2 T10 (9453’1 Vi e B f y;)+

l—z
+ g2 1+ 42 z —
+ g / dz, [2~—’“—(Ai“§’l.++mzzz++(§i’ oM+ @ - B)ly) +
0

l—2z (1 —2)xy

l+z T () (1—1'1)251:2 (1—5171)237‘731
+ -l In——""2+, | + In—1 "4 +
( ! 1——1’1 (1—:1?1 )2> (A42 ( n QJSIL'} l3+ A42 n Ty l4+

+ A‘(112—:01) (2 In (lx—x)z + l5+> + ('e‘iz) (:c))lS_ + (04 6l + (yil —z1) 0;1"33]))15_) +
— @]

l—z

1+ < ' 1. 4
+2l lA“ I')]+2 - 04§£) / dz (;—lg—x—lnl :C:U )+
— 1 1 2 -
I—vZz/ps

NEYTIST

l—x
: 1+ . 1- 4 -
+ / oy +2 1925(2’ / day (—16+—1n i )+ / dop i
z z, T2 l-zx z
1—Vz/p,

0
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)+

) +(3 = 2Inz)K(, 2; ps, p2) +

z*(z — p3)*(z — 2*p3)(a?p; — 2)(p} — 2)*
(z — zp3)3(xp} — 2)?

(z — 2’ p3) (P} — 2)

a4z — zp3)(xp] — 2)

B =Ay (—2]n21+2ln(1 —z)ln

+ A% (lnza: +2In(l = 2)In

. 1 —2)+4zl
+A§2’(7-21”1.1(1-w)—zmzz—zL_ﬁ(l—x)-x( 2) “m>+

1+ 22
(@pi — 2)'(z = p)*(z — 2?pd)| |
(0§ — 2)*(@?pf — 2)(z — 2p3)

+2B4 — 65)In(l — z) In

2.2 2
@) ) (z — z°py)(xps — 2)
+200, —6,")In(1 —2z)In +
2) (@20} — 2)(xp5 — 2)
_ 2 . _ 2.2
40,80 1n [P V2], x(fp; 2| 4 46,8 1n "/Z- 2Py | 222 P )
D4 x2pl — 2 z(z — zp3)

(2 = 2Pz — 24d)

(z —z(1 — 21)p})(z — z(z + 21)pd) |’
(z—zp3) (z—(1—-21)*p3)*(z—(z+21)* p3)?

N(z—a(1—z1)pd)(z—z(z+21)p3) (2 —(1=71)p3) (2 —(z+1) p3)?

z—2%p3

ll:t = (1 :’c{")ln

by = (1£6) [ln

|

2=}

Ly=(1%éln — 2
= z—(1—xz1)p3

———, Li=(1=x0l
2 —fE(l *1:1)'0% 4+ ( C) n

(z = (1 — z1)2p3)?
(z—z(1—20)p)(z — (A —z1)pd) |’
i~ 3z — (1 — z1)*p3)*

}(1 Z 1)z — o1 — 222z — (1 = 21)pd)?
2)4

s+ =(1=%¢)In

’

—2p3)X(z — (z + z1)*p3
(z—a pz)z(z« —2(z + 21)p3)* (2 — (v + 21)p3)?

l~7 =In y -1'5 = —éiﬁ, 77 = —-éi7,

where z; = 1 — 2 — z;, and ¢ is the operator of the substitution:

cf(p2) = f(pa). (A.3)

It can be verified that in the symmetrical limit Eq. (A.2) coincides with Eq. (A.1).
For the opposite-side emission the next-to-leading contribution to X in the symmetrical
case is

a\? dz
q- (24
0
: 1
_ + 2 =
T=A9p6’1—/da: E(T_EJ‘_)N(QU z;p, 1) +E(2) + (z)]

T

[ (A-3)

1
X /dwl [(1+JJ1)5(3¢1)+
z./x
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where
1

A=—6—14In(l — z.) — 81n*(1 —xc)+/dz{7(1 +z)+

% (3@, 20,1+ 78] +2 2= [(3 +z)(1+6%) +
+ ]jxéf’+ lltiN(a:,z;p,l) 1fﬂ:ln ‘L;l__fc)} (A.6)
We introduce the following reduced notation for #-functions:
2@) = 0,0, + 098", E(z)=6,8," - 68" (A7)

The quantity I\ (x, z; p, 1) in the expression for A is the K -factor for the single-photon emission,
and the quantity N(z, z; p, 1) can be derived with the help of Eq. (10) in the following way:

(1 ~z)?

= (A.8)

(Mg + Ai“é’))

N(z,z;p, 1) = (f((a?, zZ; pay p2) —
ps=p, p2=1
Note that N(1,z;p,1) =0
In the wide-narrow case the corresponding formula for X may be written as follows:

ol oc’d
SR 83)
where
I
[+ 22 - I —@
{/(l:L 2= N(x,z;p3,1)+:-31($)+ l_xABI] x
2 z
« [ an |0 +o)Ba() + T Zﬁ;’] +
1
./
I | 1
+2? - —(z)
+ /d:r {2(1 — N(w,z;p4,pz)+.=4z(z)+ 1_33%] X
x dzl {(1 +21)E3(x) + 233 K‘;f’] } (A.10)
1
z. /T
where

A= (=6-14In(1 — z.) — 8In’(1 — z,)) A +

1
. g ~
+/dw{A42[7(1 + 1)+ in 24 ”'3)} +
| T -z,
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1+ 22

3 3 -
) zApK(z,2;p3,1) + §A311{(I,Z;p4,pz)+

2

T
+ (A42Aga;) + A}lAg)):l +In

— T {(3 + 2)(A31245(z) + ApEai(x)) +

—(z) ~(z)

+ (A42 ASI + A';] A42) +

- (A42N($ zyp3, 1) +

+A31N($,Z;p4,p2))] }, (A.11)

and
— = ()
Eaa(z) = 040, + 070, = Ay + A,

- —(z)
Z3(z) = Ay + A(ﬁ), Ay = Ay~ Agzl)-

It is obvious that in the symmetrical limit Eq. (A.9) coincides with (A.4).

APPENDIX B

Here we give some relations which are used in the analytical calculations and which may
be useful for the numerical computations.
For the case of the emission along the electron momentum direction these relations are

\/—/PJ

i
/dz /dx 7 = / dz 5 / de,
K T

(B.1)
Vz/ps l—z
(1—z/) (@)
/dz /da: /d:c19 /d 6 / dx / dzx,.
Te 1—v/z/ps
For the case of the emission along the positron direction they are
o3 ! H \ 1
/ dz / dz [0 — 68 = / dz / dz [Gs — 0, + 0,8 +6,05] =
\/:’:_/Pa Vz/p2
/ dz { (@4 — 65) / dz + 0,857 / da + 0,85 / dz
- (B.2)
P3 1 l—x
—(l ) (—z)7 -
/dz/dx/da:l -6, ]—/dz/da; (94—02)+/dx1+
1 Te 0
\/_/IJA 11—z \/E(PZ l—z
+9°g, / dz / da, +92 / dz / d
Te 1=z /p:
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Some additional relations arise for the case of opposite-side emission. Let us consider first the

integration-limits restrictions for the product of the #-functions in the symmetrical case
(@) plx) ) )
93931I 9311 ’ gly(sm)a-(]xz , 91—6-(133,)—0-(1:1:1 . (B.3)

At first, we use the formulas (B.1) and eliminate aim using the following changes: 1) 9?1) —

— 9:#), 2) the upper limit of z;, integration in the case of 5(3“) must be replaced by v/z/p3

and in the case of 8, by \/z.
Thus we have three regions defined by the quantities in (z, z;) plane:

2,2
2 _ — .22 _ Zp
p =z z2TIp, 2T —7F,
1
= - 2.2 _ T
l=2 z= e, 2T —, (B.4)
2
[+
2.2
— — .2 _ Zp
l=2 z=z|, z= >
xc

The limits of integrations may be transformed as follows:
o VZz/p Vz/p
/ 0:8.78) / dz / dz, / dzs,
z.0?  zep/VZ T /T
Vi

1 Vz/p
/939(12')5?2)—» /dz / dz, /dxz,

Tep z/VzZ z./T)

(B.5)

and for [ 915‘1”"20‘?” the formulas can be derived from the above formulas by setting p = 1.

For the wide-narrow case the prescription is similar:
o Vz/ps VZ/ps
(@) 5(z2)
/0494 6, — / dz / dx; / dz;. (B.6)
TP $.:PJ/\/2 Ic/zi

The other variants of the restrictions in the wide-narrow angular acceptance may be written as

follows:
1 vz Vz/pa
/\015(;')5(1“)—’ /dz dz, dz,
zep2 e =
| vz Vz/ps
/elaﬁx"ﬁﬁw”ﬁ /dz / dz; / dz, ®B.7)
TPa Zepe] vz T[T
0 Vz/p VZz/ps
/ 6.0, 8,7 — / dz / dzy / dz».
‘ T:paps zep3/VZ z:/T
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