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The structure factor of a crystalline monolayer on the surface of a liquid is calculated. It is 
shown that in the first approximation the finite rigidity of the monolayer maintains the power-law 
profile of quasi-Bragg peaks typical for two-dimensional systems but leads to a reduction of 
the x-ray scattering intensity. It is found that this effective Debye-Waller factor has very strong 
dependence on the length h of the chains composing the monolayer. Specifically, it is 
proportional to exp(-h3/(a2), where ( is a chain persistence length and a is a characteristic 
atomic scale. We have also studied the spectrum of modes where the motion of the liquid is 
localized near the film. It turns out that for thick films there are three propagating sound- 
like modes: the transverse sound with a velocity which becomes zero if the wave vector q is 
directed along the normal to the film (z-axis); the conventional longitudinal sound with 
an almost isotropic velocity (determined mainly by the compressibility of the film); and the mode 
analogous to second sound in smectics. For thin films the latter mode transforms into the 
fast pure relaxational one. For tilted or hexatic layers there is also an orientational diffusion mode. 
This mode strongly influences the viscosity of the system. The fluctuation contribution to 
the viscosity coefficients is proportional to (Tlr)ln(qa), where r is the orientational diffusion 
coefficient. Transverse and longitudinal sound are transformed into overdamped modes 
with a dispersion law fi- i)q4I3. O 1996 American Institute of Physics. 
[S 1063-776 1(96)01009-81 

1. INTRODUCTION 

Recently a wide variety of properties related to surface 
crystallization of different substances at the surface of a liq- 
uid have been studied.'-3 In particular we mention the very 
systematic x-ray diffraction and thermodynamic measure- 
ments of crystalline monolayers of fatty alcohols on a water 

It has been shown in these experiments4v5 that al- 
most all internal degrees of freedom are frozen in the mono- 
layer (especially for short-chain monolayers), but neverthe- 
less even for two-dimensional (2d) crystalline monolayers 
there are some internal degrees of freedom (related to con- 
formational and elastic fluctuations of chains). 

In this paper we formulate a simple model describing the 
role of these internal degrees of freedom for the fluctuations 
of the displacements in a 2d lattice composed of finite-length 
chains. Our aim here is not to claim that our oversimplified 
phenomenological description necessarily holds for real sys- 
tems investigated in Ref. 4, but rather to explore the conse- 
quences of this simplest model. 

The structure of this paper is as follows. In Sec. 2 we 
compare briefly two alternative theories of 2d crystalliza- 
tion: namely Berezinskii-Kosterlitz-Thouless (BKT)~.' and 
Landau weak-crystallization theory (see, e.g., Ref. 8). As we 
will see, the two theories lead to fairly different physical 
consequences. For example, BKT theory predicts one (or 
two) continuous transitions, whereas in the framework of the 

Landau theory one should always have a first-order phase 
transition. The experimental situation is not clear so far, but 
anyway it is not necessary that melting transitions in 2d 
systems should be always continuous BKT type transitions. 
Moreover there are many examples of first order melting 
transitions in liquid crystalline films (see, e.g., Ref. 9). 

Section 3 contains our calculation of the elastic energy 
for a finite-thickness crystalline film constructed from chains 
having a finite rigidity. 

In Sec. 4 we find the static structure factor of the system. 
It turns out that a finite chain rigidity considerably reduces 
static fluctuations. This is especially relevant to higher order 
peaks in the x-ray scattering. Nevertheless, it does not 
change the shape of the peaks. 

In Sec. 5 we consider dynamical phenomena. We find 
eigenmodes for a free monolayer and then take into account 
interactions of these modes with excitations in a liquid. It 
turns out that these interactions considerably modify the 
eigenmode spectrum, leading to overdamped modes 
a(fi-i)q4'3, whereas the finite rigidity of chains is not 
very relevant to dynamical phenomena and it leads to only 
small corrections to the dispersion laws. 

In Sec. 6 we discuss the case of tilted or hexatic layers, 
where there is an additional Goldstone mode associated with 
an orientational diffusion. This mode is not changed by the 
interaction with a liquid but it leads to an enhancement of the 
internal viscosity of a film. 
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2. TWO-DIMENSIONAL CRYSTALLIZATION 

~erezinskii6 and Kosterlitz and ~ h o u l e s s ~  have proposed 
a theory for 2d melting. According to this theory, the tran- 
sition from solid to liquid in 2d systems (which can be very 
thin films on a smooth substrate or on the surface of a liquid) 
takes place in two steps with increasing temperatures. Disso- 
ciation of dislocation pairs first drives a transition from a 
low-temperature solid phase with algebraic decay of transla- 
tional order and long-range orientational order into a so- 
called hexatic (or liquid crystalline) phase characterized by 
short-range translational order (i.e., by exponential decay of 
this order) and power-law decay of orientational order. Dis- 
sociation of disclination pairs at a higher temperature then 
produces an isotropic liquid. 

The BKT mechanism assumes that at O <  T C  Tm (where 
Tm is the melting temperature) in 2d crystals there are not 
only conventional thermal excitations (long wavelength 
phonons) but there is also a finite concentration of disloca- 
tion pairs (each pair consists of two dislocations with oppo- 
site Burgers vectors). The energy of one pair of dislocations 
with a characteristic size R can easily be estimated as 

Here B is the elastic modulus (for more precise definitions 
see below in Sec. 3), a ,  is the radius of the core (which can 
be different from the lattice parameter a) and Eo is the en- 
ergy of the core. 

One can also find (see e.g., Ref. 10) that the existence of 
pairs does not change the power-law decay of the correlation 
function, but they renormalize (decrease) the magnitude of 
the elastic modulus. The average size of pairs is given by 

where the integration is performed over different orientations 
of dislocations. 

Thus, the average size of pairs is determined by Ed(R) ,  
which includes the elastic energy produced by a pair, while 
the concentration of pairs is governed mainly by the core 
energy E o .  Physically the BKT mechanism of melting is 
analogous to ionization of a 2d plasma. For T <  Tm there are 
only neutral molecules (pairs), and at T= Tm the decompo- 
sition of these pairs into individual charges occurs. It is rel- 
evant to this mechanism that owing to the polarizability of 
molecules the dielectric constant of the plasma depends on 
the scale. Fields created by pairs with characteristic size R 
play the role of the external fields for all smaller pairs. 
Therefore, the existence of large enough pairs is a crucial 
condition for the BKT transition. 

If owing to some specific properties of the material over 
its whole region of existence Ed(R)2>T for this system, the 
BKT mechanism will be inefficient. In other words, in this 
case the amplitude of the density modulation (which is in 
fact responsible for the existence of 2d crystals) becomes 
zero before the dissociation of dislocation pairs. If this tran- 

sition is a weakly first-order phase transition (which allows 
us to use Landau expansion), then it corresponds to the Lan- 
dau theory of weak crystallization. 

Landau weak-crystallization theory assumes that the 
thermodynamical potential (e.g., free energy) can be ex- 
panded in a series in the order parameter +. In the case under 
consideration, it is the ratio of the short-wavelength density 
modulation to the average density. We believe that 4% 1 and 
the main terms of the Landau expansion can be represented 
in the form 

Here T, p, A, and a are phenomenological coefficients. The 
structure of the gradient term in this expansion is accounted 
for by the fact that we are dealing with crystallization from a 
liquid (i.e., rotationally invariant state) and therefore the soft- 
ening of the order parameter (which is a precursor of the 
transition) does not depend on the orientation: it takes place 
on a complete circle in the reciprocal space: ) q ) = q O .  

Owing to this circumstance, fluctuations of the order pa- 
rameter are rather strong near the circle and lead to renor- 
malization of the correlation fun~tion*.~ l: 

where for A there is the following self-consistent equation: 

which can easily be solved numerically. 
The parameter A (a ngapa in the correlation function) in 

this theory plays the role of the controlling parameter for 
weak-crystallization transitions. For self-consistency of the 
theory one must suppose 

A 4 aq;. (4) 

From Eq. (2) it is easy to estimate the elastic energy of a 
dislocation pair in 2d crystals created by the weak- 
crystallization mechanism12: 

However, it follows from Eq. (3) that near the weak- 
crystallization transition point 

and therefore 
7 

which according to Eq. (4) is much greater than unity. There- 
fore, the dislocation pairs remain binding and the BKT 
mechanism does not work. We emphasize that the crucial 
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FIG. 1. 

point for this conclusion is just the condition given by Eq. 
(4) providing the applicability of the Landau weak- 
crystallization theory. 

Very schematically one can represent the following 
T- h (temperature-length of chains) phase diagram of the 
system (Fig. I). At OA there is a first order weak- 
crystallization transition, at OB and OC we have continuous 
transitions. The point 0 is the so-called bicritical point. Re- 
call that the BKT mechanism does not work at OA because 
the energy of an isolated dislocation is higher than the tem- 
perature, and the mechanism of weak crystallization is inef- 
ficient at OC and OB since due to the hexatic orientational 
ordering the softening of the order parameter takes place not 
near a circle but only near six points in reciprocal space. At 
the bicritical point, the transition temperatures coincide and 
therefore we have the universal relations 

where Kh is the Frank constant for the hexatic phase.'0 The 
same temperature given by weak-crystallization theory is 
(see Eq. (2)): 

Therefore at the bicritical point there are two relations be- 
tween the elastic moduli, the Frank modulus, and coefficients 
entering the Landau expansion. 

Thus, there are two alternative mechanisms of melting in 
2d systems (BKT and Landau). The BKT mechanism leads 
to a continuous transition with a correlation length that di- 
verges as T approaches Tm from above,'' i.e., 

where F=0.3693. Due to this fact, the specific heat displays 
an essential singularity 

The elastic constants Bl and B, approach the finite lim- 
iting values as T+ T i .  Just below T, , for example, one can 
obtain for the shear elastic modulus'' 

B,=B,(Ti)I 1 +const. IT,-TI '1. 
The very specific feature of the BKT mechanism is the 

fact that there is a universal relationship involving two elas- 
tic moduli (Bl and B,) of the hexagonal lattice at the melting 
temperature: 

1 1 a ' + =- 
Bt(Tm) BATm) +Bl(Tm) 4wTm ' 

Owing to this relationship the exponent q of the power-law 
singularity in the structure factor (typical of 2d crystals in- 
dependently from the melting mechanism) has a maximum 
value at Tm . The magnitude of %ax depends on the structure 
and for hexagonal symmetry it is 0.33.'' 

In the Landau theory, we have fairly different predic- 
tions. The specific heat has a finite jump and power-law sin- 
gularity of the following form: 

where a and b can be considered constants near Tm .8 

The shear modulus in the main approximation is propor- 
tional to A. The anomalous exponent 7 in the Landau theory 
is Jw, and therefore owing to Eq. (4), it should be small 
near the weak-crystallization transition point. However there 
is no definite maximum value 

Thus in principle from suitable experimental data one 
can distinguish between both possible scenarios of 2d melt- 
ing phase transitions, although in a real situation (see, e.g., 
Ref. 13) it is not an easy and straightforward procedure. In 
particular, the effect of finite-chain rigidity discussed below 
makes this procedure even more difficult, since it leads to a 
considerable reduction in the intensity for higher peaks (see 
Sec. 4). 

3. DlAGONALlZATlON OF THE ELASTIC ENERGY 

Let us consider a crystalline monolayer formed by 
chains. We believe these chains are rather stiff and therefore 
configurations with so-called hairpin defects are forbidden. 
The crystalline order in a system occurs only in a plane or- 
thogonal (on average) to the chains. For simplicity, we con- 
sider only hexagonal crystalline structure (i.e., there is no 
cooperative tilt of the chains). 

Thus, the elastic energy for such a monolayer can be 
written in the following form: 

where the Greek subscripts designate coordinates in the 
plane orthogonal to the chains, u, is a displacement vector in 
this plane describing the elastic energy of a 2d hexagonal 
lattice, B1 and B, are the elastic moduli of this lattice (longi- 
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tudinal and transverse with respect to a wave vector), cup is 
a 2 d  antisymmetric second-order tensor, K is the bending 
elastic modulus describing the chain elasticity, and z is a 
coordinate orthogonal to the monolayer surface. For the case 
of chains with purely steric repulsion, we can estimate the 
stiffness constants appearing in Eq. (5) (see, e.g., Ref. 14): 
K=Tc/po  and B ~ - B , - ( T ~ ~ ' ~ ) / ~ " ~ ,  where po is the surface 
density of chains. 

Note that there are no terms proportional to ( d , ~ , ) ~  in 
Eq. (9, which makes it possible for chains to slide past each 
other in a liquid-like manner. Note also that the last term in 
Eq. (5) is relevant only for wave vectors p , a p ,  . Therefore 
we must not take into account the terms proportional to 
( a , v , ~ , ) ~  or to ( ~ , E , ~ V , U ~ ) ~ .  

We believe our system has large crystalline domains 
(with an area S), as was the case for the systems investigated 
in Ref. 4. Therefore, we can use Fourier transformation over 
coordinates along the monolayer (x  and y). Thus instead of 
the energy E given by Eq. (5) it is convenient to use the 
following form: 

where 

Our final aim in this paper is to find the static correlation 
function of displacements ( u , , u - , ~ )  for the crystalline 
monolayer. This correlator can be represented as a sum of 
longitudinal and transverse parts: 

To find it, we have to know the two functions A l ( q )  and 
M 4 ) .  

To calculate the functions A l ( q )  and A, (q ) ,  we must 
diagonalize the energy given by Eq. (6) or, in other words, 
solve the Euler-Lagrange equations following from Eq. (6). 
It is convenient to introduce longitudinal and transversal 
components of the displacement: 

There is no coupling between longitudinal and transversal 
components in our harmonic approximation, and both Euler- 
Lagrange equations have a similar form 

where A/ , ,  are the longitudinal and transverse components of 
the matrix Aup,  respectively. 

To solve these equations, we have to know the boundary 
conditions. There are so-called natural boundary conditions 
which correspond to the surface contributions coming from 
the bulk energy given by Eq. (5). For our case, these contri- 
butions lead to the following conditions: 

If there are specific surface energies E,  at the right-hand 
side of the second condition, one has to add terms 
( S E , ~ S U ~ , , ) , = ~ ~ ~ ~  to describe the surface elasticity. In the 
simplest approximation this surface elasticity can be repre- 
sented in the following way: 

E,= d 2 r 8 ( z +  ~ / ~ ) E ~ ' ) ( V U ~ , , ) ~ ,  I 
where E:')= - n,dy(')ldn, is the surface elasticity modu- 
lus, +') is the surface tension, n, is the concentration of 
molecules constituting the monolayer, and superscripts ( 2 )  
refer to either boundary ( z  = t h/2 ) .  

Taking account of these surface contributions modifies 
the results quantitatively, but not qualitatively (as we will 
see), and the correlation functions (urnup) ,  which we are 
only interested in, are very similar. Therefore in what fol- 
lows we neglect these surface contributions. Note also that 
even quantitatively these surface contributions are extremely 
small. All corrections are proportional to the parameter 

which for real systems investigated in Ref. 4 is of the order 
of lo+.  

Diagonalization of the functional (6) reduces to solving 
the following equation for eigenfunctions and eigenval- 
ues A/ , ,  : 

with the boundary conditions given by Eq. (9). There are 
symmetric and antisymmetric solutions 

and 

where 

It is easy to see that there are solutions of Eq. (10) that 
satisfy the boundary conditions (9) only at p:,>O, and in this 
case the quantities pl , ,  are solutions of the following equa- 
tions: 

(i) for the symmetric case 

(ii) for the antisymmetric case 

Both equations have the set of solutions 
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where the wave vector Q=b+k,b is a reciprocal lattice vec- 
tor and k+ b, and the function G(r,z) can be represented as 

and 

Finally, we can find the normalized eigenfunctions 

and 

The eigenvalues are 

4. STATIC FLUCTUATIONS 

We have solved the problem of static fluctuations in the 
crystalline monolayer on the surface of a liquid. Let us dis- 
cuss now the qualitative physical consequences of this solu- 
tion. 

First, let us estimate the contributions from different val- 
ues of p ,  entering the static correlation function of displace- 
ments (see Eq. (7)), or more accurately the eigenvalues (1 1). 
The contribution from po=O gives us the pure 2d result 

where R is a characteristic size of a monodomain region for 
the crystalline monolayer and a is a characteristic atomic 
scale. 

For the systems investigated in Ref. 4, the chains are 
rather short (h-lOa) and stiff ( K / ~ % - h ~ / a ~ ) .  This means 
that the persistence length 5 (see, e.g., Ref. 15) is larger than 
h I). 

Moreover, the contributions from the higher order terms 
in p ,  decrease as p i 4 ,  i.e., very rapidly. So in the first ap- 
proximation one can restrict oneself only to the two terms 
with the smallest values of p,.  This gives us the following 
corrections to the 2d result, i-e., Eq. (12): 

where the numerical factor 6 is of the order of 
The physically interesting and measurable property is 

not the static given by Eq. (7), but the structure factor di- 
rectly related to the x-ray scattering intensity: 

where 

and Jo is the zero-order Bessel function. Note that in Eq. (14) 
we keep explicitly only those factors that depend on h. 

Let us consider the case when Qz=O (which corresponds 
to the really interesting situation). From Eqs. (15) and (14) 
we get 

where v= T ~ ~ / B  h. 
Thus in our approximation the role of the finite chain 

length is reduced to some effective Debye-Waller factor, 
which does not change the shape of the peaks that corre- 
spond to the well-known power-law behavior typical 2d sys- 
tems. Note that this factor strongly reduces the intensity of 
higher-order peaks in the x-ray scattering. 

We have used the expression (16) to adjust the data from 
Ref. 5 for the x-ray intensity for four compounds with h 
varying from 8a to 14a. This gives us the rather reasonable 
estimate 5==2h. 

5. DYNAMICAL PHENOMENA 

To find the spectrum of surface modes where the motion 
of the liquid is localized near the film, first we will need 
linearized dynamical equations for a film and for the liquid 
under it. The linearized equations of three-dimensional (3d) 
hydrodynamics are well known (see, e.g., Ref. 16). Their 
solutions describe an acoustic mode (associated with oscilla- 
tions of the vortexless velocity component), a viscous mode 
(associated with a vortex velocity component), and a thermal 
diffusive mode (associated with relaxation of the specific en- 
tropy). The last mode is decoupled from the two former 
modes, and we will neglect it in what follows (one can as- 
sume adiabatic conditions, and the thermal diffusive mode 
vanishes in this case). 

Bearing in mind that we only need linearized equations 
for the velocity and displacement components, we can write 
the following equations17: 
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In thin monolayers with very rigid chains, we can ne- 
glect variations of hydrodynamic variables in the z-direction 
and in this limit we recover the results of Ref. 17 for the 
homogeneous 2d monolayer on the surface of a liquid. The 
system (17) is valid for -h/2<z< h12. For z<  - hl2 we 
have a bulk isotropic liquid. The solution of the bulk hydro- 
dynamic equations for isotropic liquids is well known. We 
will only be interested in the solution where the motion of 
the liquid is localized near the surface. 

It is convenient to introduce potential (vortexless) and 
vortex parts of the velocity: 

where $ is the potential of the velocity. In terms of these 
quantities, the surface solution of the bulk hydrodynamical 
equations can be represented as 

$(z)= $s exp( kz), SP = iwr$, (18) 

and 

where k is the wave vector and w is the frequency of the 
motion under consideration, SP is the variation of the pres- 
sure due to this motion, and 77 is the viscosity of the liquid. 
The subscript s refers the corresponding variable to the 
monolayer-liquid interface (i.e., z =  - h12). To distinguish 
between parameters of the liquid and of the monolayer, we 
denote the former by letters with a tilde. 

The boundary conditions for linearized 3d equations re- 
sult from linearization of the dynamical equations for the 
film. In the monograph [17], a method is described for de- 
riving these equations for the homogeneous distribution of 
hydrodynamical variables over the thickness of the film (cor- 
responding to the case K =co in our model). In this case, one 
can use hydrodynamic variables cpz(x,y) referring to the xy 
plane, which are simply related to the corresponding 3d den- 
sities cp(x,y,z). Thus 

In our case, we cannot use the variables R. Instead we 
have to solve the linearized hydrodynamic equations, taking 
into account the z-dependence of the hydrodynamic vari- 
ables. Using Fourier transforms for the x and y coordinates 
and the time (w is the frequency) and the diagonalization 
procedure (as in Sec. 3), we can get from Eqs. (17) the dis- 
persion laws for eigenmodes in the monolayer. Neglecting 
the thermodiffusion mode we can find the following three 
modes. 

(i) Conventional first sound 

where 

and the velocity c is determined by the bulk compressibility. 
We have denoted the corresponding combination of the vis- 
cosity coefficients here by 7jl (the explicit expression for 7j, 
will not be used later on). 

(ii) Transverse sound 

where we have used the same notation as above. 
The second-sound mode (see Ref. 17) is a propagating 

one only for 

For the thin films (h = cm) investigated in Ref. 4, 
the dimensionless parameter is 

and therefore this criterion cannot be satisfied. 
If the criterion is violated, instead of second sound one 

obtains two diffusion modes. One is associated with velocity 
oscillations with frequency 

for 

The second mode is associated with oscillations of the dis- 
placement vector u,, and in the same range of qh it has a 
rather unusual dispersion law, i.e., 

For qh 4 llJS it transforms into a fast relaxation mode having 
a gap 

To find the spectrum of surface modes where the motion 
of the liquid is localized near the film, let us reconsider the 
third equation in (17) at the interface z= - hl2. Bearing in 
mind the situation with very rigid chains, we can neglect 
intrinsic dissipation in the monolayer (right-hand side of the 
equation). However to satisfy the kinetic relations between 
mass and momentum flows from the bulk to the film and the 
corresponding generalized forces, we must introduce into 
this equation the viscous stress tensor IIik in a liquid. Thus 
we obtain 

500 JETP 83 (3), September 1996 E. I. Kats and J. Lajzerowicz 500 



where 

Any variation of the quantities characterizing the film 
induces a motion of the liquid near the interface. Comparing 
the first term on the left-hand side of Eq. (22) and the right- 
hand side of this equation, we can see that for frequencies 

these motions in the liquid may be neglected, and we come 
back to the eigenmodes of the free layer which have been 
found above. 

In the opposite limiting case, which we will be interested 
in later on, the frequency can be assumed to be small (this is 
true of all modes under consideration) and we can neglect the 
first term on the left-hand side of Eq. (22). Let us neglect as 
well for a moment the finite rigidity of chains (i.e., suppose 
K =m). In this case from Eq. (22) we can easily find that we 
have  ST^', and under these conditions only the vortex 
component a (see Ref. 19) of the velocity is excited and we 
get the following dispersion laws for surface modes (see Ref. 
17). 

(i) Instead of first sound we have 

(ii) Instead of transverse sound we have 

The diffusion mode associated with the velocity oscilla- 
tions does not change its spectrum due to interaction with the 
liquid, and it has the same dispersion law as for a free film. 

Now let us include the finite rigidity of chains. We use 
perturbation theory over 1/K (as already done in calculating 
the static structure factor) taking into account only the lead- 
ing correction to 2d-results (which take place at K = m ) .  This 
gives only a small modification of the longitudinal mode (i), 
which now reads 

where the numerical factor y is of the order of unity. 
Thus, the finite rigidity of chains only leads to small 

corrections to the dispersion law of the longitudinal mode, 
although (as we have seen in Sec. 4) it gives a considerable 
reduction of static fluctuations. 

We have carried out a theoretical investigation of the 
spectrum of surface modes. One may say that these are 
modes in a liquid caused by the presence of a film on its 
interface with a gas. We have seen that such a system pos- 
sesses rich dynamics, which is accounted for both by the 
complex structure of the film and by the interaction of the 
film with bulk degrees of freedom. 

Several phenomena discussed in this section can in prin- 
ciple be observed by light-scattering experiments. A rough 

estimate for the above dispersion laws of surface modes 
shows that it is of the order of 16-lo6 s-'. Because of 
relaxation of surface fluctuations, the scattered light has a 
broadened spectral distribution compared with the incident 
light. Although this broadening is small, the modern tech- 
nique of light beating (intensity-fluctuation spectroscopy) 
may obtain information about eigenmodes of the system. At 
least, it does not seem to be absolutely impossible. 

6. HEXATIC OR TILTED FILMS 

To describe the state of a film with orientational order, in 
addition to variables introduced above one must also include 
the angle cp determining the orientational degree of freedom. 
In the case of a tilted film we have an anisotropy of the film 
which is described by the unit vector 

where I is the unit vector of a normal to the film and n is the 
unit vector giving the average orientation of chains. 

A variation of the vector n, neglecting the vertical dis- 
placement of the film (as above) is 

determined just by the variation of one angular variable q. 
Owing to the anisotropy of the film, the quadratic part of the 
energy will be anisotropic as well. However as has been 
shown by Nelson and ~elcovits , '~  the anisotropy of elastic 
coefficients decreases with increasing scale, and therefore we 
will neglect this anisotropy further. In this approximation 
(large scales) tilted films are completely equivalent to 
hexatic films. 

Spontaneous breaking of the rotational invariance in 
these films gives one additional Goldstone mode describing a 
relaxation of the angle cp. It is easy to see that the interaction 
with a liquid does not change the dispersion law of this mode 
(as in the case of the diffusion mode associated with velocity 
oscillations). Thus we find the following dispersion law of 
the diffusive type: 

where M is the orientational elastic modulus and r is the 
kinetic coefficient. 

As we have seen in Sec. 5, the finite rigidity of chains 
has only a small influence on the dynamical phenomena. 
Therefore we will suppose K = w ,  which makes the situation 
effectively two-dimensional. The equation of motion for cp 
has the form (see Ref. 17) 

Owing to the coupling of cp and v there is the following 
contribution to the stress tensor of the film: 

One can prove that the above-mentioned interaction does not 
produce a fluctuational contribution to r (in fact, this is a 
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consequence of the incompressibility, namely the condition 
Vv=O). Thus r should be considered a scale-independent 
phenomenological constant. 

However there is the backward contribution to the vis- 
cosity associated with fluctuations of Q. To calculate this 
contribution it is convenient to use the special diagram tech- 
nique adapted for dynamical phenomena (see Refs. 17 and 
19). The dynamical correlation functions of variables Q and 
v have in a harmonic approximation the standard form 

and 

Due to the interaction between Q and v (the convective 
term in Eq. (25)), these bare correlation functions change, 
and one can find the following fluctuational contribution to 
the viscosity of the film: 

The simple calculation of the integral gives us 

Note that such a behavior strongly suppresses the fluctua- 
tional contribution to r and therefore our approach is self- 

I consistent. 
Thus, in hexatic or tilted films there is a fluctuational 

contribution to the internal viscosity coefficient of a mono- 
layer associated with the interaction between the orienta- 
tional degree of freedom and hydrodynamic motions. This 
contribution is absent from films having no orientational de- 
gree of freedom. Note also that this contribution can be 
larger than the bare viscosity of the film if the diffusion 
coefficient I' is small. 

Very speculatively we can use this fluctuational contri- 
bution to the viscosity to explain observations known for 
many films of alcohol where is an abrupt enhancement of the 

viscosity at the phase transition between the so-called super- 
liquid and liquid phases (see Ref. 20 and references therein) 
assuming that this transition is accompanied by some kind of 
orientational ordering. 
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