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INTRODUCTION associated both with the curvature of the membrane and with 
its elasticity. The curvature energy is the following surface 

In recent years considerable attention has been paid to 
integral 

the investigation of dilute lyotropic phases.'*2 The phases are 
solutions of different structures constructed from mem- 
branes, which are bilayer lipid films. Note that membranes Fcuw= d s ( 5  (&+ $ ) 2 +  $1. (1.1) 
are widely encountered in biological systems. One type of 
structure is cylindrical membrane tubes. In recent Here R ,  and R2 are local curvature radii of the membrane 
experiments3 the relaxation of the tubes following optical and K, t7 are the bending moduli introduced by  elfr rich.^ 
excitation has been investigated. The relaxation hasdifferent 
stages and is characterized by long times, and can conse- 
quently be described by means of a hydrodynamic approach. 

It is well known that a liquid tube is which is 
related to the decrease in surface area in deviations from a 
cylindrical shape. The same is true for a tube made from a 
film, the instability being associated with the surface tension 
of the film. However, a free membrane has zero surface ten- 
sion, which is the equilibrium condition corresponding to 
variations of the membrane area. Bending fluctuations of 
such membranes are governed by the Helfrich energy,6 
which depends on the curvature of the membrane. A tube 
made from a membrane with zero surface tension is stable. 
Furthermore, in experiments membrane tubes can have finite 
surface tension, since as a rule they are parts of a complex 
structure and consequently are not free. Then the surface 
tension and the curvature energy compete, and at a critical 
value of the surface tension the tube becomes unstable. A 
subcritical value of the surface tension can be induced by an 
external influence. In experiment it is done by <<laser 
tweezers~.~ 

In this paper we theoretically examine the initial stage of 
the instability, assuming that both the surface tension and the 
curvature energy are relevant. Our aim is to find the spectra 
of natural modes of the tube for arbitrary ratio of the tube 
radius to the wavelength. 

1. INSTABILITY: STATIC ANALYSIS 

The term proportional to Z in (1.1) is the topological invari- 
ant. We will be interested in variations of the membrane 
shape which did not change its topology, so the term is con- 
stant and consequently does not influence fluctuations of the 
membrane. 

Besides (1 .l)  we should take into account also the elastic 
energy associated with variations of the density n, of the 
membrane molecules per unit area. Fluctuations of n,  are 
faster than the bending fluctuations of the membrane? Thus, 
in treating the bending fluctuations we can take n, to be a 
constant: n,=NIA,  where N is the number of molecules of 
the membrane and A is its area. Thus, n,  varies with A ;  for 
small relative variations of A we can take Sn,m SA. In the 
same approximation the variation of the elastic energy can be 
written SFeI= (USA, where (U is the surface tension of the 
membrane. For a free membrane we have a=O, since in 
equilibrium SFISA should be equal to zero. However, we 
have in mind the situation where the membrane is stretched 
between bulky aggregates of membranes and consequently is 
not free. Then the surface tension (U can be nonzero. 

Note that the value of the surface tension is strongly 
renormalized by fluctuations. Consequences of this fact are 
treated elsewhere.') Here we should stress only that every- 
thing said above is attributed to the renormalized surface 
tension, the value of which strongly differs from its bare 
value. Only the former controls the instability, so in what 
follows we are referring to the renormalized value. 

We are going to investigate a state of the tube which 
differs only slightly from the cylindrical one. For this pur- - - -  

Let us consider the energy associated with a membrane pose it is suitable to rewrite the expression for the energy in 
immersed in water. We will take into account the energy the following form 
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incorporating both the curvature energy and the elastic en- 
ergy. The latter is taken in the approximation linear in SA, 
since we will assume the value of SA to be much smaller 
than A .  In (1.2) r ,  cp and z are cylindrical coordinates with 
the z-axis along the axis of the cylinder, u(cp,z) is the dis- 
placement of the membrane in the radial direction from the 
radius R corresponding to the uniform cylinder: r=  R +  u; 
and I is the unit vector normal to the membrane with com- 
ponents 

The displacement u can be written as the following Fou- 
rier series 

where the integer m is the number of the angular harmonic 
and the longitudinal wave vector q equals 2nnlL, where n 
is an integer and L,  is the length of the tube. We will that due 
to the incompressibility of the water the fluctuations of the 
tube shape do not change its volume, which leads to the 
following constraint 

This condition excludes uoTo from the set of independent 
variables. 

Substituting the expressions (1.4), (1.5) into (1.2) we can 
obtain the free energy F in the form of a series of powers of 
u,,, . The zeroth term determines the energy of the unper- 
turbed tube and the higher order terms determine the energy 
associated with perturbations of the cylindrical shape. The 
first nonvanishing term is the second order term 

Here we have introduced the dimewionless parameter 

, u = m 2 + ( q ~ ) 2 .  (1.8) 

From (1.7) we conclude that for small a the cylinder is 
stable, while for large enough a it is absolutely unstable 
(which corresponds to the Rayleigh instability). The cylindri- 
cal shape becomes absolutely unstable for 

The instability is associated with small p ,  which implies 
m = 0 and small wave vectors q. 

Below we will examine the initial stage of the instability, 
which can be treated in terms of the second order term (1.6). 
To treat the fully developed stage of the instability one 
should take into account both higher-order terms of the Lan- 
dau expansion and fluctuation effects. This is the subject of a 
separate work. 

2. DYNAMICAL EQUATIONS 

To investigate the dynamics of a membrane tube one 
should use the hydrodynamic equations together with the 
boundary conditions on a membrane. The conditions are de- 
termined by the surface tension and by the curvature of the 
membrane. Their derivation can be found in Refs. 7 and 8. 
Here we merely reproduce the final results. 

The membrane tube can be described in terms of the 
displacement u in the radial direction (introduced in the pre- 
ceding section) and the surface density n,  of molecules. The 
dynamical equations for the quantities have the following 
form 

Here v, is the velocity of the membrane, v, is the radial 
component of the velocity and we define Vf = V i -  l i l k V k ,  
where I is the unit vector (1.3) normal to the membrane. 
Equation (2.1) means simply that the membrane moves with 
the velocity v, , and Eq. (2.2) is the conservation law of the 
number of membrane molecules. Their conservation means 
that we neglect the solubility of the membrane, which seems 
to agree with experimental situation. We stress that (2.1), 
(2.2) are exact nonlinear equations. The quantities u and n, 
are defined on the surface. We will assume that they are 
functions of cp, z. Note that any two coordinates can be taken 
as arguments of u and n, since Eqs. (2.1), (2.2) actually 
contain derivatives only along the membrane? 

Next, we formulate boundary conditions for the hydro- 
dynamic equations. The temperature and the velocity should 
be continuous on the membrane, that is the temperature T 
and the velocity v of the membrane should coincide with the 
temperature and the velocity of the surrounding water. The 
continuity of the velocity means that the membrane is ad- 
vected by the water without being permeated. The pressure P 
and the velocity gradient change discontinuously on the 
membrane. The jumps are determined by the equation 

= ( P l - P 2 ) l i + ( n l i k - n 2 i k ) l k  9 (2.3) 

where g = d m Z  and the subscripts 1 and 2 label the 
regions inside and outside the tube. In (2.3) 1 is the unit 
vector (1.3) normal to the membrane, p, is the surface mass 
density of the membrane, p is the density of the water, 71;) is 
the surface stress tensor, and nik is the viscous stress tensor 
entering the bulk equation 
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We will consider slow processes. This means that the condi- 
tion T=const is satisfied together with the incompressibility 
condition V i v i = O .  In this approximation the viscous stress 
tensor entering (2.3), (2.4) is 

where 7 is the viscous coefficient of the water. The surface 
stress tensor is7p8 

where 8$= 4,- l i l j .  
We are going to treat normal modes of the membrane 

tube. To find their dispersion laws we must treat the linear- 
ized hydrodynamic equations and boundary conditions. The 
linearized equation (2.4) has the form 

We will solve Eq. (2.7) in polar coordinates. Then we must 
add to the boundary conditions imposed on the motion of the 
liquid at the membrane also two conditions at r-+O and 
r+m.  Namely, values of all dependent variables must re- 
main finite at r-+O and tend to zero at r 4 m .  From (2.1) it 
follows that the linearized boundary condition is 

which should be imposed on the velocity at r =  R .  
We assume the surface tension a to be of the order of the 

critical value % , = 3 ~ / 2 ~ ~ .  Then the dynamics will be fairly 
soft, and we can regard the membrane as incompressible. 
Thus, the boundary condition (2.2) is reduced to V : v S i = 0 .  
Because of the incompressibility of water, V ;v i  = 0 ,  this con- 
dition reduces to l i lkVivk=O.  In the linear approximation in 
polar coordinates it may be rewritten as 

The linearized boundary conditions following from (2.3) 
are 

Here the prime denotes the variable part of the pressure P or 
of the surfactant concentration n, , and 

The parameter B in (2.10), (2.11) is B =  -n,daldn, .  We 
expect it to be of the order of the conventional magnitude of 
the surface tension so that B S a ,  since the surface tension 
a- a,, is anomalously small. In equations (2.10)-(2.12) we 
omitted the terms with dv,ldt ,  which make negligible con- 
tributions to the dispersion laws due to the softness of the 
process. In this expressions (2.10)-(2.12) we keep only 
terms with derivatives of a .  The point is that we have 
n , d ~ / d n , -  K ,  whereas B S  a. This together with the esti- 
mate a- d R 2  justifies neglecting derivatives of K. 

The velocity v in the general case can be written as 

The first terms containing $determine the irrotational part of 
the velocity. From (2.7) it follows that the variable part of 
the pressure P' equals 

The incompressibility condition means that the function $ 
satisfies the Laplace equation 

The terms in (2.14)-(2.16) containing 4 and x determine the 
rotational part of the velocity. The dynamical equations for 4 
and ,y can be derived from (2.7). They are 

Now we can begin to solve these linearized equations. 

3. DISPERSION RELATIONS 

Since we seek solutions of linear equations, whose coef- 
ficients do not explicitly depend on time, we can consider a 
solution rn exp( - i w t ) ,  where the frequency w is generally a 
complex number. We will also expand all quantities in Fou- 
rier series like (1.4). Passing to the Fourier representation we 
can make the replacement - ~ : - - t ~ ~ + m ~ / R ~ = , u l R ~ .  

A solution of the equation (2.18) with given values q 
and m behaves as 

where I , (qr)  and K,(qr )  are Bessel functions of imaginary 
argument. Solutions of Eqs. (2.19) behave as 
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I,(kr)exp(imcp+iqz) ,  r < R ,  

K,(kr)exp(imcp+ i q z ) ,  r > R ,  (3.2) 

where 

k 2 = q 2 - i o p l v .  

The coefficients of proportionality in (3.1), (3.2) are different 
in different regions. The coefficients are related by the 
boundary conditions (2.8)-(2.12). The solubility condition of 
the system of equations gives us the dispersion law determin- 
ing the frequency o as a function of q and m .  

Below we derive the general dispersion relation and also 
derive the dispersion laws in some particular cases corre- 
sponding to soft long-scale modes. In these cases the general 
dispersion law can be simplified considerably. 

Note also that in this section we will suppose that the 
liquids inside and outside the tube can be different, that is, 
they have different densities and viscosity coefficients. 

3.1. General dispersion relation 

In this subsection we derive the general dispersion rela- 
tion describing modes associated with variations of the mem- 
brane shape. For this we must find the matching conditions 
for the velocity determined by (2.14)-(2.16), (3.1), (3.2) at 
the membrane, that is, at r = R .  The first of these are the 
continuity conditions for the velocity, 

url=Ur2, u z ~ = u z 2 1  u,+71=~,+72. (3.4) 

Then we must also use (2.10)-(2.12). Eliminating the vari- 
able n, from (2.10), (2.1 1 )  we obtain 

Substituting (2.17) into (2.12) we find 

where a ( q , m )  is introduced by (1.7). The displacement u 
here is related to v through (2.8), which is rewritten as 
- i w u = v r .  

The relations (2.9), (3.4), ( 3 . 9 ,  (3.6) constitute the full 
system of boundary conditions for the six variables v ,  dvldr 
(the derivatives dvldz and dvlacp are continuous at r =  R due 
to the continuity of v ) .  To avoid misunderstanding we note 
that the relation (2.9), which should be satisfied at both the 
inner and outer sides of the vesicle actually gives only one 
condition. The point is that dvr l ld r  = 0 implies dvr2/dr  = 0 
because of the continuity of dvldz, dvldcp, and the incom- 
pressibility conditions V i v  , i= 0 ,  V i v z i =  0 .  

The above boundary conditions can be rewritten in terms 
of the functions $, cp  and X. Using now (3.1), (3.2) we find 
the general dispersion law. For simplicity we write it for the 
case when liquids inside and outside the tube are identical: 

=I, (qR)c;?-K m ( 9 R ) c l ,  (3.7) 

where a ( q , m )  is determined by (1.7), k2 is defined by (3.3) 
and 

d2=  c ~ R ~ ~ ( ~ R ) K ~ ( ~ R )  - ~ R K ~ ( ~ R ) I ~ ( ~ R ) .  

We have set ~ = ( m ~ + ( k R ) ~ ) l ( r n ~ + ( ~ R ) ~ )  in the above 
expressions. A dot over a function denotes a derivative with 
respect to its argument. 

3.2. Squeezing mode 

Let us first consider the squeezing mode, which is asso- 
ciated with the Rayleigh instability. This mode corresponds 
to the motion of the membrane with m=O.  From (3.7) one 
derives the following dispersion law: 

where 

Here we have written Io= lo (qR)  etc. In the long- 
wavelength limit q R 4  1 this mode has the asymptotic dis- 
persion law 

We see that in accordance with the static analysis the squeez- 
ing mode is unstable for a>ac,  . It is interesting to note that 
in the long-wavelength limit the dispersion law of this mode 
depends only on the viscosity of the liquid inside the tube. 

In the short-wavelength limit qR% 1 the asymptotic dis- 
persion law has the form 
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In this limit the mode spectrum does not depend on the shape 
of tube. The result (3.11) is well known for a flat 
membrane?710 

3.3. Squeezing mode near the threshold 

The critical value of a is a C r = 3 ~ / 2 R 2 .  Let us consider 
the case &-acr but with a - a c r 4 a c r .  Then the instability 
growth rate of the squeezing mode (3.10) can be rewritten as 

where 

Suppose that an external force is applied to the mem- 
brane. Then the equation for u at m = 0 (which corresponds 
to the squeezing mode) can be written as 

where w is the radial velocity induced by the force and is 
the linear operator corresponding to (3.12). A solution of 
(3.14) can be written as 

Here G ( t , z )  is the Green's function. From (3.12) it follows 
that 

For t S  7 ; 1 / ~ ~ q :  the integral in (3.16) is evaluated by the 
saddle point method and we find 

This expression represents the behavior of u caused by any 
influence localized near the origin and localized in time near 
r=O. We see that (3.17) is an oscillating function with am- 
plitude depending on time. Note that any point with a fixed 
amplitude moves with the velocity 

which does not depend on the amplitude. This result agrees 
at least qualitatively with the experiment.3 

3.4. Bending mode 

The next mode which is soft in the long-wavelength 
limit is the bending mode corresponding to m = 1 .  Its disper- 
sion law may be obtained from (3.7). Unfortunately, in the 

general case it is very involved. Therefore we present here 
only asymptotic expressions. In the long-wavelength limit 
q R 4  1 it is 

Note that this expression is determined only by the viscosity 
of the liquid outside the tube. The result (3.19) agrees with 
the corresponding formula of Ref. 11. In the short- 
wavelength limit qR* 1 the dispersion law of the bending 
mode has the same form (3.1 1) as for the squeezing mode. 
This coincidence is natural because in this limit both the 
bending mode and the squeezing mode can be treated as 
perturbations of a flat membrane. 

3.5. Concentration mode 

Let us consider the mode associated with the density 
variations of the membrane tube. We have already men- 
tioned that in the case under consideration the inequality 
B B a  holds. This condition enables us to treat the concen- 
tration mode and modes related to deformations of the tube 
shape independently. Investigating this mode we may ne- 
glect the deformation of the membrane, that is, consider the 
tube as a cylinder. We also need to take into account only the 
term in the surface stress tensor (2.6) depending on n , ,  
which is proportional to B = - n ,da /dn ,  . 

The most interesting is the case with m =O. Using the 
linearized boundary conditions (2.10), (2.1 1 )  it is easy to 
obtain the following dispersion law for the concentration 
mode: 

where 

In the long-wavelength limit q R G 1 one obtains 

The thermodynamic stability condition leads to daldn,<O, 
so this mode is a purely relaxational one. It is interesting that 
the asymptotic dispersion law is determined only by the vis- 
cosity of the liquid inside the tube as in the case of the 
squeezing mode. 

In the short-wavelength limit qR* 1 the dispersion law 
of the concentration mode is 

This dispersion law was first obtained in Ref. 12 for Lang- 
muir films. 
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4. CONCLUSION Equation (53) should have the form 

We have found equations describing the normal modes 
of the tube taking into account both the curvature energy and 
the surface tension of the membrane and examines the as- 
ymptotic behavior of the dispersion laws. There are three 
modes: squeezing, bending and concentration, which are soft 
in the long-wavelength limit. The softness of the squeezing 
and of the concentration modes is related to the conservation 
laws of the water inside the tube and of the number of its 
molecules; the softness of the bending mode is related to the 
homogeneity of the liquid. The squeezing mode is associated 
with the Rayleigh instability occurring at a subcritical value 
of the surface tension. Our analysis enables us to examine 
the early (linear) stage of the instability: by expanding any 
initial perturbation into Fourier series we can find its dynam- 
ics using these dispersion laws. It is interesting that for small 
subcritical values of the surface tension in growing perturba- 
tions initially localized near a point, points with a given am- 
plitude move with a constant velocity which depends criti- 
cally on the surface tension. The investigation of the 
nonlinear stage of the instability is a subject of a separate 
work. Note only that to describe the nonlinear stage one 
should seriously take into account fluctuations of the mem- 
brane shape. 

5. ERRATUM 

In a previous paper7 we made a mistake. Equation (39) 
of the paper should have the form 

a ~ ;  
Bvi)+-+2v, sin 8 d@ 

The dispersion relation for the bending modes should be also 
corrected. Instead of Eq. (49) we have 

where 

These equations do not coincide with the corresponding re- 
sults of Ref. 13 because the author has used our erroneous 
equation instead of (5.1). They also differ from the equations 
of Ref. 14 because the authors of Ref. 14 have considered the 
case of nonzero excess area, i.e., they studied fluctuations 
near a nonspherical surface. 
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