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We have investigated the possibility of generating explosive wave triplets and up-conversion of 
electromagnetic modes in a system consisting of a relativistic ion beam penetrating a 
strongly nonisothermal plasma. We derive here conditions for synchronism and the sign of the 
wave energy of the resonance triplets, and show that in this system it is possible to 
excite explosive or high-frequency instabilities. Based on an asymptotic method we derive and 
analyze truncated equations for the complex mode amplitudes. We show that the 
"explosion" is stabilized by a nonlinear frequency shift, while the high-frequency instability is 
analogous to the "decay" of low-frequency modes. Unlike the cases treated in well- 
known papers, we find that the matrix coefficients and the coefficient that characterizes the 
nonlinear frequency shift are complex, which leads to new solutions to the equations for complex 
wave amplitudes, even under identical initial conditions. O 1996 American Institute of 
Physics. [S 1063-7761 (96)00803-51 

1. INTRODUCTION 

It is known that explosive or high-frequency instabilities 
are possible in nonequilibrium media, one of which is, e.g., a 
beam-plasma system (see Refs. 1-7). An explosive instabil- 
ity appears if in the course of a resonant three-wave interac- 
tion one wave of higher frequency (or two of lower fre- 
quency) has negative energy, while the energies of the two 
other modes of the wave triplet (or the higher frequency 
wave) are positive.1) The case usually encountered is one 
where the mode of higher frequency w3 has negative energy 
(for example, in a system consisting of a cold plasma and a 
single-velocity beam this is the slow beam wave334). How- 
ever, studies of the explosive instability of a relativistic high- 
current circularly polarized wave in both isotropic8 and mag- 
netically active plasmasg have shown that the two lower 
modes of the resonance triplet have negative energy, while 
the energy of the higher-frequency mode is positive. The 
explosive instability is stabilized either by a nonlinear fre- 
quency shift1 or by nonlinear decay.'.10 The high-frequency 
instability6." is characteristic only of nonequilibrium media 
where the wave with intermediate frequency w, or w2 has 
negative energy, while the energy at w3 is positive; in this 
case the lower-frequency wave "decays," i.e., up- 
conversion takes place, and the modes at the top of the spec- 
trum grow exponentially, as occurs in ordinary decay-like 
in~tabilities.~ 

In this paper we study explosive instability in a system 
made up of a relativistic ion beam penetrating a strongly 
nonisothermal plasma (Tea Ti, where T,,i, are the tempera- 
tures of the electrons and ions). This problem has wide prac- 
tical application in plasma physics, astrophysics,12 and also 
in problems of current interest such as inertially controlled 
thermonuclear fusion.I3 Furthermore, it is clearly of interest 
in the general theory of wave interactions in nonequilibrium 
media.2) 

In this paper we investigate the dispersion equation, 
which describes normal modes of a system, the mode ener- 
gies, and the conditions for synchronism, and show that in 
this system both resonance explosive triplets and high- 
frequency instability are possible. In addition, we use asymp- 
totic m e t h ~ d s ' ~ - ' ~  to derive and analyze simplified equations 
for the complex wave amplitudes. We show that the "explo- 
sion" is stabilized by a nonlinear frequency shift, and the 
solutions to the simplified equations have a form entirely 
unlike that described in well-known papers (see, e.g., Ref. 
1)-the matrix coefficients are complex. Moreover the sys- 
tem supports a nonlinear mode decay, connected with the 
complex nature of the coefficient that characterizes synchro- 
nous wave interactions. We find a new solution to the sim- 
plified equations for the amplitudes of modes of the explo- 
sive triplet. In view of the cumbersome calculations involved 
in this problem, many of our results were obtained numeri- 
cally, which, of course, is not the goal of this paper. These 
numerical results merely help us interpret the physical effects 
that appear when we study the system described above. 

2. STARTING EQUATIONS. DISPERSION RELATIONS, 
CONDITIONS FOR SYNCHRONISM, MODE ENERGIES 

We start with the dimensionless system of equations that 
describes the potential motion of relativistic ions penetrating 
a strongly nonisothermal plasma,17 
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TABLE 11. Matrix coefficients of the interaction (yo > 1). 

FIG. 1 .  Dispersion relation w(k). 

where y= [ 1 - v 2 / ~ 2 ]  -'I2; ne = e'; n, , n are the dimension- 
less concentrations of electrons and ions, normalized to the 
background concentration No, v is the velocity of ions mov- 
ing along the x axis normalized by c, = d m ,  M is the 
ion mass, @ is a dimensionless electric field potential nor- 
malized by the quantity k,T,le (where k, is Boltzmann's 
constant, e is the ion charge), P is the pressure normalized 
by Nok,T - t is normalized by the ion Langmuir frequency 
oPi = J-, while the coordinate x is normalized by 
the Debye radius AD = d k B ~ e / 4 ~ e 2 ~ o ;  and 6=Ti/Te. The 
third equation in (2.1) describes adiabatic changes in the ion 
energy, while the fourth is the Poisson equation. 

Let us linearize (2.1), including quadratic and cubic 
terms in the Taylor-series expansion; these terms are omitted 
here for simplicity. From the linear system with processes of 
the form exp[i(wt - kx)] (where w and k are the frequency 
and wave vector) we obtain the dispersion equation for the 
system normal modes: 

- 3  y;uk2(k2+ 1)]=0, (2.2) 

where /3=c,voc-'; y,=pc,c-I; yo=(l-@)-"2; and vo is 
the equilibrium velocity of the ion beam. 

Naturally, as vo+O we obtain the dispersion equation 
for ion sound from (2.2) in the absence of the beam, while as 
y+O we find the well-known (see, e.g., Ref. 18) dispersion 

TABLE I. Characteristics of modes that satisfy the synchronism condition 
for a=O. 

'"I kl '"2 k2 '"3 k3 v o  Y1 

relation for a system consisting of a nonrelativistic ion beam 
and a nonisothermal plasma. We investigated the general 
form of Eq. (2.1) numerically; Fig. 1 shows a typical plot of 
the function w(k). From this function it is easy to see that the 
conditions for synchronism are fulfilled: 

(in the figure, the triplets are illustrated by the corresponding 
points). 

Next we investigate the energy of the resonantly inter- 
acting modes, using the expression given in Ref. 19. As a 
result of the analysis of the energy, it is easy to show that 
branches I in the figure (analogous to the slow beam waves) 
have negative energy, while branches I1 have positive energy 
(the fast beam mode). Thus, it appears that an explosive in- 
stability could be realized here. Furthermore, we note that 
the wave with intermediate frequency % can have negative 
energy, while the two other waves at w, and 0 3  have posi- 
tive, i.e., a high-frequency instability can appear (up- 
conversion in the spectrum). For clarity, we list the reso- 
nance triplets in Table I for various system parameters; the 
fourth row corresponds to the high-frequency instability. 

3. ANALYSIS OF SIMPLIFIED EQUATIONS FOR THE MODE 
AMPLITUDES 

We seek a solution to system (2.1), taking into account 
weak quadratic and cubic nonlinearities, of the form 

3 

@ = 2 aj(px,pt)exp[i(wt - kx)]+c.c. 
j =  1 

(3.1) 

(here p G  1 is a parameter that characterizes the nonlinearity). 
Then using the asymptotic method,18 we obtain simplified 
equations for the complex mode amplitudes in the standard 
way: 

TABLE 111. Coefficients that characterize the nonlinear frequency shift. 
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TABLE IV. Group velocities of modes of the resonance triplet. paper we have used the approximation of a weak nonlinear- 

No. v ( l )  9 ,,(') 4 "(3) 4 
ity, where the velocity of the beam is presumed to be given.4) 
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International Science Foundation No. R88300 and the Rus- 
sian Fund for Fundamental Research No. 95-02-05255. 

The expressions for the matrix coefficients a, and a, are 
complex and given in Tables I1 and 111; v y )  is the group 
velocity of the mode, and is listed in Table IV. 

Since a, and a, are complex, while the nonlinear absorp- 
tion ~ e ( z ? ,  ai)<O, the solution to Eq. (3.2) differs funda- 
mentally from that described in Ref. 1. For simplicity let us 
consider the spatially uniform case (dldx=O); then for the 
same initial conditions, system (3.2) has the solution3) 

where 

From analysis of (3.3) it is easy to verify that the func- 
tion u(t) increases monotonically from u(0) = uo up to 115 
in a way that differs fundamentally from that given in Ref. 1. 

In conclusion, we briefly discuss the high-frequency in- 
stability. In the given field of a low-frequency pump, where 
la21%-lal,31, the growth rate of the instability equals 

i.e., the amplitudes of the high-frequency waves grow in a 
way that is analogous to the exponential "decay" of the 
low-frequency mode. 

In conclusion, let us estimate the electromagnetic radia- 
tion generated in a beam-plasma system with the following 
parameters: no- 101° ~ m - ~ ;  T= 101° K; and c/cS=O.l. Then 
for a characteristic length of -10 '~  m, ion-sound waves 
(with X=30 cm) rise to a potential value of -0.7 V, or up to 
energies of 3.10-lo J. Since this amounts to a fraction of a 
percent of the kinetic energy of the ion beam, the 
undepleted-beam approach used in this model is completely 
valid. 

Thus, it is possible to generate high-power electromag- 
netic radiation in a system consisting of a relativistic ion 
beam and a nonisothermal plasma. The character of the ex- 
cited modes is completely different from known results pre- 
sented in Ref. I. The energy of the radiation is subtracted 
from the ion beam as long as the signal energy is not com- 
parable to the kinetic energy of the particle beam; however, 
this problem requires additional investigation, since in this 

')A wave of negative energy has a simple physical meaning (see Ref. 4): the 
energy of the system+wave is smaller than the energy of the system with- 
out the wave, i.e., by increasing the energy of the wave the nonequilibrium 
medium decreases its own energy. That is, an instability arises that is 
characteristic of the nonequilibrium medium. 

')In Ref. 17 the author showed that "explosive solitons" are possible in this 
system; however, he limited himself to numerical investigation of the pos- 
sibility of an "explosion" of solitons, and did not analyze the alternative 
possibility of explosive triplets. 

3 ) ~ o t e  that for the system parameters chosen here the linear growth rate of 
the instability equals zero. 

4)The problem of bunching of a nonrelativistic beam of electrons by poten- 
tial Langmuir waves was discussed in detail in Ref. 20. 
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