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Specific interference effects taking place in the weak-localization regime cause considerable 
renormalization of the group velocity and decay rate of phonons in an anharmonic lattice. The 
renormalization of the quasiparticle lifetime is especially marked. This effect may be 
stronger than Rayleigh scattering and conventional lattice anharmonicity mechanism. O 1996 
Anierican Institute of Physics. [S 1063-776 1 (96)O 1902- 11 

1. INTRODUCTION 1 
cn(pa2+ -2 A@ a/-? a P 

nnt'n'nr Currently the issue of weak localization of phonons, as 'n.nl 
well as of acoustic and optical waves, in disordered system is 
being discussed extensively.'-5 Note that phonon systems 
with the diagonal disorder have been investigated in detail in 
the coherent-potential approximation relatively recently.6 
Akkermans and ~ a ~ n a r d ~  focused their attention on specific 
localization effects which may take place in anharmonic sys- 
tems. 

The aim of our study was to investigate how phonon- 
density fluctuations (second sound) in the weak-localization 
regime affects the anharmonic interaction among phonons. 
Specifically, our purpose was to determine the effect of quan- 
tum interference corrections on the basic parameters of the 
phonon spectrum, namely the group velocity and decay rate 
in the long-wave limit. For simplicity we consider only the 
processes due to the cubic anharmonicity, since the fourth- 
order anharmonicity in the limit k+O has little effect on the 
phonon ~pectrum.~ 

Investigations of phonon localization are often applied to 
the qualitative analysis of the dynamic properties of amor- 
phous systems. We use our results to interpret the anomaly in 
the temperature dependence of the reciprocal' ultrasound at- 
tenuation length T, which is commonly observed in the tem- 
perature interval where the thermal conductivity is a flat 
function of temperature. 

Our theory can be applied to other objects, including, 
first, doped quantum crystals, in which the anharmonicity is 
strong. These include, for example, solid solutions of neon 
and argon in parahydrogen at an impurity concentration of 
- 0.1 %. Anomalies in their thermal conductivity have been 
observed quite recently.9 Second, there are single crystals of 
a very high purity, but composed of different isotopes (for 
example, the natural mixture of germanium isotopes). 

Here Ho denotes the hamiltonian of the pure harmonic lat- 
tice, Hi, is the perturbation due to impurities, and H' de- 
notes the hamiltonian of the harmonic doped lattice. The 
term Hint describes the dynamic anharmonic interaction of 
ions. As usual, the parameters u: and p z  are Cartesian com- 
ponents of the displacement and momentum of an atom at 
the site n, M and Mo are the masses of the impurity and host 
atom, respectively (we assume that the impurity is heavier, 
i.e., MSMO),  @,,, and iPnn,,,t are elements of dynamic 
matrices of second and third order. In what follows the label 
"0" denotes parameters of the host lattice. The factor c, 
equals zero if a host atom is at the site n and unity if there is 
an impurity at the site. The configurational average (c,), 
equals the impurity concentration c. 

For simplicity we assume that the dynamic matrices are 
diagonal with respect to Cartesian indices. For brevity, the 
combination of the site (n) and Cartesian (a) indices is de- 
noted by n.  

In our calculations described in Sec. 3 we presume that 
the disorder is diagonal, i.e., the impurities are considered as 
isotopic defects, and the dynamic matrices @,,r ,n  and 
@~) , , , ,  are identical. Thus, only the anharmonicity of the 
host lattice is taken into account, and it is fairly weak. Our 
results can be generalized for the case of nondiagonal disor- 
der, when A@,,, = 0  (see the discussion at the end of this 

2. GENERAL EQUATIONS FOR THE MASS OPERATOR section). 
Let us introduce a one-particle retarded Green's function 

Consider a crystal with isolated impurity atoms. We shall G +  constructed from the atomic displacement operators 
describe its dynamic properties by the Hamiltonian U, . We have 

H=Ho+Him+Hint=Hr +Hint,  

where 
~ , ' , , ( t -  t ' )  = - i O ( t - t r ) ( [ u n ( t ) , u n , ( r ' > ] ) .  

One can prove that the Green's function averaged over im- 
purity configurations is approximately determined by an 
equation of the form8 
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In Eq. (2) the symbol (...), denotes the configurational av- 
erage, and G +  is the one-particle function corresponding to 
the total harmonic Hamiltonian averaged over impurity con- 
figurations. We also define 

where G- is the advanced Green's function, and P= 1/T. 
Note that (KG +) - (G'G-), is the two-particle Green's 

function. We also emphasize that the second term on the 
right of Eq. (2) is a product of the components of the anhar- 
monic dynamic matrix and the one-particle and two-particle 
Green's functions. This product, in particular, determines the 
anharmonic coupling between single-phonon excitations and 
fluctuations of the phonon density near defects. 

Note that the spatial Fourier component of the one- 
particle Green's function G in the momentum representation 
can be expressed as 

where Dk is the quasiparticle dispersion law and 7; is their 
lifetime. 

The parameters Ok and r; , and the factor Q can be 
expressed in terms of the real and imaginary parts of the 
impurity mass operator responsible for elastic scattering, 
P i (o )  and o / r i ,  respectively (see for details Ref. 10): 

As for the two-particle Green's function G2 in Eq. (2), 
we determine it neglecting the anharmonic interatomic inter- 
action. Then in the momentum representation in the general 
case G2 satisfies a Bethe-Salpeter equation of the form 

G2(k,k1,0)= lim ( ~ ~ ~ ~ ( o ) G ~ , ~ ~ ( o - - ~ ) ) ,  
n-o 

= l i r n ( ~ : ( o ) G < ( o - - i l ) ( 8 ~ ~ ,  
n-o 

In the limit of small q = k+ k1 and w 4 0 ,  the vertex part 
U is determined by "fan" diagrams.2"1312 In the case of a 
lattice with point defects, the summation of such diagrams 
for a generalized vertex yields an expression of the form13 

If the initial vertex Vi is defined neglecting the probability of 
multiple occupation of one lattice site (i.e., when two or 
more impurities are generated at one site in the formal 
model), then 

W 
L T V . 7  

' mri(o)g(w2) ' 
g ( 0 2 ) = ~ i ( w 2 ) .  

Here 

is the density of quasi-particles with a momentum k and 
energy Ok. If the effect of multiple occupation is taken into 
account, 

L= V;(l + v;G,',G,)-~. 

Now we give an expression for the vertex U under the con- 
ditions 

ql(w)-e 1, f i r i+  1 . ( 5 )  

Here l (o )  = u(o )  r;(o) is the quasiparticle free path due to 
elastic scattering and v is the group velocity of the quasipar- 
ticles. The corresponding expression for U has the standard 
form: l3  

where Do = u2rit/3 is the diffusion coefficient. 
Using the expressions for G2, i.e., Eqs. (4) and (6), we 

can prove that the spatial Fourier component of the one- 
particle Green's function G+  in Eq. (2) in the momentum 
representation is described by the following chain of equa- 
tions: 

The individual terms in the equation for the anharmonic 
mass operator C A  are defined as 

where Qkklk2 and Kq are the spatial Fourier components of 
@nnll,t~ and the K-correlator in Eq. (2'). 

Equation (7) is standard, whereas Eq. (S), which con- 
tains the diffusion vertex U ,  describes the specific anhar- 
monic interaction between virtual phonons and fluctuations 
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of the phonon density in a disordered system. Below we shall 
discuss only processes involving two-phonon coherent states. 
In other terms, we take into account only the "coherent 
backscattering." It is well known that they control the weak 
localization. We shall also prove that such processes may 
lead to a considerable renormalization of the basic phonon 
parameters in the acoustic limit at k4O.  

If only the coherent backscattering is taken into account, 
we have instead of Eq. (8) the following equation for the 
nonstandard part of the anharmonic operator: 

Here the summation over q is limited to the small parameter 
q,= .rrll(w), where l(w) is the phonon free path due to elas- 
tic scattering. 

In order to proceed with our derivation, we must explic- 
itly express the anharmonic vertex Qkklk2. We present it in 
the conventional form, i.e., 

where y2 and y3 are the effective harmonic and anharmonic 
dynamic constants. The following relationships among these 
dynamic parameters hold approximately: 

where ( u 2 )  is the averaged square of the atomic displace- 
ments, WD is the Debye frequency, a is the typical inter- 
atomic separation, and aA is the anharmonicity parameter. 
This parameter may range between and lo-', but can- 
not be (Ref. 14). 

Now let us discuss the standard expression (7) for the 
mass operator. It is important that the quasi-momentum is 
conserved at its vertices. In the limit k-+O we 

where nq= [exp(Pwq)- I]-' and f(T) is a function of tem- 
perature which is finite at T=O. 

Thus, the velocity of sound is renormalized by the cubic 
anharmonicity, and it becomes a function of temperature. As 
for the effect of the anharmonicity on the sound damping, it 
is, generally speaking, negligible in comparison to the Ray- 
leigh scattering from impurities. 

Consider the nonstandard expression for the mass opera- 
tor in Eq. (8'). Note that the diffusion vertex part in it de- 
scribes the specific interference between phonons with quasi- 
momenta k+ ql  and ql  . Given these interference processes, 
limitations on the value of the vector q can be ignored. 

In the limiting case of interest to us defined by Eq. (5) 
the real component ~ r ' ,  taking into account Eq. (9), is pre- 
sented in the form 

One can easily show that 

As a result we have 

= W 2 ~ ( b )  
k 1 ( W T ) .  (11) 

The imaginary part Zyf in the same approximation for 
w , k j O  is determined by the equation 

where 

From this it follows that, first, 

and second, 

With due account of the latter two approximate equations, 
we finally have 
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Note that the parameters A:", A ' ~ ~ ' ,  and A?' are de- 
fined by Eqs. (lo), (II) ,  and (1 1'). It is essential for our 
further analysis that and A:"' are independent of fre- 
quency, and A:') 6. 

Now we shall discuss the derived expressions for the 
mass operator xA of the quasiparticles. Comparing the fre- 
quency dependence in Eqs. (lo), (lo'), and (I I ) ,  (1 I t ) ,  we 
can see immediately that in the long-wave limit the interfer- 
ence effects in the phonon scattering from impurities due to 
the anharmonicity may lead to a considerable renormaliza- 
tion of zA.  Its imaginary component can vary more rapidly. 
The decay of phonons due to the nonstandard anharmonic 
processes may be faster than those due the Rayleigh and 
standard anharmonic scattering. The real component of C, 
should also change considerably. In order of magnitude 

Re 2 f ) l ~ e  2y) - &lo,. 

Note that in our calculation we assumed that all the de- 
fect were isotopic, i.e., the interatomic interaction parameters 
are equal for the host and impurity atoms: y2= y i O ) .  A ques- 
tion arises whether our results can be generalized to the case 
in which host and impurity atoms have different interaction 
parameters. Our answer is positive. First, the one-particle 
Green's function in the basic equations of the theory presents 
no difficulty and is described by Eq. (3) with different pa- 
rameters. Second, the vertex part of the two-particle Green's 
function equation should be modified. It turns out that for 
y2# yiO) the structure of the equation for the vertex V is the 
same. Naturally, the parameters g,  7; , and Q in the equation 
for the Green's function and the vertex part, which are func- 
tions of M - M o  and y 2 -  y$O) (see for details Ref. 13), 
should be redefined. Taking this into account, we can analyze 
the more general case. 

Let us summarize our discussion. We have considered 
the processes in which the anharmonic interaction couples 
acoustic phonons to fluctuations of the phonon density 
around a defect in the weak-localization regime. We have 
found that if the conditions (5 )  are satisfied, specific interfer- 
ence processes may lead to a considerable renormalization of 
the phonon mass operator. 

3. PARAMETERS OF THE PHONON SPECTRUM AND 
ACOUSTIC ATTENUATION FACTOR IN THE ULTRASOUND 
LIMIT 

Let us start with a harmonic lattice. First we consider the 
dispersion equation, which defines the effective frequency 
9, and the damping of acoustic modes. It is written as fol- 
lows: 

Assume that 

Given that for w-, 0 we have 

we can prove that 

Here v o  is the phonon group velocity in the host lattice, 
Tit = d l o 4  is the phonon lifetime due to the Rayleigh scatter- 
ing (d  is independent of frequency). 

It is known that the sound damping factor is defined as 

where k is the complex wave vector of a mode propagating 
across a crystal.16 Note that, according to Eq. (12), the factor 
T = A k  is proportional to w4 and does not depend on tem- 
perature. 

Now let us consider an anharmonic crystal. The corre- 
sponding dispersion equation is 

Using our equations derived above, we can easily prove that 
in the long-wave limit the sound velocity and phonon decay 
rate are determined by the approximate equations 

From this it follows that in an anharmonic crystal specific 
interference effects lead to substantial renormaliiations of 
the parameters v and 117. Since the parameter is con- 
stant with the frequency, the quasiparticle decay rate may be 
controlled by the interference effects, which are stronger 
than both the Rayleigh and standard anharmonic scattering. 

In the ultrasound limit, we can derive an equation for the 
reciprocal attenuation length r of ultrasound using our pre- 
vious equations and neglecting the Rayleigh term 7:': 

It follows from Eq. (14) that in an anharmonic lattice 
with impurities the factor r is proportional to the frequency 
o and is a function of temperature. The phonon decay rate is 
determined by specific anharmonic effects, including fluctua- 
tions of the phonon density around defects (recall that the 
temperature in this case is quite low, T= 10 K 4 0 D ) .  These 
specific processes control both the frequency and the tem- 
perature dependence of the reciprocal ultrasound attenuation 
length. Note that in our model the velocity of sound is de- 
termined by standard anharmonic processes. 

Below we consider a specific example-a lattice with 
low-frequency resonant scatterers. 
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4. A MODEL OF A NONIDEAL LATTICE WlTH LOW- 
FREQUENCY ANTICROSSING SPLITTING OF ACOUSTIC 
SPECTRUM 

Let us determine the density of states g, group velocity 
u ,  and the lifetime T of quasi-particles in a harmonic lattice 
when the acoustic spectrum has an anticrossing with a low- 
frequency quasi-local resonance. These parameters charac- 
terize the phonon-spectrum renormalization due to anharmo- 
nicity. 

Let us consider a simple cubic lattice with a scalar inter- 
action between neighboring atoms. According to the state- 
ment of the problem , heavier impurity atoms are placed at 
some of its sites. We assume that the dynamic parameters of 
the interaction between impurity atom and host atoms may 
differ from the dynamic parameters of the host lattice, 
namely 

The impurity concentration is relatively low, i.e., c< 1. We 
only take into account pair dynamic interaction between the 
impurities. 

It is known that the scattering t-matrix has a resonant 
singularity around the frequency oR+o,. If variations in 
the local dynamic parameters are included, then13'17 

On the other hand, 

For brevity, we have introduced the dimensionless param- 
eters 

O2 
2 2 

("k ("R X = T ,  X ~ = T ,  X R = ~ .  

OD (" D W D  

Now let us determine the reciprocal ultrasound attenua- 
tion length in this model. To this end, we express the factors 
A\:,) in Eq. (14) for r using the explicit expressions for rit 
[Eq. (16)] and u [Eq. (17)l. The main contributions to the 
integrals in equations for ~ ( [ f ; )  come from the frequency band 
corresponding to the lower branch. One can prove that 

Now we shall comment about Eq. (18). First, in the ab- 
sence of cross splitting (anticrossing) and in the presence of 
a resonant local mode we have 

Since in the case of anticrossing the parameters c and X R  

satisfy the condition cax;t/', the attenuation factor r in Eq. 
(18) is, generally speaking, larger than T, in Eq. (18'). Sec- 
ond, note the temperature dependence of the reciprocal ultra- 
sound attenuation length. At very low temperatures it is con- 
stant, and at higher temperatures it grows linearly with the 
temperature. 

5. COMPARISON WlTH EXPERIMENTAL DATA 

5.1. Amorphous systems 

Studies of the phonon weak localization are often ap- 
plied to the qualitative analysis of dynamic properties of 
amorphous systems. We use our results to interpret an 
anomaly in the temperature dependence of the reciprocal ul- 
trasound attenuation length T, which is commonly observed 
in amorphous systems in the temperature range where a pla- 
teau in thermal conductivity is observed. 

Present-day concepts of the temperature dependence of 
r are based on the models of structural defectsI8 (see also 
the review by Gol'danskii and ~ l e rov '~ ) ,  soft atomic 
c0nfi~urations,2~~~' and localized excitations like 
f r a c t o n ~ . ~ ~ . ~ ~  Note that all these models are in fact phenorn- 
enological. We propose a microscopic model to interpret the 
temperature dependence of r (other possible microscopic 
models were discussed by Yu and ~ e ~ ~ e t t ' ~ ) .  

We must stress that a model of localized modes in amor- 
phous systems with energies of 1-3 meV can be constructed 
using the available experimental data. First, there are regions 
of a higher density with a typical dimension of several tens 
of angstroms. It is generally accepted that they contain a lot 
of interstitial defects. The effective local dynamic lattice pa- 
rameters in these regions are stringent. Hence the low- 
frequency branch of the phonon spectrum can be modelled 
using a lattice with interstitial defects of a large effective 
m a ~ s . ~ ~ " ~  Second, the dynamic parameters of interaction be- 
tween the host lattice and defects have some distribution. It 
is due to fluctuations in the field of static displacements and 
is, naturally, a function of the structural disorder, which de- 
pends on the growth technique and annealing regime. 

We therefore assume that there are localized modes with 
a typical energy ORFJ 1 meV in a lattice with defects (for 
simplicity we presume that the distribution function of local 
dynamic parameters is a Lorentzian centered at wR). Corre- 
sponding to this is XR- According to experimental 
data (neutron-scattering measurements given in Refs. 27- 
29), the concentration of localized modes is c-0.5. lop2. In 
this situation, we must describe the material with defects 
using the model with an anticrossing between the phonon 
branch and localized modes. 

In this case, according to Eq. (la), 

It is clear that Eq. (19) gives a qualitatively correct descrip- 
tion of the temperature dependence of the ultrasound attenu- 
ation length in a temperature range where the thermal con- 
ductivity is approximately constant (beyond this range the 
thermal conductivity grows linearly with T). This result can 
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be compared to experimental data on the amorphous material 
SiO, in which the attenuation length was measured at a fre- 
quency w = 2 .  lo7 ~ z . ~ ~ ~ ~ ~  If we assume a,= lo-', 
the agreement with the experiment is quite reasonable. 

5.2. Quantum crystals 

As was noted in Introduction, our results can be applied 
to low-temperature properties of quantum crystals, such as 
dilute solutions of neon and argon in parahydrogen. The 
samples have a concentration of chemical impurities of about 
lop8 and a concentration of very heavy defects c=  (1 
ppm) or higher. The typical sample dimension is 6 mm. The 
thermal conductivity of such samples has been measured? 
and the decay rate of phonons due to scattering from bound- 
aries in pure crystals (without Ne and Ar impurities) was 
estimated to be 7; = 5 - 10' S- I .  

According to experimental data, Ne atoms behave as iso- 
topic defects, whereas the change in the local dynamic pa- 
rameters for Ar atoms is essential. In both cases, the effective 
frequency of the resonant mode is determined by Eq. (15). 
Since the concentration of defects is low, the anticrossing 
effects can be neglected and the standard theory can be em- 
ployed. According to Eq. (18a), the decay rate of phonons 
due to the quantum interference can be estimated as 

and if wsw,  ( s  1012 Hz) this estimate is correct within an 
order of magnitude. 

Only the low-frequency band is essential in integrals 
which determine the low-temperature thermal condu~tivity.'~ 
Although the defect concentration is very small (c- 
lop4), the decay rates 117, and l/rqn(w) (w-wR) may be 
comparable because the anharmonism parameter is large. 
As a result, the contribution of specific interference pro- 
cesses may be finite. (We discuss the complicated behavior 
of the thermal conductivity in dilute solutions of neon and 
argon in parahydrogen in another publication3'.) 

The effects of anharmonicity and weak localization may 
take place in chemically pure crystals composed of several 
isotopes. The anharmonicity is weak in this case, but, on the 
other hand, the effective parameter of squared atomic mass 
fluctuations  AM^ inserted in Eq. (18) instead of the concen- 
tration c is quite large; as a result, these effects may be 
important in such systems, for example, in ultrasound damp- 
ing and low-temperature thermal conductivity. 

6. CONCLUSION 

First, let us compare our results to the conclusions by 
Akkermans and ~ a ~ n a r d :  who were the first to study the 
anharmonic effect taking into account fluctuations of the 
phonon density on the spectrum of quasiparticles. They ana- 
lyzed peculiarities of the quasi-particle spectrum near the 
localization threshold in a hypothetical situation with un- 
specified parameters of the theory. We have studied the case 
k+O, i.e., far from expected localization thresholds, using a 
realistic microscopic model. Exact solutions can be derived 
in this model. We must stress that the low-frequency charac- 

teristics of phonons and parameters of the anharmonic inter- 
action are steep functions of frequency, therefore models that 
yield exact solutions are necessary for our study. 

In this work we have analyzed the effects of fluctuations 
of the phonon density on the basic characteristics of quasi- 
particles (group velocity u and decay rate 117) in the long- 
wave limit at low temperatures (TG OD) .  The cubic anhar- 
monism was taken into account in deriving the mass 
operator. Two-phonon coherent states taking place in the 
weak-localization regime were also included. We have dem- 
onstrated that in the case of cubic anharmonism the specific 
interference processes lead to a considerable renormalization 
of phonon-spectrum parameters. The effect of the fourth- 
order anharmonism is weaker if phonon-density fluctuations 
are taken into account (see for details Ref. 8). It is important 
when the frequency is close to the localization thre~hold.~' 
The reciprocal length of ultrasound damping has been calcu- 
lated. We have discussed a specific microscopic model-a 
lattice with low-frequency resonant scatterers with a typical 
frequency w,= 10 K. Our results may be useful in a quali- 
tative description of the reciprocal length of ultrasound 
damping in disordered solids and of the low-temperature 
thermal conductivity. Preliminary results were published in 
Ref. 8. 
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