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It is shown that under certain conditions dynamical spontaneous breaking of chiral symmetry 
transforms the generations of interacting massless fermions into a state in which a 
spectrum with a hierarchy of masses and mixing of the generations corresponds to a minimum of 
the system energy. Thus, these characteristic features in the spectrum of the standard quark 
generations can arise directly from the internal properties of the spontaneously arising ground state 
of the system. O 1996 American Institute of Physics. [ S  1063-7761(96)00202-XI 

1. INTRODUCTION possible dynamics of the formation of a mass hierarchy and 

The standard model of the electroweak interactions gives mixing. The occurrence of the hierarchies is attributed to 

a phenomenologically successful description of the observed different generations of perturbative couplings.7 The low 

properties of the generations of fermions and gauge bosons. masses are determined in terms of the high mass as radiative 

the same time, many features of this successfu~ phenom- corrections with respect to such interactions.* Mixing of the 

enology give a hint that it could arise from a more general, quarks arises through inclusion in the Lagrangian of direct 
probably dynamical scheme. For example, soon after the perturbative between the generationsag 

mass of the r quark had been determined,' it was finally In this paper, it is assumed (as in Refs. 3-6) that the 

established that there are large and relatively closely spaced basic properties the standard must be generated 

energy scales in different phenomenologically independent a new dynamics at short distances -M- ' 4 ~ 6 ' 9  directly in 

sectors of the standard model: the vector bosons. the highest the ~trong-cou~ling region- We investigate the possibility and 
" 

quark generation, and the possible Higgs scalars. This pro- 
vided serious support for a nonstandard connection between 
the phenomena and their origin in a single dynamical mecha- 
nism. 

Another convincing indication in support of the exist- 
ence of new dynamics beyond the standard model is repre- 
sented by the clear mass hierarchies in the fermion genera- 
tions and the elements of the matrix of weak mixing of the 
quarks. In the standard model, these obvious regularities are 
regarded as the result of a fortuitous choice of the constants 
of the Yukawa couplings, among which some are exception- 
ally small; moreover, there is no dynamics in this choice. 

The search for a dynamical explanation of the properties 
of the standard model began already in the seventies2 At that 
time, the idea of a universal mechanism encompassing all 
features of the standard model simultaneously had not ap- 
peared. However, dynamical mechanisms for each of the 
phenomena were intensively discussed. 

A common energy scale results from the hypothesis of 
strong coupling between t quarks that acts over distances 
much less than those characteristic for the electroweak 
breaking: - M -  M i 1  (Refs. 3 and 4). It is then found that 
the masses of the t quark, the vector bosons, and the com- 
posite Higgs scalar have the same order of magnitude.5 They 
are all determined by the density of the t condensate and by 
coupling constants that are -1. However, the distinguished 
role of the t quark, which is separated from the complete 
system of fermion generations, makes it difficult to under- 
stand the origin of the small masses. It is not clear over what 
distances, -M-' or -Mi ' ,  the mechanisms that bring into 
consideration the masses of the other fermions act.6 

For many years now there has also been study of the 

the conditions under which such a dynamics is capable of 
leading simultaneously to breaking of the symmetries of the 
electroweak theory, a single scale for the phenomena, a hier- 
archy of fermion masses, and generation mixing. The heavi- 
est generation is not distinguished in advance. All the effects 
arise from the action of a single dynamical mechanism- 
spontaneous breaking of chiral symmetry. However, we shall 
establish at the same time that different forces participate 
explicitly in its formation. 

We investigate the necessary properties for a simplified 
model in which we retain at short distances only the part of 
the interaction that approximates the conjectured strong cou- 
pling. In this respect, we follow the idea of Ref. 3. It will be 
shown that in multiflavor systems dynamical breaking of chi- 
ral symmetry is capable of transforming the system into a 
state corresponding to a mass hierarchy and mixing of the 
flavors (generations); moreover, the mixing occurs spontane- 
ously, without explicit introduction of transitions into the La- 
grangian. These properties are intrinsic properties of the new 
ground state of the system. 

As in Refs. 3-6, in the model we choose (Sec. 2) the 
strong coupling at distances -Me' will be approximated by 
a four-fermion interaction. The calculations of Ref. 5 show 
that such an approximation can be regarded as sufficient to 
establish the qualitative conditions needed for the formation 
of the properties of the standard model. At the same time, the 
attainment of quantitative agreement may require allowance 
for  correction^.^ 

In the case of a four-fermion local coupling, we are deal- 
ing with a form of the Nambu-Jona-Lasinio (NJL) model,1° 
which is often used to represent relativistic dynamical break- 
ing of chiral symmetry." This unrenormalizable model is 
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usually treated in the leading approximation in the number of 
fermion colors: N , . B  I .  For a system of several flavors, hier- 
archy properties are absent in this approximation. Only ex- 
tension of the NJL models in the next order in N, makes it 
possible to establish the existence of new solutions for which 
a spectrum with flavor mass hierarchy and the necessary 
mixing corresponds to the most stable state of the system. 
The possibility of such an extension is discussed in Sec. 3. 

The states thus obtained could serve as a basis for an 
understanding of the real systems of quark generations. For 
this, it is necessary to include in the treatment flavor- 
changing neutral currents, possible pseudo-Goldstone 
bosons, and a mass difference of the upper and lower quarks. 
We defer the transition to more realistic schemes to the fu- 
ture. 

In addition, there remains the problem of the transition 
from the strong-coupling region to the observed (- M w  ,m,) 
region. The considered model corresponds to the dynamics at 
short distances -M-'. This separation of the regions is not 
dictated on physical grounds, but it does facilitate, indeed 
make possible, the analysis. However, as is well known? this 
requires fine tuning of the parameters of the model, which 
must be chosen extremely close (-m:lM2e1) to a critical 
point. With regard to this situation, various points of view 
have been advanced. Our treatment makes the problem 
somewhat less severe by replacing the proximity factor 
rn:lM2 by the model-dependent small but constant factor 
N,', which does not depend on the quantity in, to be deter- 
mined. 

It was shown in the studies of Ref. 12 that if the pertur- 
bative interactions that distinguish the quark generations are 
generated by a neutral vector (pseudovector) particle, then 
the mass hierarchy and the main properties of the weak- 
mixing matrix arise simultaneously and without additional 
assumptions. The dynamical reconstruction of the situation 
in Ref. 12 presupposed the existence in the massless system 
of standard quarks of a ground state of precisely the type 
found here. Therefore, our treatment supports dynamically 
the phenomenological picture of Ref. 12. 

In Sec. 2, we justify the form of the NJL model that we 
choose. In Secs. 3 and 4, we derive the equation for the mass 
spectrum of the fermions in the model. The solution for the 
highest mass is discussed in Sec. 5. The solutions for the 
light generations are considered in Sec. 6. 

2. CHOICE OF THE MODEL 

As potential that models the strong coupling in the re- 
gion - M +  Mw, we consider the four-fermion interaction of 
n flavors (generations) of L and R chiral quarks with N, 
colors a, p: 

N, n 

When the constant i i i l = X o  does not depend on the flavor 
indices i ,  i ' ,  we have a symmetric UL(n) X UR(n) X SU(N,) 
form. It has frequently been to investigate problems 
raised by the hypothesis of a r condensate. 

FIG. 1 .  Quark-antiquark amplitude in the theory with vector coupling (the 
hatched region symbolizes the strong coupling). 

The exact symmetry of the problem (1) is 
[U,(1)lnX [UR(1)InX SU(N,). There are no transitions be- 
tween i  or i ' ,  and therefore mixing can arise only spontane- 
ously. This is one of the physical reasons that dictates the 
choice of (1). 

A second reason is as follows. A Fierz transformation 
(see Ref. 11) carries (1) into a combination of vector-vector 
L X  R couplings (including color). Therefore, (I)  can be un- 
derstood as a local effective L X R potential for a theory in 
which all interactions are generated exclusively by vector 
fields.') Indeed, any number of vector exchanges between the 
massless L and R fermions (Fig. 1) generates precisely a 
vector-vector coupling in the local limit. Flavor conserva- 
tion then means that all vector interactions are diagonal with 
respect to them. 

Since the possible dynamical theory explaining the prop- 
erties of the standard model can be expected to be a gauge 
theory, the potential (1) is a very acceptable model of the 
local low-energy limit of this theory. It was shown in the 
studies of Ref. 12 that to explain the main properties of the 
standard model it is sufficient if, in addition to gluons and 
weak vector bosons, there are just neutral vector fields Zl,. 
This then means that one can consider conserved flavors, and 
the constants X i i t  are the elements of a diagonal matrix in the 
space of the R and L flavor indices i ,  i' and the chiralities a, 

.2) f f f = R ,  L .  

In addition, the neutral scalar form (1) is also distin- 
guished by the following property: Among all flavor- 
conserving local forms of coupling of two quarks, it alone 
makes a contribution to lowest order in N, to the equation 
for the fermion masses [see Eq. (6)]. 

To conclude this section, we discuss the possible nature 
of the dependence of X i i l  on the indices i ,  i ' .  For this, we 
again return to the studies of Ref. 12. 

In them, it was shown phenomenologically that the hier- 
archy and structure of the weak-mixing matrix can be simul- 
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L ' R  - + - FIG. 2. Equation for the nlass operator. 
i i' i Aii. i' 

a b 

taneously and in detail reproduced if the flavor- the type (3) does not have a solution with a mass hierarchy 
distinguishing interaction has a perturbative nature and is m , S m 2 + .  . . % m,, . However, the necessary properties do 
realized by neutral vector fields: arise when the next two orders in N, are taken into account. 

( f ) -  (*(fly G([) )~; ,  
In the given approximation, the gap equation is repre- 

vi -gi LI ,u LI sented graphically by Fig. 2. If the inverse propagator with 

f l f )=gif ) (*g)Yp$kf))~; ,  f = ~ , d .  (3) nondiagonal mass matrix I: is written in the form3) 

Attempts on this basis to construct a dynamical picture 
of the occurrence of the quark masses and mixing lead to the 
assumption of critical phenomena of the type considered in 
this paper. At the same time, the constant X i i r  arises in the 
form of a series in g i  and gi (Ref. 12) (here, different fami- 
lies of U and D are not considered): 

A i i ~ = A o + S A i i r = X o + a g i + b ~ i ~ + ~ g i g i ~ + ~ - ~  , 

I S ~ ; ~ l l e x ~ .  (4) 

The diagrams of Fig. 1 illustrate and even prove the 
expansion (4) if all interactions between the quarks are real- 
ized solely by the vector fields, while the perturbative par- 
ticipation of the couplings (3) introduces into the system a 
difference between the flavors. 

In what follows, we shall assume that Aiir have proper- 
ties similar to those in the expression (4), since it qualita- 
tively reproduces the picture of the standard model. The par- 
ticular form of (3) is not used. 

Note that expressions of the type (3) and (4) must fix the 
difference of thi operators GLi, with respect to the fla- 
vor indices i, i t  and determine the flavor basis in which the 
constant Xiif  in (1) is expressed. 

Thus, the situation with which we begin our study is 
close to a symmetric case: All flavors are equivalent, and a 
highest generation is not distinguished. 

3. EQUATION FOR THE MASS MATRIX (GAP EQUATION) 

Spontaneous breaking of chiral symmetry has the conse- 
quence that the equations for the self-energies of the mass- 
less fermions have solutions with masses that are not equal 
to zero. The equation for the masses is an analog of the gap 
equation in superconductivity, and this name is also used in 
relativistic problems of the spontaneous breaking of chiral 
symmetry.571071' If there is to be mixing, the mass matrix of 
the system of fermions must be nondiagonal. The gap equa- 
tion becomes a system that determines not only the masses 
but also the mixing parameters. 

In NJL problems, the gap equation is written in the form 
of an expansion with respect to the large number N, of col- 
ors. At the same time, the parameter AN,M' remains finite in 
the limit N,Aw. Usually, the solution is restricted to just the 
leading term in N, (Refs. 10 and 11). As we shall see below, 
in such an approximation the system of n generations of 
quarks interacting with the potential (1) and form of X,,I of 

( G - ~ ) ~ ~ ,  =Xii,-@Siif , 

then the equation for the matrix 2 is 

The first term is the single-loop term (Fig. 2a), and the sec- 
ond is the contribution -N, ' (Fig. 2b). In Eq. (6), 
N,'BPIM~ is the quark-antiquark interaction amplitude, 
which in the present approximation is a function of only the 
energy variable, and 

is a dimensionless parameter that determines the interaction 
strength. The integral of the single-loop contribution in (6) 
contains the cutoff function f(p2/M2) explicitly; the second 
term also depends on the cutoff through the dimensionless 
amplitude B (9'). 

The fact is that the quadratic divergences of the unrenor- 
malizable model necessitate the use o f  a cutoff in the diver- 
gent integrals. It is knownlo9" that the arbitrariness in the 
cutoff does not change the qualitative results in the case of 
integration in simple loops but can give rise to a change by 
100% for multiloop contributions with overlapping of diver- 
gences. This is the reason why studies of NJL models have 
been restricted to the single-loop contribution in (6). In the 
N,' term in (6), there is also an arbitrariness in how the 
divergent contributions are summed. However, the direct dia- 
gram summation of the contributions of the same N, ' order 
leads to the form (6) irrespective of the choice of the cutoff 
f .  Here the summation does not change the order of magni- 
tude; the result is the same as the magnitude of each term. 

The actual calculation of B will be done in Sec. 4. Here 
we discuss the key point in this problem, which makes it 
possible to extend unambiguously and consistently the gap 
equation of the unrenormalizable model to the next order in 
N, and to do this despite the arbitrariness in the cutoff and 
summation of the multiloop divergent contributions. 
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FIG. 3. Diagrams of the lowest approximation in N, of the quark-antiquark 
scattering amplitude. 

At the first sight, the amplitude B calculated in the ze- 
roth order in N r  ' should be used in the expression (6). This 
order includes only the braid of the simple loops shown in 
Fig. 3. Any other contribution contains extra powers of N,'. 
Therefore: the B contributions that depend on more than the 
one variable q2  (i.e., on s , t ,u )  can be ignored: In (6), they 
give terms - N , ~  , N ; ~ ,  ... . When the ~ ( q ~ )  diagrams in 
Fig. 3 are summed, a very delicate situation does, however, 
arise. The denominators of the expression for ~ ( q ~ )  vanish 
with respect to q2, demonstrating the existence of scalar and 
pseudoscalar bound states. When the gap equation (6) has a 
solution, one of the pseudoscalar particles must necessarily 
be a Goldstone state breaking complete (independent of the 
indices i , i r )  chiral symmetry (1). A complete set of Gold- 
stone particles must be present in the symmetric limit 
hiif =Ao. At the same time, if allowance is made for the N,' 
term in Eq. (6) and there are no corresponding contributions 
in the denominators (the zeroth order for B is being used), 
the resulting masses do not vanish and are quantities 
-NFLM2. The necessary contributions can appear in the B 
denominators from the contributions of loops with internal 
insertions (Fig. 4). Their order of magnitude is precisely 
-+N, 'M~, and they do not depend on q 2  for the momenta 
l q 2 ( ~ M 2  of interest to us in (6).  In the B denominators such 
contributions affect only the expressions for the masses of 
resonances and could make the corresponding Goldstone 
terms vanish [when (6) is satisfied]. 

At the same time, it is clear that in the unrenormalizable 
theory it is not possible to calculate in a convincing manner 
the contributions of multiloop diagrams of complicated form, 
especially since in the present situation we are dealing with 
the summation of only the parts that diverge quadratically 
simultaneously for all contours of integration, and the sum- 
mation of the contributions of a given order can be done in 
different ways with complete dependence of the result on the 
form of the cutoff. However, there is no need for this calcu- 
lation. 

The point is that the Goldstone "masses" must be equal 
to zero when the spontaneous symmetry breaking has oc- 
curred, i.e., the gap equation has a solution. Therefore, in the 
symmetric limit Xiit =Ao a solution of Eq. (6) can be found 
by setting equal to zero the expressions in the B denomina- 
tors that correspond to the masses of the Goldstone particles. 
For Xi,! =A,, this operation fixes, as it were, the necessary 
supplement to the contributions of Figs. 4 and leads to a 
unique and consistent answer. When 6 X i i t  is included per- 

turbatively, as should be done in accordance with the repre- 
sentation (4), a unique procedure can also be identified for 
the total interaction (1). We shall demonstrate this in the 
following section. 

Thus, the gap equation of the NJL model can be consis- 
tently defined in the two leading orders in N p l .  

4. CALCULATION OF THE QUARK-ANTIQUARK 
INTERACTION AMPLITUDE 

Our task is to calculate the sum of the contributions of 
the diagrams in Fig. 3. The problem is exceptionally simple 
in terms of matrices analogous to the representation (2). We 
introduce matrices with respect to the flavor and chiral indi- 

a, i ,  ,a;i; 
ces: Pai ,a , i l  , Gai,,,i,(p,C). Then for the single-loop con- 
tribution A(q2 ,z )  we obtain the matrix expression 

In the leading approximation in N , ,  the amplitude B ( ~ ~ , Z )  
is 

The condition 1 6 X i i 1 J 4 X o  (4) enables us to seek the matrix 
that is the inverse of 1 -A by using perturbation theory with 
respect to the symmetric system 6X=0: 

In the UL(n) X UR(n)-symmetric situation, the unknown 
mass matrix z::? can be represented in diagonal form. This 
can be achieved by a simultaneous rotation of the R and L 
systems of flavor bases and can be done with an arbitrary 
mass matrix. We begin with the calculation of the symmetric 
limit 6A=0. 

We shall consider solutions that are distinguished by the 
number n '  of spontaneously arising massive fermions 
( n l < n ) .  For simplicity, we assume that the masses of all 
these states are the same m , .  Such a state corresponds to 
breaking of the chiral and flavor symmetries in the following 
way: 

Then n -  n '  quarks remain massless. Now this set of solu- 
tions is sufficient to study the situations in which we are 
interested. In this case, the matrix elements of A and B are 
diagonal with respect to the flavors, i = i I , i '  = i , and do not 
depend on the indices i, i r .  The flavors are conserved. Only 
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scattering of the massive quarks by one another contributes 
to the N ; '  term in (6). We seek the amplitude Bo in the form 
that, in accordance with (8), holds for A,: 

The equation (1 -Ao)Bo= I enables us to find the 
chirality-changing part B-. Only it contributes to the N L 1  
term of the gap equation (6): 

The denominators in the expression (13) are the propagators 
of a composite scalar particle with mass mH=2nz, and a 
Goldstone state of broken symmetry.10 These denominators 
are equal to 

Here 

(15) 

and the function r(m?/M2) has the form 

For the very simple and frequently used cutoff function 
f = d(M2- (p21), we obtain 

As we have already emphasized, the qualitative results ob- 
tained when the contributions of the simple loops are used do 
not depend on the choice of the cutoff. 

The single-loop contribution (8) is responsible for the 
appearance of only the first two terms of the expressions (16) 
and (17). The third term represents in the Bo denominators 
the possible contribution -NF1 from the multiloop correc- 
tions of Fig. 4 discussed in Sec. 3. The single-loop terms (8) 
are identical to the gap equation (6)  in the leading N ,  ap- 
proximation if h=Xo. This part of the function r(m;lM2) is 
equal to zero when m is the solution of the single-loop gap 

equation (Fig. 2a). At the same time, the magnitude of this 
part is of order N ,  ' when allowance is made in (6) for the 
first term on the right. For this reason, we have augmented 
(16) and (17) with contributions that could arise only from 
the following approximations in N ,  I .  On the other hand, the 
expression r(nt?lM2) M2 determines in (1 4) the "mass" of 
the bound state, which after symmetry breaking becomes a 
pseudoscalar Goldstone particle. If breaking does indeed oc- 
cur, i.e., the root of Eq. (6) satisfies m?>0, then a genuine 
Goldstone boson with vanishing mass must also appear. In 
the single-loop approximation, this process can be followed 
analytically. Therefore, the solution of Eq. (6) should also be 
sought with a Goldstone mass r(m?lM2)M2 equal to zero. 

Before we turn to the solution, we consider how the 
nonsymmetric expression (10) for B ( ~ ~ )  is calculated. For 
an arbitrary assumed spectrum of the symmetric problem, 
i.e., for a general form of the symmetry breaking, this is a 
rather complicated procedure. We consider it for the case 
n t =  l in the expression (1 I). If we require precisely the oc- 
currence of a hierarchical solution, then the possibility n ' = 1 
is the basis. 

The problem requires expansion of the expression (8) 
with respect to the parameters of the deviation from the val- 
ues Xo and Zo of the symmetric system. The matrix 
X=Xo+SX is now represented in some quite definite basis. 
For example, this may be a basis in which (I) explicitly 
conserves the flavors, or a basis in which certain more fun- 
damental couplings are diagonal like (3). The complete ma- 
trix B should be sought in such a basis. For the case n ' =  1, 
we use the general representation of a matrix that possesses 
one large eigenvalue m,: 

In such a basis, the symmetric part of the matrix 1 -A can be 
found from (8) in the form 

The functions ~ , ~ ( g ~ , m ; )  can be readily found by substitut- 
ing in (8) the propagator (5) for Ziil=Zo. We seek the in- 
verse matrix Bo(l -Ao) in a similar form: 

We have 
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For the chirality-changing component B4, we obtain the 
previous expression (13)-(15): B4=B- . A11 the components 
B, are needed in the calculation of the correction in the ex- 
pression (10) (see Sec. 6). However, as regards the structure 
of the denominators, the amplitude B is now extremely com- 
plicated. It includes the scattering of not only massive quarks 
by one another but also the scattering of massless quarks. 
Generally speaking, the denominators for arbitrary bound 
states cannot be analyzed in the model (1). Therefore, the 
treatment in Sec. 6 will have a general formal nature: What 
properties are found if everything is consistent (the masses of 
all bound states are greater than or equal to zero). In the 
chirality-changing part B4, which is important for the gap 
equation, only massive quarks participate in the symmetric 
case. This makes the analysis unambiguous. 

5. SOLUTION OF THE GAP EQUATION FOR THE 
SYMMETRIC CASE hiif =Ao 

Substitution of (13) in the second term on the right-hand 
side of Eq. (6) leads to the expression 

X 
~ ( m : ? q ~ )  

[(4m:-q2)I(nz:,q2) -q2/2][(-q2)~(m:,q2) -q2/2] ' 

(22) 

The integral can be calculated when 1n(M2/m:)~l ;  as a re- 
sult, we obtain 

This accuracy is completely sufficient for our main aim, 
which is to prove the existence of solutions of a definite type. 

The representation of B - as the difference of the propa- 
gators of two bound states [see (13)] explains the sign F<O.  
In this case, the gap equation preserves the critical properties 
in the N,' approximation too: It has a solution m i 2 0  only 
for po2 I. In the symmetric problem, Eq. (6) is diagonal with 
respect to all the mass flavors and can be reduced to the 
simple form 

The condition for a phase transition (i.e., the existence of 
solutions nz:?0), 

remains the same as for the leading order of NJL models.1° 
Thus, we are dealing here with a second-order phase 

transition: nz: increases with Po from the value zero and not 
abruptly. The situation would be quite different if the sign of 
the second term were negative. A solution m:>0 could exist 
for all p. The system would have a first-order transition (see 
the discussion in Ref. 14). 

In the limit N,-.m, po=const, there arises for each fla- 
vor the nl-independent single-loop equation that is well 
known in the NJL models. Then the value of the mass does 
not depend on the number of massive particles. One can 
compare the energies of the different solutions by calculating 
for them the shifts of the Dirac negative-energy states: 

Here 0(A2) is a quadratically divergent integral over the 
momenta, and V is the spatial volume. It can be seen from 
(26) that if the mass m, does not depend on n '  then the 
system with maximum number of massive fermions, n '  = n ,  
has the lowest energy. This system will be the ground state in 
the leading order in N , .  A mass hierarchy is absent, and the 
inclusion of SXi,~GXo does not change the nature of the 
spectrum. 

When N ,  is reduced, n'-dependent solutions m l (n  ') ap- 
pear. Such solutions can readily be found even analytically in 
the limit l n ( ~ ~ / m : ) + l ,  when the first term on the right- 
hand side of Eq. (24) can be ignored. Then the solution is 
represented by the expression 

The region of parameters in which it is valid can be found 
from the condition 

2 d n '  2 d n '  
(Po- 1)NCG -- 

In N ,  ' (28) 

This condition, in turn, overlaps the region in which the so- 
lution n '  = l (27) is stable: 

It can be seen that the existence of a stable solution 
n '=  1, when in the symmetric problem the spectrum consists 
of one massive fermion and n - 1 massless fermions, is en- 
tirely possible. 

It is this solution that is the most convenient for the 
occurrence of a mass hierarchy. The inclusion of a weak 
breaking of the U,(n - 1 ) X U,(n - 1 ) symmetry leads to 
small masses of the other flavors too: m , g m  A choice of 
the breaking SX,,t of the type (4) makes it possible to repro- 
duce the successive steps of the hierarchy. The flavors s that 
are diagonal in the masses are superpositions of states with 
indices i and i t .  This circumstance leads to 100% mixing.12 

The problem of comparing the vacuum energies for the 
different quark sectors coupled by the interaction (I)  can also 
be investigated in a different ~ a ~ . ~ , ~ ~  For this, we represent 
the four-fermion coupling ( 1 )  in terms of Yukawa interac- 
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tions by means of functional integration with respect to aux- 
iliary scalar fields cpiir: ( ~ / 4 ) ( * $ ) ~ 4  &$cp- cp2/h (2n2 real 
components). This set of fields depends on the nature of the 
spontaneous transition, i.e., on n '. For n ' = n, one can take as 
the auxiliary fields a SUV(n) scalar 4, a pseucioscalar 4,  and 
SU,(n) vectors (pseudo) and 4('); for the case n ' = I ,  
one should introduce SUL(n) X SUR(n) spinors cpiic For 
p > 1,  the vacuum expectation values become, respectively, 
4=const (n ' = 1) with potential on the scale M 

and the component of the double spinor cp,, =const ( n '  = n)  
with potential 

Integrating over $and *, we determine the effective vacuum 
potential of the fields 4 and pll  on the scale p 4 M .  In the 
limit l n ( ~ ~ / p ~ ) ~ l ,  we can restrict ourselves to the terms up 
to 44 and IcpI4 inclusively. In the single-loop approximation, 
this problem is presented in detail in Refs. 5 and 14. 

It can be asserted that the N, ' corrections mainly influ- 
ence the part of the effective potential that is quadratic in c $ ~  

or Icp,112. These corrections change the vacuum expectation 
values (4) or (rpll), i.e., the calculated masses of the fermi- 
ons m = h(4) and h(vIl). [The induced Yukawa constants 
are h-[ln ~ ~ / p ~ ] - ~  (Ref. 5).] As we already know, the tran- 
sition p=l is a second-order phase transition, and at this 
point the coefficient of lcpill simply changes sign. The 
numerical changes from the N,' corrections should not af- 
fect the qualitative picture: The nature of the transition is not 
changed in the N, ' approximation. The use of vacuum ex- 
pectation values calculated in terms of the fermionic masses 
(cp)=m ,lh known from (24) makes it possible to confirm the 
results of the analysis of the Dirac shifts. 

The state n r =  1 convenient for the occurrence of a hier- 
archy can very well be the ground state of a many-flavor 
quark system. 

6. PROPERTIES OF THE EQUATIONS FOR THE LIGHT 
GENERATIONS 

Here the program of actions appears obvious. On the 
basis of the solution n '  = 1 of the symmetric problem, it is 
necessary to use perturbation theory, expanding in the pa- 
rameter 

and in the nonsymmetric part of the mass matrix 6Ziil (18). 
This must lead to a linear system, the solution of which 
determines the spectrum of the light particles. 

We shall solve, as it were, the opposite problem: What 
properties of the constants SPiil characterizing the interac- 
tion at the scale M ensure the occurrence of the known fea- 

tures of the quark spectrum-the mass hierarchy rn , % ni2B ... 
and weak mixing? The investigation is severely complicated 
by the abundance of small parameters: S@Po, n t : / ~ ~ ,  N ,  I, 
mzlm:, ... . Depending on the ratios between them, different 
possibilities arise. The number of parameters and possibili- 
ties increases with the transition to the lighter states. We 
restrict ourselves to investigating the first approximation, i.e., 
the second (heaviest) generation. We first of all consider the 
derivation of the equation. 

To simplify the expressions, we consider symmetric con- 
stants A,,, = h,li (parity conservation) and symmetric mass 
matrices Ciil corresponding to them. The general case differs 
only technically. Besides piit, a dependence on the flavor 
indices enters the equations for the second generation 
through the tensors 

This is readily understood if we calculate the propagator 
from the expression (5): 

The omitted terms contain the small mass m 3 .  The ratio of 
their order of magnitude to the terms retained in (34) is of 
order m2m3/m: when p2-m:. The number of tensors in- 
creases in the transition to the subsequent generations. 

Substituting (34) in the expression (8) and making the 
expansion P+po+ Sp, C 4 C o +  SC,  we calculate the correc- 
tion to the simple loop SA. It can be written in the form 

The term a( ' )  leads to a contribution to the gap equation (6) 
that does not depend on the indices, and therefore it can be 
ignored. All such contributions must be included in the part 
of (6) that does not depend on the indices-the equation of 
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the symmetric problem (24); they determine additional cor- 
rections to nl The leading parts of the remaining terms a(') 
are 

and a(') depends on ln(M2/m;). The small factor rn:lM2 in 
(35) is compensated by similar factors in the denominators of 
the amplitudes Bo in (10). This can be clearly seen from the 
expressions (14) and (17), which give the denominators of 
the amplitudes B g  and B, from the expression (21). This 
assertion is also true for the other Bo components. Therefore, 
the term in the expression (35) is significantly enhanced 
when m ; l M 2 ~ 1 .  Its appearance is a result of the quadratic 
divergence of the model and the presence in it of corrections 
-M2, which for the first time are not compensated by the 
gap equation in our analysis. Therefore, the enforced small- 
ness of SP,,! [see (40) and (41)] is probably a model effect. 

We substitute (35) and (20) in the expression (10) and 
select the chirality-changing components SB. We integrate 
the resulting correction to the amplitude with respect to the 
momentum in the N,' term (6). The single-loop term in (6) 
is also expanded with respect to 6 C  and SP. We distinguish 
in the equation for ml the part that does not depend on the 
flavor indices explicitly (it can contain complete sums over i 
and it);  this equation will now have an accuracy better than 
(24). The procedure we have described leads us to the re- 
quired system of equations. In this cumbersome expression, 
we exhibit only the qualitatively important terms. We repre- 
sent the remainder symbolically, retaining their main fea- 
tures. We have 

Here the functions f i )  are finite but may depend on 
ln(M2/m~) through the influence of the factors (36). For 
example, we write down two of them, which determine the 
terms that are most discussed in what follows: 

It is readily verified that all the f ", represented as functions 
of nz , , do not depend on the number of generations n .  Their 
actual form is unimportant for the further discussion. 

The coefficient of 6Zii: differs only in the term - N F 1  
from the gap equation (24): The functionf') is very different 
from the expression (22). However, in the limit N,+m, the 
first term of (37) drops out, and it turns out that the remain- 
ing equation does not have a solution. The fact is that the 
differential of the matrix CA(C2) at the point (18) satisfies 
identically the conditions 

and this is impossible for arbitrary SP,,t and does not have a 
sensible physical interpretation. This is one more piece of 
evidence for the absence of a hierarchical solution in the 
single-loop approximation (see the discussion of Sec. 5). 

In the opposite limit, r n ? / M 2 4 ~ ;  I ,  the left-hand side of 
Eq. (37) contains a small quantity NL1(S Zlml).  It is obvi- 
ous that 6/3 on the right-hand side of (37) must have the 
same order of smallness: 

The second term on the right-hand side strengthens the 
bound even more: 

Then the dependence of the solution (37) on the flavor indi- 
ces in the lowest order of this procedure has the specific 
nature 

In the proof of (42), we have again omitted in the equation 
the contributions that do not contain the indices explicitly, 
relating them to the equation for m , .  The higher orders of the 
expansion in SC and 6P lead to the appearance of a depen- 
dence on i ,  i of general form. 

A solution beginning with terms of the type 62,; + ax;, 
is attractive from the physical point of view. For then the 
elements of the matrix SZiif are related in the following 
manner to the spectrum of states: 

The presence in the mass matrix of parameters like the 
square root of a mass ratio implies that the ratio V,,,/Vlld of 
the elements of the matrix of the weak mixing is also of the 
same order of magnitude. The numerical correspondence was 
noted long ago at the phenomenological level." The corre- 
spondence of the steps of the hierarchies in the mass matrix 
and mixing matrix was investigated in Ref. 12. 
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On the other hand, if the masses of the light generations 
arise from radiative corrections (the radiative hypothesis, see 
Ref. 8 and the references in that study), then the appearance 
of square roots means that the series for the mass matrix 
contains the roots of radiative corrections, i.e., odd powers of 
the coupling constants of the conjectured perturbative inter- 
action. Such a series differs from a normal perturbation 
theory but is entirely possible in a situation in which fields 
that do and do not distinguish flavor act simultaneously. An 
expression of the form (42) could be specific evidence of the 
physical complexity of the spectrum problem, of the partici- 
pation of different forces in the phenomenon. 

In such a situation, smallness of the flavor-dependent 
part of the coupling constant 6Piir is also natural. The expan- 
sion 

is also unlike an ordinary perturbative expansion. But it can 
be understood if both perturbative and nonperturbative forces 
act simultaneously and the latter do not distinguish the fla- 
vors. The distinguishing part of the effective interaction (44) 
can then contain an additional smallness in the form of the 
ratio of the weak to the strong components of the field. 

In Refs. 12, we proposed a qualitative scenario for real- 
izing this situation in a system close to the standard model. 
The existence of a ground state with one massive fermion in 
the symmetric problem of n flavors was a necessary hypoth- 
esis for the subsequent semiphenomenological recovery of 
the properties of the spectrum. The answer reduces to a situ- 
ation in which practically all the qualitative features of the 
quark spectrum, including the properties of the weak-mixing 
matrix, are reproduced if the weak perturbative component 
of the forces is represented by a chiral vector coupling. 

7. CONCLUSIONS 

We consider once more the problem of the fine tuning of 
the parameters of the system, the need for which is widely 
discussed in connection with the problem of the dynamical 
occurrence of fermion masses (see Refs. 5, 13, and 14). 
Equation (24) makes this disagreeable procedure somewhat 
less problematic, since the constant Po can now be displaced 
from the critical point Po= 1 by an amount 
[N, l n ( ~ ~ / m T ) ] - ~ ,  whereas in the single-loop approxima- 
tion the deviation was (mTl M2)  ln(M2/m:). The difference is 
particularly impressive if one substitutes the values used in 
Ref. 5: ~ 3 1 0 ' ~  GeV, the "grand unification" energy, and 
N ,  = 3. 

Of course, the problem that we have solved is far from 
the properties of the real quarks. Many features of the stan- 
dard model are not reflected in it. Nevertheless, an attempt 
has been made to take into account in part the possible con- 
ditions at high energies. The appearance under these circum- 
stances of solutions that make it possible to reproduce the 
properties of the real quarks seems promising. 
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"These fields would have to develop a strong coupling precisely in the 
region -M or have masses -M. The vector fields could include gluons 
that carry color but do not distinguish flavors and vector fields that distin- 
guish i or i ' .  

2)The terms independent of the indices in the expressions (2) for the matrix 
elements signify their presence for all values of the indices. The same 
holds for the expressions (4). (12), (18)-(20), and (35). 

3)ln the order N,- I, the form (5) is approximate. In accordance with (6), for 
G-~=c-z; and p2+oo we have ~ ~ c o n s t + ~ ( M ~ / ~ , p ~ ) ,  
Z -  1 + O(N, I). The influence of the deviations from the case C=const, 
Z =  I reduces to an unimportant redetermination of M' or to corrections of 
order M:IN,M~. 
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