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The applicability of equations expanded to third order in the temperature deviation and the 
counterflow velocity in the treatment of the propagation of single large-amplitude heat pulses in 
stationary helium I1 not having preliminary excitation in the form of superfluid turbulence 
is substantiated. A quadratic dependence of the rate of propagation of a simple wave and a 
nonlinear relationship between the temperature deviation and the counterflow velocity in 
it are derived. Exact linear solutions that describe axially and spherically symmetric pulses excited 
by rectangular heat fluxes are obtained. A quadratic solution describing a shock wave is 
obtained under axial symmetry. A comparison of the nonlinear solution with previous experiments 
on the propagation of axially symmetric short large-amplitude pulses reveals good agreement 
for the results on both the evolution of their duration and on the variation of the 
temperature deviation. A systematic error is found in the measurement of the temperature in 
some experiments due to the use of only a linear relation between the temperature deviation and 
the heat flux density. 63 1996 American Institute of Physics. [S1063-7761(96)01201-XI 

1. INTRODUCTION 

Interesting experiments on the propagation of axially 
symmetric large-amplitude heat pulses (under conditions in 
which superfluid turbulence can be neglected) excited in he- 
lium I1 by brief rectangular heat fluxes from a cylindrical 
heater were described in Refs. 1-4. This question was also 
partially discussed in Ref. 5. An approximate theoretical 
treatment of these experiments was performed in Ref. 2. The 
analogous spherically symmetric problem was considered in 
Ref. 6. 

This paper describes a more rigorous theoretical treat- 
ment of this problem on the basis of the equations of two- 
fluid hydrodynamics.7~8 A comparison of the nonlinear results 
obtained with the experimental data1'2'4 reveals good quanti- 
tative agreement. 

2. THEORY 

Here the dimensionless densities of the superfluid (p,) and 
normal-fluid (p,,) components (ps+p,= 1) ,  the dimension- 
less temperature deviation r= T' (dSl dTl p,S, where 
T' - T- To, the dimensionless counterflow velocity vector 
of the normal-fluid and superfluid components u=(v, 
- v,)lC2 = wlC2, and the dimensionless time y = tC21R 
were introduced, the spatial coordinates were normalized to 
the scale factor R, and expansions of the entropy s(r ,u2)  to 
third order and of pn(r,u2) to second order were used. In 
addition, the following notation was introduced: 

The nondissipative equations of two-fluid d log(dS1dT) 
k= -1, q = l -  

d 1% S,(T) 
hydrodynamics798 (with neglect of the dependence of the a log S(T) d log S(T) ' 
density of helium p on the temperature T and of the entropy 
and the density of the normal-fluid component on the pres- S 
sure P) lead to equations describing the propagation of heat 
pulses in stationary helium I1 (p,lv,,+psv,y=O), that have the 
following form in the cubic approximation in the absence of dlogS,(T) j 2  - 

d 
superfluid turbulence: k,=k- 

dlogS( T) 

a log( a2ss/ a ~ ~ )  
k2=k 

d log S(T) ' 

and C2 for the absolute value of the velocity of second 
sound. In the normalizations and coefficients all the param- 
eters correspond to "unperturbed" helium I1 (at T= To). In 
Eqs. (1) and (2) the second-order terms with the coefficient . ( I )  p.d log p(T)ld logS(T)<2X lop3 were neglected, and the ex- 
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citation of first sound by second sound as a consequence of 
quadratic c ~ u ~ l i n ~ ' ~ . ' ~  was likewise not taken into account, 
since it would produce third-order terms with a coefficient 
smaller than C2/C, in the equations. It is correct to take into 
account the cubic terms only when lu l~2dlog  p(T)l 
dlogS(T), which corresponds to the condition 
Q % - ~ ~ , , C ~ T ~ ~ I ~ T  on the heat flux density. This condition 
was satisfied in the experiments under discussion. 

The energy conservation law in the quadratic approxima- 
tion under the adopted assumptions can be written in the 
form 

Here the total energy density and the energy flux density 
were normalized to pp,ST and ppsSTC2, respectively, and 
rn = SIdSldT) T= 116. 

When the propagation of a simple plane wave is consid- 
ered, Eqs. (1) and (2) lead to the expression for the velocity 
of second sound 

kps ( d 1% k( T )  ) ] u2] 

+ "d log S(T)- '~ 

and the relationship between the temperature and the coun- 
terflow velocity 

The linear term in (4) was obtained by ~halatnikov'~ and has 
been firmly corroborated experimentally." The coefficients 
of u2 in (4) and luI3 in (5) were written under the assumption 
S,,=const. An analysis of the omitted terms shows that their 
contribution is less than 5% at T>1.2K. 

As we know, when a step heat pulse is excited in the 
0.95-1.9 K temperature range, a shock wave forms at once 
at the front (see Refs. 7 and 11). Its rate of propagation is 

and the relationship between 7,. and lufl in the quadratic ap- 
proximation, according to (3), corresponds to (5). The trajec- 
tory of the shock-wave front in the planar, axially symmetric, 
and spherically symmetric cases is 

where xo and yo are the initial coordinate and time of the 
excited pulse, and p and p ,  are the coefficients of the linear 
and quadratic terms in (4), respectively. Here and in the fol- 
lowing, wherever two signs are used for cylindrical and 

spherical shock waves, the upper sign corresponds to a di- 
verging front, and the lower sign corresponds to a converg- 
ing front. 

Let us consider the problem of the excitation of heat 
pulses by a cylindrical heater of radius R(x= I ) ,  to which a 
rectangular pulse of duration A with heat flux density Qo is 
fed at time y = l :  

Q ( ~ , Y ) = Q , { ~ ( Y -  I,-f%y- 1-A)), (7) 

where 0 is the Heaviside step function [8(0)= 1/21. Then the 
boundary condition for u at x=  1 in the quadratic approxi- 
mation is 

u(l9y){1 + ( ~ ' + ~ P , - ~ P ~ ) ~ ( ~ , Y ) I = ~ ~ { ~ ( Y -  1) 

-0(y-1-A)I9 (8) 

where E =  Qo/ppsSTC2 is the cutoff amplitude of the nor- 
malized heat flux density. We assume that 841.  

2.1. Linear problem 

The boundary conditions for a step pulse are 

u(l ,y)=+eO(y-I) ,  u f=2rf  when y-1 

= i ( x -  I).  (9) 

According to a theorem of S .  V. ~ o v a l e v s k a ~ a , ~ ~  these 
boundary conditions are sufficient to prove that in the neigh- 
borhood of the point y = x = 1 there is a single solution of the 
linear part of Eqs. ( I )  and (2). 

The solution can be represented in the form 

where z=(y-  l )?(x-  I ) ,  

and converges in the region x21 ,  ly -x)<2 for a diverging 
flux and in the region O < X < ~ , ( ~  +x-2(<2x for a converg- 
ing flux. 

We present the tirst four terms of the series in (11): 
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FIG. I .  Converging (x= 0.75) and diverging (x= 4) rectangular pulses (A 
=0.5); solid line-T, dashed line -u,  . 

which provide 1% relative accuracy at - 0 . 5 < z < l .  It fol- 
lows from (13)  that at the surface of the heater T,  decreases 
with time in the case of diverging flux and increases in the 
case of converging flux. In contrast to ( 5 ) ,  T and u differ to 
first order behind the front (see Fig. I )  

It can be seen from (12)  and ( 1 3 )  that the approximate treat- 
ment for a diverging flux in Ref. 2  is e r roneo~s .~)  

The solution of the analogous spherically symmetric 
problem for a step pulse has the form 

This solution differs fundamentally from the solution ob- 
tained in Ref. 6  in a treatment of a similar problem.3) 

2.2. Nonlinear problem 

According to ( 5 )  and ( 8 ) - ( l o ) ,  the boundary conditions 
in the quadratic approximation can be written in the form 

u ( l , y ) { l  + & ( ~ . , + n ~ P , - q P , l ) ~ l ( l , Y ) ) =  & & O ( Y -  1 1 ,  
( 1 6 )  

where ~ ~ ( 1 ,  y ) =  1 - ( y - 1 ) / 2 + 3 ( y -  1 ) ~ / 1 6 - y -  1 ) 3 ,  andat  
the front 

T,Tu,= - ~ ~ ( 2 p ~ . - q . f  k p ,  +4qp t1 )14x .  (17) 

We write the solution of Eqs. ( 1 )  and ( 2 )  in the quadratic 
approximation in the region y  > y p  O< Ifr. ( x  - I ) < 2 ( x f -  1) 
in the form 

It is convenient to write the equations for u 2  and 7 2  in the 
form 

According to ( 1 6 )  and (9), the boundary conditions have the 
form 

u ~ ( ~ , Y ) = T ( P ~ + ~ P ~ - ~ P ~ ) T I ( ~ Y ) -  ( 2 1 )  

ahd, according to (17) ,  (12) ,  (13) ,  and ( 6 ) ,  at the front we 
have 

The solution has the form 

n ~ ~ - 3 )  
( 2 k +  l ) ! !  m = l  

an+k,k=(? l ) k a n ~  8 k k !  k' n ( n + m )  
m =  1 

( 2 k -  1 ) ! ! ( 2 k + 3 ) ! !  
f fk ,k+ 1 = ( ? l ) ~ Q 0 1  8 k k ! ( k +  l ) !  ' 

All the c I l k  and d t , k ,  except for c o ,  and do , ,  can be deter- 
mined from Eqs. (19)  and ( 2 0 )  in terms of the right-hand 
sides. From ( 2 2 )  it follows that 

and from ( 2 1 )  it follows that 
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FIG. 2. Dependence of  the nonlinear addition to the duration of  a rectangu- 
lar pulse Srf=RSyflC2 (24) on x (To= 1.4 K, Qo=8 W/cm2). The dashed 
curve is a plot of the linear addition, and the points are experimental values 
from Refs. 1 and 2 (the error is + 4  ps). 

The domain of applicability of the quadratic solution is 
yf<y<x+(x,-x)l(x,-1) for x > 1  and y f < y < 2  
-x,(l -x ) l ( l  - x , )  for x <  1 ,  where & 4 ~ / E c ~ ~  and 
& % ~ d ~ ~ ,  and the solution converges in these domains. 

3. COMPARISON WITH EXPERIMENT 

The solutions lead to two functions of x that are qua- 
dratic with respect to E for the obsemables in the experi- 
ments in Refs. 1-4: the addition Syf to the pulse duration A 
(at 1.2 K<To<1.8 K) 

where I~(x)1<0.05 at x<40, and the temperature jump at 
the leading edge of the pulse 

The dependence of 61 f = 6y fRIC2 on x and the corre- 
sponding experimental data from Refs. 1 and 2 are presented 
in Fig. 2. It is seen that (24) agrees well with the experi- 
ments. Here and in the following, the accuracy of the experi- 
mental points was evaluated as the ratio of the thickness of 
the lines in the figures in Refs. 1, 2, and 4 to the correspond- 
ing measured quantities. 

Figure 3 presents the calculated and experimental values 
of T ~ & I E  corresponding to the different conditions of the 
experiments in Refs. 1, 2, and 4. The experimental results for 
To= 1.6 K and Qo=8 w/cm2 in Ref. 2 agree well with curve 
1, but the results for To= 1.4 K and Qo=8 w/cm2 in Refs. 1 
and 2 differ significantly from the corresponding curve 2, 
although the values renormalized with the coefficient 
n=0.83 lie close to this curve. The systematic deviation of 
the experimental results at To= 1.4 K from the calculation is 
attributable to the fact that amplitude calibration of the tem- 

FIG. 3. Nonlinear dependence of T~ &/E on x (25) under various experi- 
mental conditions (To,Qo)-curves 1-4 and corresponding experin~ental 
values from Refs. 1 ,  2 ,  and 4 [relative errors: -+lo-' & at x > l ,  and 
?5X when Qo=2 w/crn2 and +2X when Q,=3 w/cm2 at 
x< 1 (To= 1.4 K)]: I and 0-To= 1.6 K, Qo= 8 w/cm2; 2 and @-To 
= 1.4 K, Qo=8 w/cm2 ($-renonalized with the coefficient n=0.83); 3 
and V-To= 1.4 K, Q,=2 w/cm2; 4 and A-To= 1.4 K, Q0=3 w/cm2. 

perature detector only according to the linear relation 
T' = QIpC,C2 was employed in those experiments, as was 
noted in Ref. 1, while here, according to (25), the relation- 
ship between T' and Q is significantly nonlinear. The tem- 
perature jumps at the leading edge of the pulse in converging 
fluxes (at To= 1.4 K ) ~  obtained under the conditions of weak 
(when Qo=2 w/cm2) and strong (when Qo 
= 3  w/cm2) superfluid turbulence are in qualitative agree- 
ment with curves 3 and 4, respectively. An increase in the 
temperature jump at the front that is weaker than 1 1 6  was 
observed in these experiments, in accordance with the calcu- 
lation, and the slightly increased values of the temperature 
compared with the calculation (-10%) can be attributed to 
dissipation of the energy at the front due to the presence of 
the initial superfluid turbulence. 

Figure 4 presents experimental pulses from Refs. 2 and 
4. We note that the characteristic features of the pulse con- 
figuration are consistent with the pulses in Fig. 1, which 
were constructed in the linear approximation. The calculated 
values of the peaks of the leading and trailing edges of the 
pulses are also noted here. The calculated results for a di- 

T', mK T: mK 

FIG. 4. Experimental converging pulses from Ref. 4(a) and diverging pulses 
from Ref. Ib) [.--calculated values of the peaks of the leading I) and 
trailing (b) (rcnormalized with the coefficient lln= 1.2) edges]. 
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verging flux under the conditions To=1.4 K and Q ,  
=8  w/cm2 were renormalized with the coefficient lln = 1.2 
(Fig. 4b). 

4. DISCUSSION 

The experiments under discussion show that when single 
short large-amplitude heat pulses (vn up to 300 cmls) propa- 
gate in wide channels under negligibly small initial super- 
fluid turbulence, the superfluidity in helium I1 is not dis- 
turbed, and these experiments are described well by the 
nondissipative equations of two-fluid hydrodynamics. 

The front of a heat flux in helium I1 propagates with the 
velocity of second sound C z ( u f ) .  According to (3), the nor- 
malized variation densities of the total energy and the energy 
flux have linear and quadratic terms. The linear term in the 
energy flux is determined by the counterflow wave of the 
"unperturbed" state of helium I1 (at To), and the quadratic 
term is determined by the temperature perturbation of its 
state caused by this wave. The linear term in the variation of 
the total energy reflects the variation of the internal energy 
associated with the linear variation of the entropy with the 
temperature, and the quadratic terms reflect the correspond- 
ing variation of the total energy, including the quadratic 
variations of the internal energy with the temperature and the 
counterflow. A basically linear variation of the internal en- 
ergy of helium I1 with the temperature was observed in the 
experiments under discussion.17274 

If the diverging flux per unit axial length appearing in 
response to a step heat flux in the heater under axial symme- 
try and the total flux appearing under spherical symmetry are 
considered, the quadratic part of such a flux remains un- 
changed, but the linear part at the front increases as it propa- 
gates in proportion to & under axial symmetry and in pro- 
portion to x under spherical symmetry. The linear part of the 
internal energy increases accordingly in the layer behind the 
front. A relative fraction of the additional internal energy 
equal to - 1) in the case of a cylindrical layer and to 
( I  -eCA) in the case of a spherical layer is concentrated in 
the narrow layer behind the front of width A < l  during the 
period of operation of the source, y - 1 %- I .  The correspond- 
ing values in the layer of width A at the heater are equal to 

- 1) and A e ( ' - ~ ) l ( ~  - 1 ). This redistribution of the 
additional entropy in axially and spherically symmetric 
fluxes in helium I1 can be explained by analogy to the expla- 
nation given by Zel'dovich and ~ a i z e r ' ~  for spherical sound 
pulses in an ordinary fluid. Although the amplitudes of the 
energy flux density at the front decrease as 1 1 6  and llx, 
respectively, the amount of entropy in the flux increases as x 
and x2. Thus, the energy flux carries off the additional en- 
tropy created by the source toward the front. The picture is 
reversed in a converging wave (x< 1) .  Here the total energy 
flux at the front decreases, and the additional self-energy 
accumulates at the heater. Just such a picture is observed in 
the experiments under discussion, where the temperature 
pulses, which are proportional to the entropy variations, are 
basically described by the linear solutions. 

5. CONCLUSlONS 

A comparison of these results with experimental data on 
axi~lly symmetric pulses',2-4 has shown that the linear solu- 
tion faithfully describes the characteristic features of the 
short diverging and converging experimental pulses obtained 
both in the absence172 and in the presence4 of superfluid tur- 
bulence, and that the nonlinear solution describes these 
pulses to I %  accuracy in the region where it is applicable 
both with respect to the temperature deviation and with re- 
spect to their variable duration. The evolution of the ampli- 
tudes of the leading edge of the pulses obtained under the 
conditions of developed initial superfluid turbulence4 is also 
described well by the nonlinear solution. It has been shown 
that amplitude calibration of the temperature detectors re- 
quires the use of the nonlinear relation between the heat flux 
density and the temperature. As a result, we maintain that 
single brief large-amplitude heat pulses in wide channels 
propagate in helium I1 as in a superfluid, and are described 
by the nondissipative equations of two-fluid hydrodynamics. 

')we note that in Refs. 5, 9, and 10, where equations similar to (1) and (2) 
were used in the quadratic approximation in a numerical analysis of ex- 
periments, the quadratic terms were taken into account incorrectly. In par- 
ticular, the equations used there [Eqs. (1) in Ref. 101, do not give the 
~ o r r e c t , ~  experimentally confirmed " formula for C2(u). 

')1n Ref. 2 the second terms in (12) and (13) were written, respectively, in 
the forms -Cy - x)( 1 - 1/x)12 6 and -(y - x)12\r; [see Eqs. (14) and 
(13) in Ref. 21. 

3 ) ~ h e  solution obtained in Ref. 6 is erroneous due to the assumption actually 
made there that the temperature change at the surface of a spherical heater 
is proportional to dQld t ,  rather than Q ( t )  (see Fig. 1 in Ref. 6). 
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