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In the isothermal approximation, we develop a theory of the motion of continuous media with 
allowance for internal angular momentum in which the balance equation of the total 
mechanical angular momentum, which is the basis of the theory, is formulated in a way that 
differs from the existing theory. The resulting equations are used to interpret the results of 
experimental investigation into the behavior of a magnetic liquid in a rotating magnetic 
field. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The creation of a theory of the motion of a continuous 
medium with allowance for internal angular momentum has 
been the subject of a number of investigations.'-5 These 
studies introduce in addition to the density of the macro- 
scopic angular momentum L=p[rv] ( p  and v are, respec- 
tively, the density and hydrodynamic velocity of the fluid) 
the density of internal angular momentum S. In accordance 
with Refs. 1-5, the balance equation for the total mechanical 
angular momentum K, which is equal to the sum L+S, is not 
a consequence of the momentum balance equation but is an 
independent equation that occurs in the system of equations 
together with the balance equations for mass and momentum. 
In the case of isothermal motion of an incompressible me- 
dium, the differential form of the balance equations for mass, 
momentum, and angular momentum are postulated in the 
form 

where p i = p v i  is the momentum density, Fi is the volume 
density of the external forces, K i k = e i k l K , ,  N$ is the density 
of the source K i k ,  and jZl is the flux density of K j k ,  which 
satisfy 

jK rkl = j L  rkl +jS ik l  = - ( X .  r ~ f l - ~ k ~ i l )  * +.s J i k l  (4) 

Nik is the volume density of the external couples, and jfkl is 
the flux density of the tensor of the internal angular momen- 
tum Sik=e ik lS l .  Equation (2) differs from the momentum 
balance equation in the absence of internal angular momen- 
tum through the fact that the stress tensor p; contains not 
only a symmetric part pik but also an antisymmetric part 
p:k ( p  = p  ik + P : ~ ) .  When the balance equation for Kik was 
postulated, it was assumed that the tensors pfk and jfkl are 
independent. 

Equation (3) can be transformed to a balance equation 
for S ,  ; for this we subtract from (3) the balance equation for 
the macroscopic angular momentum L j k = e i k l L I ;  this is a 
consequence of the momentum balance equation (2). In ac- 
cordance with Refs. 1-5, the balance equation for Lik can be 
represented in the form 

where 

The flux density jfkl is written down in accordance with the 
expression for jZl in (3). The balance equation for the inter- 
nal angular momentum can be found in the form 

The system of the three balance equations (I), (2), and 
(7) is augmented by equations that relate the irreversible 
fluxes and thermodynamic forces. In the domain of applica- 
bility of nonequilibrium these equations 
for fluid media are written in the form 
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where p is the hydrostatic pressure, I is the moment of iner- 
tia per unit volume, 7 is the coefficient of dynamic viscosity, 
7, yo, y,,  y2 are newly introduced empirical coefficients, and 
j?k= e i i ~ l j ~ l l k ~ 2 ~  

For Fi=O and Nik=O, some specific problems were con- 
sidered on the basis of the system (!), (2) ,  (7), and ($)-(lo). 
The solutions contain corrections due to allowance for inter- 
nal rotations, which in some limiting cases can be appre- 
ciable. However, experimental confirmation of these solu- 
tions is nowhere given. Comparison of the results of 
experiments made with a ferromagnetic liquid in a rotating 
homogeneous magnetic field (Fi=O, Nik#O) with theoretical 
results obtained by solving this system indicates a qualitative 
discrepancy between the theoretical and experimental results, 
as will be discussed in detail in Sec. 4.  

It is necessary to point out logical contradictions in the 
system of equations postulated in Refs. 1-5 found by ana- 
lyzing this system from the point of view of the flux density 
and source of the angular momenta. 

The balance equation (3)  for the total mechanical angu- 
lar momentum is postulated independently of the momentum 
balance equation (2) .  In accordance with (3 )  and (4) ,  the 
source of Kik is the sum of the densities of the moment of the 
body forces (x iFk-xkFi)  and external couples N i k .  The 
source postulate appears indisputable. However, we cannot 
agree with the expression for j i l  in terms of p g  and j;kl in 
accordance with (4) .  The postulate that jZl has the form (4 )  
based on the assumption (which is apparently obvious for the 
authors of Refs. 1-7) that p?k and jfkl are independent leads 
to the need to express the balance equation for Lik in the 
form (5) ,  in which the flux density j i l  is obtained from the 
expression (4)  for jZl in the form 

We cannot agree with the balance equation for Lik in the 
form ( 9 ,  since in accordance with (5 )  the source of the mac- 
roscopic Lik is not only xiFk-xkFi but also the antisymmet- 
ric part of the stress tensor p;k. The presence of 2pYk with 
minus sign as source simuItaneously in Eq. (7 )  for the inter- 
nal angular momentum is interpreted as the possibility that 
the internal angular momentum Sik can be transformed into 
macroscopic angular momentum even for  con con st. It turns 
out that for xiFk-xkFi=O the presence of a homogeneous 
distribution of pfk for fixed bounding surfaces leads to exci- 
tation of Lik and, therefore, to macroscopic motion of the 
fluid, since for LikZO we find in accordance with the defini- 
tion of Lik that also the hydrodynamic velocity satifies ui # 0 .  
However, this conclusion from the form of Eq. (5)  contra- 
dicts Eq. (2) ,  a consequence of which is (5) .  Indeed, Eq. (2)  
contains only the derivatives d p : k / d ~ k  and for  con con st re- 
duces to a form that does not contain p:k at all. Thus, in 
accordance with (2 )  the given homogeneous distribution of 
p7k does not excite macroscopic motion. It is readily under- 
stood that the balance equation (5)  for the macroscopic an- 
gular momentum, which is a consequence of Eq. (2) ,  can 
also lead under these conditions only to the same result. This 
is readily seen directly on the basis of Eq. (9, which for a 
homogeneous distribution of p$ reduces to an equation that 

does not contain pyk. Thus, 2pYk is not a source of macro- 
scopic angular momentum, and the identification in Eq. (5) 
of 2pyk as the source of Lik is artificial. 

2. CONSISTENT SYSTEM OF EQUATIONS 

To construct a consistent theory of the motion of con- 
tinuous media with allowance for internal angular momen- 
tum, it appears expedient to follow the scheme of arguments 
adopted in the derivation of hydrodynamic equations for me- 
dia with internal degrees of To find the equations 
of motion, it is reasonable to proceed from a balance equa- 
tion for Lik that does not contain p;k as source: 

where jikl is a third-rank tensor that has the dimensions of an 
angular momentum flux density and is related to p;k by 

2 ~ : ~ ~  d j i k l / d ~ I .  ( I2)  

It is clear that the balance equation for Lik in the form ( 1  1) is 
equivalent to Eq. ( 9 ,  but the expressions for the flux density 
jfkl and the source of the macroscopic angular momentum 
Nfk in (1 1) differ appreciably from the corresponding expres- 
sions in (5):  

In accordance with (13), the flux density of the total me- 
chanical angular momentum can be found from the definition 
in the form 

S 
j z l= j fk l+j fk l=  - ( ~ i ~ k * r - ~ k ~ ; )  -jikr+j;kls (14) 

The balance equation for Kik can be found from Eq. (3) ,  in 
which j i l  is determined by the expression (14), and not (4) ,  
and the source density N: remains, in accordance with what 
was said above, unchanged: 

After subtracting (11) from (15),  we find the balance equa- 
tion for the internal angular momentum: 

In contrast to (7), Eq. (16) does not contain -2pfk as source. 
In the stationary case for F,=O and in the presence of a 
homogeneous distribution of N ,  and p;k, vi=O in accor- 
dance with what was said above, and Eq. (16) takes the form 

In addition to the investigations of Refs. 1-7, some studies 
have been made1'-l3 of the stationary case (dvildt=O, 
dSik /d t=O)  when a volume density Nik of couples arises 
through the action of an electric or magnetic field on par- 
ticles of a medium that possess an electric or magnetic mo- 
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ment, respectively. In the presence of a homogeneous distri- 
bution of N i k ,  we have according to Refs. 10-13 the 
equation 

which differs from the Cosserat equation, which is the lim- 
iting case of Eq. (7)  for dSikldt=O. 

In the construction of the theory of the motion of con- 
tinuous media with allowance for internal angular momen- 
tum, it is assumed in the general case that under stationary 
conditions Eq. (18) holds. With allowance for (18),  the rela- 
tion (17) can be rewritten in the form 

It follows from comparison of (19) and (12) that 

j .  =jS 
lkl rkl ' (20) 

Thus, it turns out that the antisymmetric tensor p:k and the 
flux density jfkl of the internal angular momentum are not 
independent but are related by Eq. (19), in accordance with 
which pyk is determined by the divergence of the flux density 
jfkl. When the equations of motion of a continuous medium 
are postulated with allowance for internal angular momen- 
tum, Eq. (20) and the relationship (19) between p:k and jfkl 
are assumed to be valid in the general case. In accordance 
with (13) and (19), the flux density of the macroscopic an- 
gular momentum is 

and in accordance with ( 1 1 )  the balance equation for the 
macroscopic angular momentum must have the form 

The flux density of the mechanical angular momentum is 

and the balance equation for the total mechanical angular 
momentum is postulated in accordance with (15) in the form 

The integral equation for the total mechanical angular mo- 
mentum corresponding to Eq. (24) takes the form 

IVICdv= I L r p z l d o +  /,I rF]dV+ f-v NdV, (25) 

where u is the surface that bounds the volume V ,  p,* 
= eipznk is the force per unit surface, and nk are the com- 
ponents of the normal to the element of surface. In accor- 
dance with (25), the additional torque on the surface of the 
volume in question due to the internal moment is determined 
when the relationship (19) holds by the integral of only [rpz]  
over the surface, and we have 

i.e., the integral over the surface of m,, (m, ,=-e i j fknk)  is 
contained in this integral. The second term on the right-hand 
side of (26) determines the total moment of the "body force" 
curl pu due to the antisymmetric stresses (py=eiklpft , /2) .  

The system of differential equations with allowance for 
internal angular momentum can contain the angular momen- 
tum equation either in the form of the balance equation for 
the total mechanical angular momentum (24) or in the form 
of the balance equation for the internal angular momentum 
(16). For an incompressible medium, this system of equa- 
tions, expressed in terms of the axial vectors Si and py, has 
in accordance with the foregoing the form 

The postulate for the equation of the internal angular mo- 
mentum in the form (28) under the condition (29) finds sup- 
port in the derivation of the equation of the internal angular 
momentum for a specific medium made in Ref. 14. 

3. LINEAR DETERMINING EQUATIONS 

The phenomenological equations that close the system 
(27)-(29) can be found from the requirement that the dissi- 
pative function be positive.879 The kinetic energy density u is 
equal to the sum of the kinetic energy densities of the trans- 
lational and rotational motions: 

U = ~ V ~ / ~ + S : / ~ I .  

On the basis of Eqs. (27)-(29), we find the balance equation 
for the kinetic energy: 

where q5 is the dissipative function: 

The sum -vipyl-  (ai- s i l l )  j i  under the sign of the diver- 
gence on the left-hand side of Eq. (30) determines the energy 
flux associated with the transport of internal angular momen- 
tum. This flux is analogous to the energy flux - v ip i l  asso- 
ciated with the transport of momentum. The second term in 
the expression (31) determines the contribution to the energy 
dissipation made by internal rotations. From the requirement 
of positivity of 4 there follows the well-known expression 
(8)  for pik and the linear determining equation for jfk: 
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where D~~~~~~ is the tensor of the transport coefficients of the 
internal angular momentum. The components of this tensor 
are empirical constants. 

It is clear that because of the difference between the 
equations of the internal angular momentum (7) (Refs. 1-5) 
and (28) the terms in the expression for the dissipative func- 
tion that contribute to the energy dissipation introduced by 
the internal rotations and, accordingly, the linear determining 
equations (10) (Refs. 1-5) and (32) have different forms. 

With allowance for (8) and (32), Eq. (28) can be reduced 
to the form 

For Ri=O, Eq. (33) is completely analogous to the heat 
transport equation. 

In a number of cases, one can distinguish only two di- 
rections along which the transport coefficients of the internal 
angular momentum can differ appreciably. For example, 
these may be the directions along and at right angles to the 
vector S. In this case, 

where in the second term on the right-hand side there is no 
summation over the repeated indices i and m.  By D ~ S  and 
D:, we denote the transport coefficients of the internal an- 
gular momentum parallel and at right angles to the direction 
of S, respectively. In this case, the equation for the internal 
angular momentum, Eq. (33), has the form 

In the final term on the left-hand side, there is no summation 
over the index i .  

The volume densities Fi and Ni are determined by the 
characteristics of the medium and the characteristics of the 
force fields with which this medium interacts. In the case of 
magnetizable liquids, Fi and Ni are determined in the form 

In the majority of problems associated with magnetic liquids, 
it is sufficient to write down the equations of the electromag- 
netic field in the quasistationary approximation: 

curl H=O, div B=O, B=po(H+M),  (37) 

which must be augmented by the equations for the magneti- 
zation dynamics. In the case of magnetic liquids, the 
Fokker-Planck equation for the distribution function with 
respect to the orientations of the magnetic moments of sus- 
pended ferromagnetic particles can serve as an equation for 
the magnetization dynamics. The magnetization M is deter- 
mined by the mean value of the magnetic moment of the 
particles. 

4. COMPARISON WITH EXPERIMENT 

Effects associated with internal angular momentum and 
its transport in liquid media play an important role in experi- 
ments on the interaction of a magnetic field with ferromag- 
netic liquids. Among the most interesting experiments are the 
investigations into the behavior of a ferromagnetic liquid in a 
rotating homogeneous field. Several experimental 
s t u d i e ~ ' ~ - ' ~  have been devoted to investigating this. The cor- 
responding theoretical s t ~ d i e s ' ~ - ~ '  were based on the equa- 
tions of Refs. 1-7. Some results of these theoretical investi- 
gations agree with experiment, but the greater part of the 
results is contradictory and cannot be interpreted. Noncon- 
tradictory results in agreement with experiment can be found 
on the basis of the system of equations (27)-(29) given in 
the present paper. 

In the theoretical treatment, it is assumed that the liquid 
occupies a cylindrical region of radius ro. A cylindrical co- 
ordinate system (r,cp,z) with z axis along the symmetry axis 
is used. In accordance with (37), the components of the ro- 
tating homogeneous magnetic field are represented in the 
form 

H , = H  cos(ot- cp), H , = H  sin(ot-cp), H,=O, 
(38) 

where H  is the magnitude of the magnetic field H, and o is 
the angular frequency of its rotation. This field, interacting 
with the magnetic moments of the particles, sets them into 
rotation and therefore excites an internal mechanical angular 
momentum S. According to Refs. 19-21, the solution of the 
equation for the magnetization dynamics can be represented 
in the form 

The magnitude M of the magnetization and the angle be- 
tween the vectors H and M can be expressed in terms of the 
components MII and M ,  of the magnetization parallel and 
perpendicular to the vector H: 

In accordance with (36), the volume densities F and N are 

In accordance with the symmetry conditions, it is assumed 
that 

In this case, the momentum balance equation (2) or (27) can 
be reduced to the form 

The solution of this equation must be bounded and vanish at 
r =  r,, since the cylindrical surface is assumed to be fixed. 
For these boundary conditions, Eq. (42) has a nontrivial so- 
lution only in the presence of a region in which the right- 
hand side of this equation, which plays the role of a driving 
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force, is nonzero. If pf=const holds in the cornplete interval 
(OarSr,),  then we have dp:ldr=O and Eq. (42) has the 
trivial solution (v =O). The theoretical investigations of Refs. 
19-2 1 were based on the theory developed in Refs. 1-7, and 
so pf  was determined in them by the expression (9). The 
mean angular velocity wS of rotation of the particles must 
satisfy certain boundary conditions on the bounding surface. 
In ~ e f s .  19 and 20, a zero-value boundary condition was 
assumed: wS(ro) =o. When this boundary condition is im- 
posed on wS a region of inhomogeneity of wS arises near the 
bounding surface and, therefore, in accordance with (9), a 
region of inhomogeneity of p: as well. This had the conse- 
quence that in Refs. 19 arid 20 a nontrivial solution of Eq. 
(42) determining a very slow rotation of the liquid was 
found. 

In Ref. 21, the boundary condition of free rotation was 
adopted; in other words, no boundary conditions were im- 
posed on us, since it was assumed that the resistance to 
rotation of the particles near the wall did not differ apprecia- 
bly from the resistance to rotation of the particles far from 
the wall. As a result of this, wS and p: were homogeneous in 
the complete interval 0 s  r S ro , and the solution of Eq. (42) 
was the trivial solution (v=O), from which the conclusion 
was drawn that a magnetic liquid cannot be set into rotation 
by a rotating homogeneous magnetic field. 

In the experimental investigations of Refs. 16-18, in 
complete agreement with Ref. 21, it was found that a rotating 
homogeneous field did not generate motion in a magnetic 
liquid. According to Ref. 22, the rotation observed in the 
experiment of Ref. 15 did not occur in the volume of the 
liquid but represented rotation in a thin surface layer and was 
due to the presence of a meniscus. 

The results of the measurement of the velocity in Refs. 
16- 18 could apparently be regarded as a confirmation of the 
theory of Refs. 1-7 with boundary conditions of free rota- 
tion. However, in these experiments only the velocity and not 
other physical quantities (for example, us, j:,, j;,) that char- 
acterize the behavior of the magnetic liquid was measured, 
mainly, it seems, because of the absence of appropriate meth- 
ods of measurement. The fluxes jfr and ji were also not 
investigated in the theory, since attention was concentrated 
primarily on quantities that could be measured in the experi- 
ment. It is clear that a correct theory must give correct values 
of all quantities. 

In the theory developed in Refs. 1-7, it follows from the 
expressions (6) and (10) that the flux densities jtr and j;, are, 
respectively, 

The existence of a finite value of the flux density jf; of the 
axial component of the macroscopic angular momentum L ,  
given L,= rv = 0 is in contradiction with the very concept of 
a flux density, since, as is entirely clear, the existence of a 
flux density of some quantity requires presence of the quan- 
tity itself. 

Vanishing of jf, for SZO and N,#O also cannot be un- 
derstood from the point of view of the definitions of the 
participating quantities. Indeed, the presence of a volume 
density N z  of couples generates an internal angular momen- 

tum that under stationary conditions must flow out of the 
considered volume, i.e., there must exist a nonzero flux den- 
sity jf,. 

Correct noncontradictory values of j$ and jir can be 
found on the basis of the theory developed in the present 
paper. In accordance with Eq. (28) for the internal angular 
momentum, the component p: can be written with allowance 
for (41) in the form 

p:= Nz/2=poHM,12=const for OSrSr , .  (44) 

Equation (42) for the determination of v remains unchanged. 
In accordance with (44), it has, in agreement with the experi- 
ment, the trivial solution. The flux density jfr of the internal 
angular momentum in the case p:=const is most readily 
found from the relation (29): 

The flux density jtr= j&, of the macroscopic angular mo- 
mentum is determined by the expression (21), from which, 
with allowance for (49 ,  it follows that j t r=O.  The self- 
consistent values of j;, and j:, are undoubtedly a confirma- 
tion of the correctness of the developed theory. 

The presence of a homogeneous distribution of p: now 
no longer leads to a homogeneous distribution of S(r) or 
wS(r). To find S(r), we obtain in accordance with (33) and 
(44) the equation 

This equation can be solved under the condition that S and 
dSldr are bounded in the region OSr<ro .  In accordance 
with what we have said above, no boundary conditions are 
imposed on S at r = ro. The solution of Eq. (46) can be found 
in the form 

~ ( r )  = S(O) - ~ , r ~ / 4 ~ ;  = S(O) - , u o H ~ , r 2 / 4 ~ ~  , (47) 

where S(0) is the value of S(r) at r=O. For wrB91, where 
rB= Po/2kT and & is the coefficient of resistance to rotation 
of suspended particles, the component M, was determined in 
Refs. 19-21. For arbitrary values of wr,, the magnetization 
M, was determined in Refs. 23 and 24 on the basis of a 
solution of the Fokker-Planck equation. In accordance with 
this solution, 

where y = w 0 H l k T  is the Langevin parameter, and 
P=noPo. With increasing y, the function f ( y,wrB) increases 
monotonically for all values of wrB from f = O  at y=O to 
f = 1 (WM,=Pw) at ~ / 2 ~ ~ ~ s 1  (see Fig. 6 in Ref. 23). 

It is assumed that the stationary solution (47) will be 
stable only when the difference 

is sufficiently small. It can be seen directly from (49) that AS 
depends strongly on the radius ro bounding the cylindrical 
surface. In accordance with (48), the limiting value of AS in 
strong magnetic fields (y>2wrB) is f3wro/4~f  and, there- 
fore, depends on the particle density, since /3=noPo. 
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