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The anisotropy of the dielectric function of an inhomogeneous medium is considered when it 
arises due to the presence of a preferred direction of the density gradient at each point 
in the medium. Expressions are obtained for the dielectric tensor of an inhomogeneous medium 
which take account of the anisotropy caused by the inhomogeneity. O 1995 Anzerican 
Institute of Physics. 

1. INTRODUCTION The dipole moments induced in each molecule of the me- 
dium are sources of secondary fields. In order to calculate the 

At each point of an inhomogeneous medium, generally local field, let us first consider the microscopic field Em" 
speaking, there exists a preferred direction associated with acting on the molecule located at the point R. This field is 
the existence of the density gradient. It is well known, for made up of the primary field (no longer interacting with 
example, that a periodically inhomogeneous medium is bire- just one molecule of the medium) and the secondary fields of 
fringent for with wavelength much greater than the all the other particles. Therefore, for the Fourier transforms 
spatial period of the medium.' At the same time, in macro- of the microscopic fields we can write 
scopic electrodynamics the medium is sometimes considered 
inhomogeneous but isotropic. The applicability of such a 
quasi-isotropic approximation in the special case of geomet- 
ric optics has been discussed by different authors (a review 
with references to the literature can be found in Ref. 2). It 
would seem that the most natural way to obtain the condi- 
tions of applicability of the quasi-isotropic approximation is 
by the appropriate derivation of the expression for the polar- 
ization of the material from a consideration of the local field 
acting on a ~ n o l e c u l e . ~ - ~  As is well known, the polarization 
of the material is directly related to the mean field acting on 
the molecule, and its relation to the mean macroscopic field 
is found from additional considerations taking account of the 
properties of the material. Only after finding the relations 
between the local field and the macroscopic field is it pos- 
sible to obtain an expression for the dependence of the di- 
electric function on the density. 

Such a study was carried out a few years ago by s i p 9 ;  
however, in the approximation that he used, anisotropy gen- 
erally does not arise. Therefore it is of interest to clarify the 
accuracy to which the anisotropy of an equilibrium inhomo- 
geneous medium can be neglected, treating the dielectric 
function of the medium as a scalar function of position, al- 
though at each such point there exists a preferred direction of 
the density gr a d '  lent. 

2. LOCAL FIELD IN AN INHOMOGENEOUS MEDIUM 

The influence of the inhomogeneity of the medium on its 
dielectric function is simpler to trace out if we consider the 
relation between the local field acting on a molecule and the 
mean macroscopic field. A nlolecule of a medium located in 
an electric field acquires a dipole moment whose Fourier 
transform d(r,w) is related to the polarizability of the mol- 
ecule cwij(w) and the Fourier transform of the field acting on 
the molecule E(r,  o )  : 

cl ,(r ,o)= a i j (o)Ej(R,w) .  (1) 

where the sum is taken over all of the molecules of the me- 
dium except the one under consideration, and we have used 
the notation 

The effective field acting on the molecule results from the 
addition of the fields of many molecules located in some 
region of space whose characteristic linear dimension 1 is 
large in comparison with intermolecular distances n -  ' I 3 ,  but 
much smaller than the wavelength of the field: 

n-"3<1<~.  (4) 

If these inequalities hold, then the field acting on the mol- 
ecule results from the mutual cancellation of the fields of 
many molecules and its value is close to that of the acting 
field averaged over the positions of the other molecules. This 
latter field is commonly called the local field E'"". The equa- 
tion for the local field can be found by averaging expression 
(2) over the positions of all molecules other than the one 
under consideration. Then the microscopic field in expres- 
sion (2) can be replaced by the local field, and to find the 
average of the sum we multiply each of its terms by the 
probability w(Rrr;R) of finding a molecule at the relative 
position R"= R- R r ,  and we then integrate over Rrr. The 
dependence on R r  in the terms of the sum then drops out, 
and the sum reduces to multiplying by the number of mol- 
ecules N- I = N .  It is convenient to introduce the notation 
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where n ( R 1 )  is the number density of the molecules in the 
inhomogeneous medium. Since the probability in any nie- 
dium of a very small distance between two molecules tends 
to zero, the function f (RU;R)  is equal to unity at R"=O in 
any medium, independent of R. On the other hand, for 
R"Pn- ' I3  the function f (RU;R)  becomes negligible in any 
medium. This substantially limits the possible form of 
f (RV;R) .  It follows that the result of taking the average of 
expression (2)  can be represented in the form 

In order to relate the local field to the mean macroscopic 
field, we find the relation between the macroscopic field and 
the primary fields. By definition, the primary field satisfies 
Maxwell's equations in vacuum with the same current and 
charge densities as in the phenomenological Maxwell equa- 
tions in the medium for the macroscopic field. Therefore, the 
difference between these equations does not contain currents 
or charges, and enables one to relate the Fourier transforms 
of the primary field, the macroscopic field, and the polariza- 
tion of the medium: 

where 

Qi j (k ,w)= (k26 i j -  k ik j ) l [ k2 - (w /c )2 ] .  (7)  

Transforming back to the fields themselves, without too 
much trouble we find 

The latter equation can be used to eliminate the primary field 
from Eq. (5). However, it is more convenient first to intro- 
duce the local field in expression (8) in place of the polar- 
ization by way of the relation 

Substituting relation (9) into Eq. (8)  gives 

X M,i(R"). (10) 

Eliminating the primary field from Eq. (5) with the help of 
relation ( lo ) ,  we easily obtain 

Ei (R ,o )  = E ? ( R , ~ )  - 47rn(R)a i j (w)EP(R,w)  

3. DIELECTRIC FUNCTION OF A WEAKLY 
INHOMOGENEOUS MEDIUM 

We now consider an inhomogeneous medium whose 
density varies substantially over distances L large compared 
to the wavelength of the field. We can supplement (4) by 
writing 

In this case we can assume that the function 

is nonzero only over a range of R" of order n-'I3. The mo- 
lecular number density n(R-R") and the local field 
E'o'(R- R", w )  are essentially constant over intermolecular 
distances, which enables us to neglect R" in the arguments of 
these functions, and thus take them outside the integral. 
Hence, we can transform ( 1  I )  for an inhomogeneous medium 
to the form 

where 

It should be emphasized that the foregoing equality f(R" 
= O;R) = I leads to the integral relation 

which holds for any R. In an inhomogeneous medium, the 
function f (q ,R)  depends on the direction of the vector q.  We 
denote the function f (q ,R)  averaged over all directions of 
the vector q  by J'(q,R), and set f tq ,R)=  f (q ,R)+h(q ,R) .  
Substituting the latter relation into Eq. (15) noting that re- 
placing f (q ,R)  by f ( q , ~ )  in Eq. (15) gives 

leads to the expression 

where we have made use of the notation 

In a homogeneous medium the quantity h,vj(R) vanishes, but 
in a weakly inhomogeneous medium in which the inequali- 
ties (12) hold, h,sj ( R )  is comparable to IIL+XIL in order of 
magnitude. Therefore if inequalities (12) hold, it is generally 
possible to neglect h, j (R) .  As a result, it follows from rela- 
tion (17) that 
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For a material with spherically symmetric molecules this re- 
lation simplifies: 

Hence it follows that in a weakly inhomogeneous medium 
with spherically symmetric molecules the dielectric function 
has the form 

which reproduces Sipe's result? 
In a weakly inhomogeneous anisotropic medium, the 

form of the dielectric function becomes more complicated. It 
is convenient to use the crystal optics approximation, which 
treats the crystal as a homogeneous anisotropic medium, and 
which takes account of ordering of only the orientations of 
the molecules, not their spatial distribution. In particular, it 
does not allow for the difference between a solid crystal and 
a nematic liquid crystal. 

We now consider an anisotropic single-axis medium in 
equilibrium in an external field directed along the principal 
optical axis. The electron density in such a medium depends 
on the coordinate along the principal optical axis. Such a 
medium will be single-axis, anisotropic, and inhomogeneous. 
In the crystal optics approximation it is sufficient in such a 
medium to take account of the ordered orientation of the 
molecules in the direction of the principal optical axis. De- 
noting the direction vector of this axis by the unit vector e, 
we can represent the polarizability of a molecule of the me- 
dium in the form 

The inhomogeneity of the material in the crystal optics ap- 
proximation is described by the variation in the number den- 
sity of the molecules, while their spatial order can be ig- 
nored. Then, for an inhomogeneous, single-axis material, the 
relation between the macroscopic field and the local field 
(14) can be inverted to yield 

Hence, we obtain the dielectric function of an inhomoge- 
neous, single-axis material in the following form: 

4. DIELECTRIC FUNCTION OF AN INHOMOGENEOUS 
MEDIUM IN THE GENERAL CASE 

We now consider an inhomogeneous medium in which 
the characteristic dimension L of the inhomogeneities is 
bounded only by the inequality 

IG L (25) 

and inequality (4) holds. In this case, the influence of the 
inhomogeneities on the formation of the local field is, as 
before, not great, so that relation (1 4) between the local field 
and the macroscopic field still applies and the conditions for 
the derivation of the expression for V,; (17) are still fulfilled. 
The quantity h(q,R) is now comparable in order of magni- 
tude to IIL, i.e., it is small in comparison with unity, but can 
be much larger than IIX, and thus must be taken into ac- 
count. 

With the help of formula (17), relation (14) can be 
brought into the form 

The quantity hsj (R) can be expressed in terms of the binary 
distribution function F(R1  ,R): 

In the derivation of expression (26) we have neglected 
terms quadratic in h,, (R). Therefore we can, to the same 
accuracy, write in place of Eq. (26) 

w i ~ ( R ) ( ~ s ; -  4 ~ ( R ) a s l ( ~ ) h l k ( R ) W k j ( R ) ] E j ( R , w )  

= E ~ * ~ ( R , w ) ,  (28) 

where the tensor Wis(R) is defined by the relation 

Invoking the relation between the polarizability and the local 
field (9), it is straightforward to obtain from Eq. (28) an 
expression for the dielectric tensor of an inhomogeneous me- 
dium, 

F ~ ~ ( R , ~ ) =  6 , , + 4 ~ n ( R ) a ~ , ( w ) W , ~ , ( R )  - 1 6 r r 2 n ( ~ )  

In the case of material consisting of spherically symmetric 
molecules, 
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W i j ( R ) =  ai,;[l - ( 4 . r r / 3 ) n ( R ) t r ( w ) ] - ' ,  

and formula (30) simplifies to 

c i j ( R , w ) =  a i j & ( R , w )  - h i j ( R ) [ & ( R , ~ )  - 1 l2  
1 + ( 8 ~ / 3 ) n ( R ) a ( w )  

= a;; - h i j ( ~ )  
I - ( 4 ~ / 3 ) n ( R ) a ( w )  

where E ( R , w )  is the value of the dielectric function that is 
usually used to describe the inhomogeneous medium, i.e., 
disregarding anisotropy. 

5. THE FIELD IN A ONE-DIMENSIONALLY INHOMOGENEOUS 
MEDIUM 

Taking the anisotropy of an inhomogeneous medium into 
account substantially alters the Maxwell equations for the 
field in such a medium. Thus, for example, in a one- 
dimensionally homogeneous medium consisting of spheri- 
cally symmetric molecules, and when the molecular number 
density varies only with z ,  the most general form of the 
tensor hi j  ( z )  is 

and expression ( 3  1 )  for the dielectric tensor can be written as 

where we have made use of the notation 

Let the wave field have the form H(z)exp(iqx-iwt), that is 
to say, let the direction of propagation of the wave lie in the 
xy plane. Maxwell's equations in such a medium have two 
linearly independent solutions, in one of which the compo- 
nents of the fields E x ,  E,,  and H, vanish, and in the other, 
the components H , ,  H z ,  and E ,  vanish. In the limit of a 
homogeneous, anisotropic medium, the first solution goes 
over to the ordinary wave, and the second, to the extraordi- 
nary wave. In an inhomogeneous, anisotropic medium, the 
properties of the second solution depend substantially on the 
orientation of the direction of propagation relative to the 
principal optical axis. It is convenient to call the first solu- 
tion, even in an inhomogeneous medium, the ordinary, or 
E-wave, and the second, the extraordinary, or H-wave. The 
ordinary wave obeys the same equation as in an inhomoge- 
neous, isotropic medium, with the single exception that the 
dielectric function s ( z , w )  must now be replaced by the 
quantity c O ( z , w )  detined by the first of Eqs. (34). The equa- 
tion for the extraordinary wave differs from that for the 
H-wave in an inhomogeneous, isotropic medium, in particu- 
lar, in that it contains two different characteristics of the 
medium: c O ( z , w )  and ~ , ( z , w ) .  

The equation for the magnetic field of such a wave 
H = H, has the form 

Taking anisotropy into account can lead to qualitative 
differences in the behavior of the solutions. Thus, Ref. 10 
presents the derivation by Forsterling, who consiclered the 
reflection of an oblique incident wave from a layer of inho- 
mogeneous, isotropic medium in which ~ ( z )  passes through 
a zero, and found that in contrast to the E-wave, in the re- 
flection of an N-wave against the background of a decaying 
field near the zero of ~ ( z ) ,  an anomalously abrupt amplifi- 
cation of the field takes place. However, the equation for the 
inhomogeneous, isotropic medium is obtained from the more 
general equation (35) by replacing c 0 ( z )  and E , ( z )  by 
E ( z ) ,  which is valid only under certain conditions. Forster- 
ling's use of the approximation of an isotropic, inhomoge- 
neous medium in equation (35) means that the difference 
E O - E ,  is assumed to be small compared with any character- 
istic quantity of the problem, in particular, leal and l ee [ :  

I ~ o - ~ , I ~ I ~ o I . I ~ , I .  
The functions c O ( w )  and ~ , ( w )  vanish, generally speak- 

ing, at different values of the frequency, and near the zeros of 
E ~ ( w )  and e , ( w )  the approximation of a homogeneous, iso- 
tropic medium is inapplicable. Hence it follows that near the 
zeros of the dielectric function it is necessary to take into 
account the anisotropy of the medium and to use Eq. (35) to 
determine the field of the H-wave. 

Thus, Forsterling's derivation, on the basis of which he 
concluded that the H-wave penetrates anomalously deeply 
behind the plane in which the dielectric function vanishes, 
was in error, since it was obtained outside the domain of 
applicability of the approximation of an isotropic, inhomo- 
geneous medium, which he used. 

6. RESULTS AND DISCUSSION 

At every point in an inhomogeneous medium, there is a 
preferred direction of the density gradient. Therefore, the in- 
homogeneous medium, strictly speaking, is at the same time 
anisotropic. The important parameter determining the degree 
of anisotropy of the inhomogeneous medium is the ratio of 
the formation length of the local field 1 to the characteristic 
dimension L of the inhomogeneities. When the distance L 
over which the properties of the medium vary is small com- 
pared with I ,  e.g., on the surface of the material, the condi- 
tions for formation of the local field are altered, which in- 
duces a natuml anisotropy of the surface layer, with a 
thickness of order 1, even in an isotropic medium." 

If the characteristic dimension L of the inhomogeneities 
in the medium is larger than the formation length of the local 
field 1 and the required accuracy of the calculations is coarser 
than / I  L, then the anisotropy of the inhomogeneous medium 
can be neglected, i.e., the medium can be taken to be isotro- 
pic. 

If, on the other hand, one requires accuracy higher than 
IIL, then one must take account of the anisotropy and use the 
dielectric tensor (30) to describe such a medium, or, if the 
conditions of the problem permit, the special cases (31) or 
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(33). When considering effects clirectly due to the mere ex- 
istence of the anisotropy, it is always necessary to allow for 
the tensor nature of the dielectric function. 

Thus, for example, in a one-dimensional inhomogeneous 
medium whose density depends only on 2 ,  the conditions of 
propagation of an electromagnetic wave depend on the angle 
between the direction of propagation and the z axis, but in all 
other cases do not depend on this angle, in analogy with the 
ordinary and extraordinary waves in a homogeneous single- 
axis crystal. By neglecting the anisotropy in such a medium, 
we ignore the differences between these waves, which even 
in the presence of weak anisotropy will inevitably show up 
over a long enough path length. To account for such effects, 
it is necessary to allow for anisotropy. 

Note that when the formation length of the local field 1 is 
comparable in magnitude to the characteristic size of the in- 
homogeneities, L,  the relationship between the local field 
and the mean macroscopic field can be different at every 
point in the medium, so that it is necessary to calculate it at 
every individual point in the medium, based on the local 
nature of the inhomogeneities. For example, periodic varia- 

tion of the electron density in a single crystal makes it pos- 
sible to account for the influence of small inhomogeneities of 
electron density. This was done by Johnson by another 
method, namely by generalizing to optical frequencies an 
approach used to consider x-ray diffraction.'* 
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