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We calculate the surface magnetic field generated near a metal surface by a fast moving charged 
particle. Numerical results are given for the case where a proton moves parallel to an aluminum 
surface. O 1995 American Institute of Physics. 

1. INTRODUCTION where 8(z) is the Heaviside step function, and the electro- 
magnetic field damping factors in the vacuum, K I ,  and in the 

Surface electromagnetic waves generated by fast moving 
metal, K,  , are 

charged particles has been studied by many authors, starting 
with ~itchie. '  It is believed (see, e.g., Ref. 2) that surface 
plasma waves with an electric field described by a scalar 
potential cp are generated on the surface of the metal. A more 
detailed analysis (see, e.g., Ref. 3 and the cited literature 
therein) shows that such a description is only approximate, 
since it ignores the retardation effect. Retardation consider- 
ably changes the nature of the surface waves as X + m,  but if 
X does not exceed the wavelength Xp, of a plasma-frequency 
photon, allowing for retardation in describing surface elec- 
tromagnetic oscillations yields only small corrections. Hence 
it is clear that the only phenomena that occur at distances 
large compared to Xph are sensitive to a time lag in electro- 
magnetic signals. Specifically, the potential of the wake po- 
larization field of a moving charged particle undergoes 
changes on distance greater than Xph. ~ o h r ~  was the first to 
show that the contributions to the stopping power of matter 
from near and far collisions is approximately the same. Since 
a Coulomb field is long-range, distances greater than Xph 
contribute considerably to deceleration of particles, and one 
should expect certain modifications in the formulas for the 
contribution of surface modes to the stopping power. The 
most important corollary of retardation is the generation of a 
surface magnetic field, which can play an important role in 
the polarization of elementary particles, atoms, and mol- 
ecules in their movement near the surface. In this paper we 
analyze in detail the magnetic field generated by a charged 
particle moving with a constant velocity parallel to a surface. 

2. ELECTRIC AND MAGNETIC FIELDS INDUCED BY A 
CHARGED PARTICLE MOVING NEAR A SURFACE 

The mean fields that appear near a surface thanks to 
generation of surface polaritons by a moving particle were 
calculated in Ref. 5. Let the z axis of the coordinate system 
be directed from the metal into a vacuum at right angles to 
the metal surface z =  0. The general expression for the mean 
magnetic field at the point x= (r,z) has the form 

H(x,t)= C H0.2 Re{Q,,(t)exp[- i ~ , ~ t +  ixq(z)]}. ( I )  
911 

Here w,y=w,s(qll) is the surface polariton energy (we use 
natural units here), qll is the polariton momentum, and 
q(z) = (qll ,iK(z). sign(z)), with k(z)= K I  O(z) + K~O(-Z) ,  

with E ( O )  the metal's dielectric constant on the assumption 
that spatial dispersion is negligible, and c the speed of light. 
The functions Q (t) are determined by the following inte- 

911 
grals of the electric current density j(x,t) of the moving 
particle: 

Here g,,(qll ,z) are the vector coupling constants of the exter- 
nal transport particles and the surface polaritons: 

where E(W, ,z) = O(Z) + E(w,) O ( -  z). The real vector Ho is 
perpendicular to the surface and to the plasmon momentum 
in such a way that the triad (H, ,q11 ,ez) forms a right-handed 
system of perpendicular vectors. The magnitude of H, is 

where S is the normalization surface area of the interface. 
The dispersion dependence ~ , ~ ( q ~ ~ )  in Eqs. (1)-(3) can be 
found from the equation K ,  = - K~ I&( W) and has the prop- 
erty that at a certain critical value qll= q, the curve represent- 
ing the qll-dependence of w, cuts off. The value q .  is the 
maximum momentum of surface polaritons. In this paper we 
determine q, from the point of intersection of the w, vs. qll 
curve with the edge of the band of electron-hole excitations 
of the metal's electron gas, w=qll(qI1+2pF)/2, where pF  is 
the Fermi momentum. The critical surface-plasmon momen- 
tum was found in a similar way by Wirkborg and 
~n~ le s f i e ld .~  

In the special case in which a point charge Z ,  moves at 
right angles to the surface along a path x0(t) = - e p t ,  the 
surface magnetic field generated by that charge has, in cylin- 
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drical coordinates, only a cp-component. After replacing the 
sum in Eq. ( 1 )  by an integral we get for this case 

where J ,  (5) is the first-order Bessel function. The field 
H , ,  as expected, is continuous at the boundary z=0  and is 
oriented according to the right-hand screw rule. After the 
particle has crossed the surface, surface field-strength vibra- 
tions are induced. Since K ~ > K , ,  the field in the medium 
decays faster than in the vacuum. 

3. THE FIELD GENERATED BY A PARTICLE MOVING 
PARALLEL TO THE SURFACE 

Suppose that a point-like charged particle moves with a 
constant velocity v in a vacuum at a fixed distance a from 
the surface of the metal. We point the y axis along the direc- 
tion of v. Then 

exp(iqx x +  iq,y ') + exp( - iq, x - iq,y ' ) 
ws-q,v-i0 w,-qYv+i0 

where y f = y - v t ,  we have put S = l ,  and 
K(qll ,z) =exp{- K ~ U -  ~ ( z ) ~ z ~ ) c ~ K ~ H ~ I w , ~ ~ ~  . 

At low velocities v<  v, , where v,= o,(q,)lq,, Eqs. (5) 
become 

Above the critical velocity one must allow for the pole, 
which yields the following expression for both components: 

where 

In Eqs. (8) with y '  >O,  

-411)1] . 
where 

The integrals in Eqs. (8) are the pole contributions, with 
the variable 7 related to the variable qll through the relation- 
ship 7(qI1)= Jm, and v,= ~ ( q , ) .  Accordingly, all 
functions of qll must be expressed as functions of q l l (v) .  In 
calculating the integrals the values of square roots are taken 
according to the convention adopted in the FORTRAN pro- 
gramming language, i.e., the real part of the root is assumed 

FIG. 1. Magnetic lines o f  force on the surface o f  aluminum that are gener- 
ated as a result of a proton moving with a velocity u =  1 nat.un. ( u < u , )  at 
a distance o f  I nat.un. from the surface. The proton is moving in a vacuum 
along the y axis above the origin o f  coordinates. 
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FIG. 2. The same as in Fig. I but at u = 1.5 nat.un. ( u  > v,). 

positive. What is also taken into account is that for y  ' <O we 
must go, in the pole contribution, to the lower edge of the 
cut, where the root ( q f -  q;)'I2 has a negative value. Numeri- 
cal calculations carried out independently using Eqs. (6)-(8) 
yielded results in the v < v ,  range that coincided to within 
the given computer accuracy. By applying the Maxwell 
equations to the expressions obtained for the magnetic field 
one can directly obtain equations for calculating the electric 
field components and components of the forces acting on the 
moving particle. 

4. NUMERICAL RESULTS AND DISCUSSION 

In the vicinity of the metal-vacuum interface the lines of 
magnetic force are closed contours with planes parallel to the 
surface. In carrying out specific calculations we assumed that 
E ( o ) =  1 - w i / w 2 ,  where wo was taken equal to the plasma 
frequency in the aluminum electron gas. At low velocities 
v<v , ,  the lines of force turned out to be symmetric under 
reflection in the plane y '  =O. The reason is that surface po- 
laritons are not excited in this velocity range. But if 

H, . lo4, nat. un. 

2 t  

/ v, nat. un 

FIG. 3. The polarization magnetic field strength at a proton as a function of 
the proton's velocity. The proton is moving above an aluminum surface at 
a = 1 nat.un.. 

fact becomes clear if it is considered a result of the interac- 
tion of two oppositely directed currents, the moving change 
and its image. 

Building the pattern of the lines of magnetic force 
prompted the development of an algorithm that took into 
account the features of the problem: the large cost of com- 
puter time required to calculate the magnetic-field compo- 
nents H ,  and H,, and the need of building lines of forces 
with a high degree of accuracy. The efficient Runge-Kutta- 
Merson method, with automatic choice of step size, was used 
to numerically integrate the differential equation 
dyldx= f ( x , y )  = H ,  IH,  . The initial conditions were chosen 
in the form y (O)=O and y ' ( 0 )  = 0, which was achieved as a 
result of translation and rotation of the system of coordinates 
before each step along a line of force. 

Figure 3 depicts the behavior of the magnetic field at the 
proton location as a function of proton velocity. Note the 
characteristic dip in the vicinity of the critical velocity. In the 
region of still higher velocities the Lorentz force changes 
sign. Here the component of the polarization-field energy 
flux parallel to the surface opposes the particle's motion, 
having a stopping effect on the particle. The change in sign 
of the Lorentz force at high particle velocities can be ex- 
plained by the high inertia of the electron system of a solid, 
in view of which the image charge turns out to lag the real 
charge. The electron velocities in the surface region directly 
under the particle prove to be directed in opposition to v. The 
induced polarization current that forms the image flows par- 
allel to the proton current and is the cause of Lorentz attrac- 
tion to the surface. 

v  > v ,  , the reflection symmetry in the y ' = 0  plane is broken, 
and wake oscillations of the system of lines of magnetic 
force develop. Figure 1 depicts the lines of force for u  < v ,  in I R. H, Ritchie, Phys. R ~ ~ ,  106, 874 (1957). 
the case of a uroton traveling at a distance of 1 (in natural 'P. M. Platzman and P. A. Wolff, Wuves and Interactions in Solid St(1re - 
units) from an aluminum flat surface with a velocity of 1.5. 3Plu.ymu, Acadenlic Press, New York (1973). 

V. M. Agranovich and D. L. Mills (eds.), Surjuce Polr~ritons, North- 
Figure 2 depicts similar results for v =  1.5 (the case of Holland,Amsterdam (1982). 
v>vc).  Note the bK%kdown of the symmetry under velocity 4 ~ .  Bohr, "The penetration of atomic particles through matter," Danske 
inversion for u  > v ,  and the formation and breaking away of Vid. Selsk. Mat.-Fyz. Medd. 18, No. 8 (1948). 

additional cycles ii the wake of the For ;<v,- the 5G. M. Filippov, Izv. Vyssh. Uchebn. Zaved., Fiz. No. 1 ,  94  (1995). 
6 ~ .  Wirkborg and J .  E. Inglesfield, Phys. Scripta 15, 37 (1977). 

Lorentz force proves to be directed out of the metal and into 
the vacuum, pushing the particle away from the surface. This Translated by Eugenc Yankovsky 
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