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The Vollhardt-WGlfle hypothesis that the irreclucible vertex Ukkt(q) appearing in the 
Bethe-Salpeter equation contains a diffusion pole in the limit k +  kl+O, whlch includes the 
observed diffusion coefficient D(w,q),  is proved. In the quantum kinetic equittion the quantlty 
Ukk,(q) plays the role of a transition probability Wkk, and its anomalous growth as 
D(w,q)  decreases is the physical reason for localization. As w 4 0 ,  in the localized phase 
D(w,q)= ( - iw)d(q)  holds, where cl(q) is a regular function of q2,  associated with the properties 
of a typical wave function. The presence of a diffusion pole in Ukk,(q) makes it possible to 
represent the quantum "collision operator" L as a sum of a singular operator Lslllg, which has an 
infinite nuniber of zero modes, and a regular operator iWg of a general form. Investigation 
of the response of the system to a change in iKg leads to a self-consistency equation, which 
replaces the rough Vollhardt-Wolfle equation. Its solution shows that D(O,q) vanishes at 
the transition point simultaneously for all q ;  the spatial dispersion of D(w,q)  at w+O is found 
to be - 1 in relative units, it is determined by the atomic scale, and it has no manifestations 
on the scale q-  5- ' associated with the correlation length 6. The values obtained for the critical 
exponent (s) of the conductivity and the critical exponent (v) of the localization length in a 
d-dimensional space, s =  1 ( d > 2 )  and v= (d-  2)-I  ( 2 < d < 4 ) ,  v =  112 (d>  4), agree with most 
existing results. With respect to the character of the change in the symmetry, the Anderson 
transition is found to be similar to the Curie point of an isotropic ferromagnet with an infinite 
number of components. For such a magnet the critical exponents are known exactly and 
they agree with the exponents indicated above: This suggests that the symmetry of the critical 
point has been completely determined and that the exponents have been determined 
exactly. O 1995 American Iizstitute of Physics. 

1. INTRODUCTION spaces where the additional symmetry associated with fluc- 
tuations does not arise. Another example is the conformal 

It is now widely acknowledged (see, for example, Ref- theory of phase transitions for the two-dimensional 
p. 76) that the theory of phase transitions should, in ~ r i n -  which, proceeding from the conformal invariance of the sys- 
ciple, be constructed as a symmetry theory. Specifically, the tem at the critical point and the finiteness of the number 
effective Hamiltonian of the system is represented in the strongly fluctuating quantities, fixes a discrete series of sets 
form of critical exponents. 

where H ,  is the critical-point Hamiltonian, possessing a high 
symmetry; Hi,, is a general operator which is compatible 
with the symmetry of the total Hamiltonian H; and, r is a 
parameter that measures the distance to the transition. The 
most general motivation for the separation (1) is that the set 
of Hamiltonians H ,  (for example, Hamiltonians of different 
ferromagnets at the Curie point) should be separated from 
the set of all Hamiltonians H by imposing some kind of 
additional conditions which can be interpreted as generalized 
symmetry requirements. 

In this approach the problem consists of determining the 
complete symmetry of the Hamiltonian H ,  , which thus far it 
has been impossible to do for most phase transitions. For 
example, Landau's well-known theory2 starts from the obvi- 
ous symmetry of the Hamiltonian and does not take into 
account scale invariance and other symmetry elements aris- 
ing as a result of the fluctuations near the critical point (Ref. 
3, Chap. 9, 92). Landau's theory is exact, giving an example 
of a complete symmetry theory, only in high-dimension 

In the present paper we adopt the symmetry approach to 
the investigation of Anderson's transition:-10 making a sepa- 
ration of the type (1) not for the Hamiltonian H but for an 
operator which is the quantum analog of the Boltzmann 
collision operator. The theory is based on the following ini- 
tial assumptions. 

1. The Schrodinger equation in a space of dimension d 

describing the motion of noninteracting electrons with an 
arbitrary spectrum ~ ( p )  in a random potential V(r) is stud- 
ied. With regard to the random potential, it is assumed only 
that the averages with respect to its realizations can be cal- 
culated by the diagrammatic technique. The existence of a 
diagrammatic technique for the standard models of a random 
potential is proved directly in Refs. 1, I I, and 12. In the 
general case, the question of the limits of applicability of the 
technique-some problenls obviously arise for quasirantlorti 
~ ~ s t e m s " ~ ' ~ - h a s  been little studied. 

The exact Green's function of Eq. (2) is expressed in 
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terms of the eigenfunctions fiS(r) and eigenvalues E ,  

( s  = 1,2,. . . ,N)  of the equation: 

The averaged Green's function ( G ( r , r r ) )  is determined by a 
diagrammatic series (Fig. la), and in accordance with current 
ideas8-l5 it is assumed to be analytic at the point of the 
Anderson transition: For d 2 4  this was recently proved by 
the present The quantity 

which contains information about the kinetic properties, has 
a singularity at the transition point. This quantity is deter- 
mined by a collection of diagrams with four legs, constructed 
on G R  and G A  lines (Fig. Ib), and its properties are similar to 
those of the two-particle Green's function in the theory of 
interacting particles." It satisfies the Bethe-Salpeter equa- 
tion, containing an irreducible vertex U (Fig. Ic). 

2. The following symmetry elements are assumed: 
(a) Spatial uniformity in the mean. This leads to a con- 

servation law for the external momenta in the diagrams. This - 

makes it possible to express ( G )  in terms of the self-energy 
C 

FIG. 1 .  a, LDiagrams  for the average Green's 
function (a) and the quantity #J (b), which corre- 
spond to a Gaussian random potential' or a Born 
approximation for randomly distributed impurities1' 
(in what follows, their specific form is not used). 
c-Graphical representation of the Bethe-Salpeter 
equation; d-explanation o f  the three-momentum 
notation. 

and to introduce for the function $ the three-momentum no- 
tation $ k k t ( q )  (Fig. Id) and to write the Bethe-Salpeter 
equation (Fig. lc) in the form 

Here and below the energy variable is equal to E + w for the 
functions G R  and E for the functions G". 

(b) Isotropy in the mean. When this isotropy is taken 
into account, the function $kk'(q)  depends only on scalar 
products constructed from k ,  k' and q ,  whence, specifically, 

Similarly, G E  and G; depend on k2 and are even functions 
of k .  

(c) Time-reversal invariance. This property makes it 
possible to choose eigenfunctions fi,s(r) which are real and 
to drop the conjugation sign in Eq. ( 3 ) .  Then 
G ( r , r r  ) = G ( r 1  , r )  and interchanging r l  , r2 and r 3 ,  r4 in Eq. 
(4) on switching at the same time to the momentum repre- 
sentation gives 
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Comparing Eqs. (7) and (X), we obtain 

Solving Eq. (6) formally for the function Ukkl (q )  and using 
Eqs. (7) and (lo), it is easy prove similar properties for this 
function: 

3. It is conventionally assumed that Anderson's transi- 
tion proceeds from a phase with exponential localization of 
the wave functions into a phase with a finite diffusion coef- 
ficient. The existence of exponential localization in the limit 
E-t  - m  and finite diffusion for large positive values of E 
(for d> 2 and an unbounded spectrum ~ ( p ) ,  0 4  ~ ( p )  dm) 

has been firmly established, as a result of many investiga- 
tions, for Eq. (2). The proof of the existence of a mobility 
threshold is based mainly on Mott's argument:7 The exist- 
ence of states with different degree of localization and the 
same energy is impossible because of instability with respect 
to an infinitesimal general perturbation. Mott's argument 
does not forbid, however, the existence of intermediate 
states-with exponential localization, hybrid states, and so 
on-and correspondingly different types of "Anderson tran- 
sitions" (for example, in the quasirandom ~ ~ s t e m s ' ~ " ~  the 
transition occurs from exponential localization to a ballistic 
regime). In the present paper the first instability, arising with 
a motion from deep in an exponentially localized phase, is 
investigated and it is shown that it does indeed correspond to 
a transition into a phase with finite diffusion. 

4. The general ideas of the modern theory of critical 
phenomena'-parametric space, critical surface, important 
and unimportant parameters-are used. 

5. The theory is based on the physical idea that the lo- 
calization phenomenon is associated with a diffusion pole in 
the irreducible four-leg diagram 

proposed by Vollhardt and Wolfle in the so-called "self- 
consistent theory of localization" (see Ref. 18, and also Refs. 
10 and 19). This idea agrees with the theory of weak 
~ o c a l i z a t i o n ~ ~ - ~ ~  according to which the diffusion pole in 
U k k , ( q )  determines the main quantum corrections to the 
conductivity which in turn determine the scaling behavior in 
a space with dimension d= 2 +  C .  The diffusion pole in 
U k k , ( q )  with the classical diffusion coefficient DCI arises as 
a result of summation of fan-shaped diagrams;20 Vollhardt 
and Wolfle conjectured that when these diagrams are taken 
into account, DCl is replaced by the exact diffusion coeffi- 
cient D ( w , q ) .  Then they approximated Ukkt ( q )  with 
u::,(~) = const, F(k,kl  , q )  = const and solved approxi- 
mately the Bethe-Salpeter equation (6), which, using the 
Ward identities18 

was rewritten in the form 

There exists a simple estimate which gives the same results. 
We note that the second term in Eq. (15) is reminiscent of a 
Boltzmann collision integral and indeed transforms into this 
integral in the limit of weak disorder (Sec. 3). It is significant 
that in the quantum region the quantity U k k l ( q )  plays the 
role of a "transition probability." Using a T-type approxima- 
tion, D 1 ( U ) - '  ( 1  is the mean free path, (.. .) denotes 
averaging over the momenta), and taking into account Eq. 
(12), we obtain the self-consistency equation of the 
Vollhardt-W6lfle theory 

This estimate is no less accurate and demonstrates more 
clearly the crux of the matter than the approximate solution 
given in Ref. 18 for Eq. (15): As the degree of disorder 
increases, the "transition probability" increases anomalously 
as a result of a decrease of the diffusion coefficient, making 
it possible for the coefficient to vanish. Neglecting the spatial 
disperion D ( w , q ) ,  Eq. (16) makes it possible to determine 
the critical exponents for the conductivity a and the local- 
ization length 6 

( 7  is the distance to the transition); setting D =  const 
( w )  - a in the metal phase and D - ( - i w ) t 2  in the localized 
phase, we obtain 

The drawbacks of the self-consistent localization theory 
given in Ref. 18 can already be seen from the exposition 
given above: 

a) The method used to solve the Bethe-Salpeter equa- 
tion is rough; 

b) the spatial dispersion D ( w , q ) ,  which can change 
substantially the estimate of the integral in Eq. (16), is ig- 
nored; and, 

c) an approximation is used for U k k , ( q )  that leads to a 
singularity - l / w  on the right-hand side of Ward's identity 
(13) in the localized phase, and this is incompatible with 
regularity of Z at the transition point. 

One of the most interesting questions in the theory of 
localization is connected with the drawback b. It follows 
from the Berezinskii-Gor'kov criterionz4 that in the local- 
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ized phase D(O,q)=O (Sec. 4). There arises the question of 
the character of the change in the spatial dispersion of D near 
a transition. Vollhardt and Wolfle proceeded from the fact 
that D(0,q) vanishes at the transition point immediately for 
all values of q. Efetov stated a similar hypothesis.2' The 
vanishing of the entire function cannot occur accidently and 
it must be supported by a deep symmetry: Does this symme- 
try exist? What is its nature? Another fundamental question 
of the theory is touched upon in the drawback c: If the dif- 
fusion pole in Ukkt(q)  exists, then why is there no - llw 
singularity on the right-hand side of Ward's identity (13)? 
The condition for this pole to be cancelled imposes stringent 
requirements on the approximation employed, while the sat- 
isfaction of Ward's identity has actually never been checked 
in any of the existing theories." 

A theory free of the drawbacks a-c and answering the 
questions raised is expounded below. Part 1 of this paper 
follows the scheme of the Vollhardt-Wolfle theory and con- 
tains a proof of the relations obtained in Ref. 18 by a chain 
of hypotheses or doubtful approximations. In Secs. 2 and 3 
the diffusion poles of q6kk'(q) are separated and the result 
(12) is proved. In Sec. 4 the general properties of the diffu- 
sion coefficient and its connection with the localization of 
the wave functions are determined. The content of Secs. 5-7 
replaces the rough solution of the Bethe-Salpeter equation:18 
In Sec. 5 a hierarchical structure of the spectrum is obtained 
for the quantum collision operator L;a separation of the type 
(I), convenient for a symmetry analysis, is established; and, 
a condition on the transition point is found and a self- 
consistency equation, replacing Eq. (16), is derived. The dif- 
fusion coefficient D(w,q) is sought under the assumption 
that the spatial dispersion is arbitrary (Secs. 6 and 7), but it is 
found that only the solution with a weak q dependence, not 
affecting the estimate of the integral in Eq. (16) and leading 
to the result (18) for the critical exponents, is found to be 
internally consistent. In summary, all basic results of Ref. 18 
are found to be correct, which is surprising for such a rough 
theory. 

The theory expounded starts from the obvious symmetry 
of the system and the additional symmetry of the critical 
point is determined in the-course of the analysis. The inevi- 
table question is: Are the hidden symmetry elements com- 
pletely determined? A serious argument indicating that the 
determination is complete is (Sec. 8) that with respect to the 
character of the change in symmetry, Anderson's transition is 
found to be similar to the Curie point for an isotropic 
n-component ferromagnet in the limit n+m. This model of 
a ferromagnet is the basis of the lln expansion,' its critical 
exponents are known exactly, and they are in exact agree- 
ment with Eq. (18). The isotropy of the equivalent ferromag- 
net is the symmetry that makes D(0,q) vanish simulta- 
neously for all q; The approximate (to an accuracy -w) 
orthoganality of the singular part of Ukkt(q) and AGk(q) 
means that there is no singularity in the right-hand side of the 
Ward identity [Sec. 5.3, Eq. (13)l. 

Another method for checking the completeness of the 
symmetry found is to compare with the results of model 
investigations. The hypothesis that the exponents (18) are 

exact was actually stated in Ref. 25 on the basis of an analy- 
sis of all known results: 

(a) For d =  2 + E Wegner's relation s = (d-  2) v, follow- 
ing from the existence of one-parameter scaling:' is valid 
and the E expansion for the exponent v  has the form2" 

which agrees with Eq. (18), if the coefficients of the higher 
order powers of E are also zero. 

(b) The result (1 8) separates the dimensions of the space 
d,. , = 2 and dC2 = 4, which on the basis of independent con- 
siderations are considered to be the lower2' and the upper 
(see the discussion and references in Ref. 16) critical dimen- 
sions. 

(c) The entire experience of the theory of phase transi- 
tions shows that for d>dC2 the critical exponents do not 
depend on d ,  which is the case in Eq. (18). 

(d) The exponents (18) agree with the results for 
d=m:  v =  112 (Refs. 27 and 28) and s= 1 (Ref. 29); the 
disagreement with the result s=m, obtained in Ref. 28, is 
discussed in Sec. 9. 

The value v =  1 of the exponent for d=  3 agrees satis- 
factorily with the results of numerical calculations 
( v =  1.220.3 (Ref. 30) and v =  1.520.2 (Ref. 31) and the 
qualitatively behavior of v  as a function of d agrees with the 
estimates from hierarchical models.14 In Wegner's a 
finite contribution - e2 is obtained in Eq. (19). This makes 
the agreement with the numerical calculations of Refs. 30 
and 3 1 much worse. However, this result was derived for the 
zero-component a-model, whose agreement with the initial 
disordered system is controversial ~ e g n e r ~ ~  himself does not 
reject this), and it is apparently correct only in the lowest 
orders in E (Sec. 9). 

A qualitative result of this work, which can be checked 
experimentally, is the assertion that there is no spatial disper- 
sion of D(w,q) on the scale (compare with Refs. 33, 34, 
and 35). The interaction between the electrons can change 
this result and the experifmental investigation of D(w,q) with 
q25-I  in the limit w+O could resolve the question of the 
applicability of the single-particle picture for describing lo- 
calization. The absence of significant spatial dispersion does 
not contradict the strong dependence of the diffusion coeffi- 
cient DL of a finite system on the size of the system L . ~ '  This 
dependence is related with the temporal dispersion and is 
determined according to the known function D(w,q) from 
the relation D L  - D ( D ~ I L ~ ,  0).18 

2. RELATIONS BETWEEN THE QUANTITIES IN THE 
PRESENCE OF SPATIAL AND TEMPORAL DISPERSION 

In this section the existence of a diffusion pole in the 
quantity 

I 
rb(q)= C kk'  dkkj(q), 

which is the Fourier transform of the quantity (4) for coin- 
ciding arguments r l  = r4, r2 = I-?, will be proved. In contrast 
to Ref. 18 and other works, it will not be assumed that q is 
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small. In view of the great confusion in the literature, we 
shall give a complete summary of the formulas which are 
relevant here. 

Wc shall consider the response of a system to an electric 
field E(r ,r ) -  eiqr-'"' . The frequency w is assunied to be 
finite only in order to reveal the uncertainties which appear; 
the limit o-10 is taken in the final results. Neglecting mag- 
netic effects, the field E is a purely potential tield. This 
makes it possible to confine attention to the longitudinal 
components of the susceptibilities (Ref. 36, $103). In the 
presence of spatial dispersion two definitions of the conduc- 
tivity are possible: 

which relate E  with the total current j or its electric compo- 
nent j , ;  the diffusion component of the current 
jd i f t (o ,q)  = - i q D ( w , q ) p ( o , q )  is due to the deviation of the 
electron density p from the equilibrium density. This devia- 
tion is determined by the polarizability a ( c p  is a scalar po- 
tential): 

The conductivity 6 appears in Kubo's formulas (see below), 
which determine the total response of the system to the field 
E. The conductivity a is related with the diffusion coefficient 
D  by the Einstein relation 

since the change in the scalar potential cp  and the chemical 
potential p with p ( r , t )  + e cp(r,t) = const does not destroy 
the thermodynamic equilibrium ( N ( e F )  is the density of 
states at the Fermi level). A relation between u,6, and a 
follows from the continuity equation: 

so that the difference between cr and 6 is important only for 
q  f 0. Using the relation (23), we obtain for the polarizability 
a and the permittivity 6 

It is clear from Eqs. (23-25) that if the diffusion coefficient 
D ( w , q )  is given, then all quantities introduced above can be 
determined. 

The quantities 6 and a are given by Kubo's formulas 
(Ref. 2, 9 126, and Ref. 37, $75) 

which determine, respectively, the response of the current to 
a vector potential, the response of a current to the scalar 
potential, and the response of the density to a scalar poten- 
tial. The equivalence of Eqs. (26) and (27) and the relation 
(24) between 6 and a follow from the continuity equation 
for the density operator and the longitudinal component of 
the current operator j and the asymptotic expressions for G 
and a in the limit 0 4 ~ 4  (Ref. 36, $78). 

We note that according to the precise meaning of Kubo's 
formula (see the detail discussion in Ref. 38), the response of 
the system to the field D produced by external charges must 
be calculated. In this approach the Coulomb interaction be- 
tween the electrons must be necessarily included in the 
Hamiltonian to avoid contradictions in the Maxwell's equa- 
tions; Kubo's formulas have a form that is somewhat differ- 
ent from Refs. 26-28 (Ref. 37, p. 413), and the correlation 
functions appearing in them must be calculated taking into 
account the Coulomb interaction. A different approach38 is 
more convenient: The interaction between the electrons is 
divided into a short-range and slowly-varying long-range 
parts; the first part is included explicitly in the Hamiltonian 
and the second part is taken into account as a self-consistent 
field, leading to screening of the field D; for this reason, the 
response to a real physical field E is studied and the corre- 
lation functions appearing in Eqs. (26-28) are calculated 
only taking into account the short-range part of the interac- 
tion. The latter part can be taken into account in the spirit of 
the Fermi-liquid theory. We shall neglect it completely, since 
in its classical formulation Anderson's problem is a problem 
of noninteracting electrons. We underscore the fact that the 
word "noninteracting" must be understood precisely in the 
sense indicated above, since otherwise the concept of con- 
ductivity cannot be introduced in a consistent fashion. 

The correlation function in Eq. (28) for noninteracting 
electrons in a random potential is calculated similarly to the 
correlation function for a Fermi gas (Ref. 2, $1 17) using, 
instead of the plane-wave representation, a representation in 
terms of the eigenfunctions $, (r )  of Eq. (2):" 

Here f o ( e )  is the Fermi function, and ( p e p , + , ) q  is the Fou- 
rier transform of the Berezinskii-Gor'kov spectral density24 
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For sniall w and zero temperature, taking the imaginary part 
of Eq. (29), we obtain the inverse function 

(in the absence of interaction $,Jr) and E, do not depend on 
eF and can be replaced by E). The standard diffusion 
form for ( P E P E + w ) q  (Refs. 10 and 24) is obtained by substi- 
tuting the expression (25) into Eq. (3 l), assuming D(w,q) is 
real, which in general is not the case. 

The following expression can be easily obtained for the 
function +(q) (E  and w are parameters appearing in Eq. 
(4)): 

The polarizability a(w,q) is a generalized susceptibility 
(Ref. 2, $123; Ref. 36, $103) and the oddness of Im 
a(w,q) as a function of the frequency makes it possible to 
write 

Substituting the expressions (31) and (33) into Eq. (32), we 
obtain integrals with G(wt, q) and cY(- w', q) that con- 
verge separately. Making the substitution w ' b  - w' in the 
second of the integrals and shifting upwards the contour in- 
tegration over w', and taking into account the fact that 
a(w,q) is analytic in the upper half-plane, we obtain 

where w'I= E -  E. The second equality follows by neglecting 
w" in the argument E+w", as a function of which appre- 
ciable changes in cY occur on an atomic scale and are not 
important in the region w"- w, which makes the main con- 
tribution to the integral. Substituting a(w,q) in the form 
(25), we obtain 

where the contribution +,Jq) originates from the region of 
large values of w" in Eq. (34) and is regular in the limit 
w,q-+0. In the localized phase, when D(w,q)- ( -  iw) 
(Sec. 4), to obtain the expression (35), in separating a(0,q) 
from a(w,q) the existence of a small real frequency- 
independent additive term in the denominator, necessary in 
order for all expressions to be meaningful, must be taken into 
account. The quantity +(q) has a diffusion pole which con- 
tains the observed diffusion coefficient. 

3. SEPARATION OF DIFFUSION POLES FROM THE 
BETHE-SALPETER EQUATION 

We introduce the operator i ,  which is the symmetrized 
version of the operator on the left-hand side of Eq. (15), 
which arises as a result of the replacement 
+ k k r ( q ) - ' 4 k k t , ( q ) J m  and division of Eq. (15) by 

m 

The operator i acts in the complex space and, by virtue of 
Eq. (ll) ,  it is self-conjugate with respect to the scalar prod- 
uct 

Its eigenfunctions e t ) (q)  form a complete orthonormal ba- 
sis, and the eigenvalues A,(q) are, generally speaking, com- 
plex. In terms of A, and e(,) the formal solution of the 
Bethe-Salpeter equation (15) has the form 

Pk")(q) = m e t ) ( q ) .  (38) 

One eigenvalue-for definiteness AO(q)-behaves as 
Ao(q)-q2 for small q. Indeed, the operator iO has a zero 
mode $,(q) = and, treating the operator M - q as 
a perturbation, we can construct the iterative series 

e r ) (q)  =con~t[*LO)(~) + ( ~ l c ) ( ~ )  + ...I, 

*Lo'( q) = m* 
A ~ ( ~ ) = A ~ ) ( ~ ) + A ~ ) ( ~ ) + . . . ,  (39) 

in the Brillouin-Wigner form.39 The eigenvalues A,(q) are 
even with respect to q (see Appendix) and the correction 
hb') is equal to zero, which can be easily verified directly. To 
second order in q we have 

( $ ( O ) , M $ ( ~ ) ) + ( $ ( ' ) , M $ ( ' ) )  

Xo(q) = 
( $'O', $'O') 

(40) 

where $(') satisfies the equation 

- p l ~ $ ( 0 ) = ~ O * ( l )  

[b, is a projection operator onto the space orthogonal to 
$(O) (Ref. 39)]. Making the substitution 

*!1'(q) = - i G n q l k  (42) 

and noting that 
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we rewrite (40) in the form (vk is the velocity of electrons 
with momentum k) 

For an isotropic spectrum ~ ( k )  = k2/2m the expressions (44) 
and (41) assume, to lowest order in q ,  the form 

In the limit of weak disorder, when 

we obtain from Eqs. (46) and (47) 

i.e., a(0,O) is the classical conductivity, D(0,O) is the clas- 
sical diffusion coefficient, and I, is the vector mean free path 
length, determined by the standard classical equation (50) for 
scattering by impurities.@ The results (46) and (47) extend 
the concept of a kinetic equation and a mean free path into 
the quantum region. The differences from the classical equa- 
tions reduce to the following: 

(a) The S-function expressing the law of conservation of 
energy is smeared; 

(b) the transition probabilities are replaced with 
27TUkkt(0); and, 

(c) a acquires a quantum correction [last term in Eq. 
(46)] of the order of the Mott minimum c o n d u ~ t i v i t ~ . ~  

It is obvious from Eq. (45) that the diffusion pole is 
related with the zeroth term in the sum in Eq. (38). To com- 
pare with Eq. (35), we sum the expression (38) over k 
and k t :  

Neglecting in Eq. (36) the operator M ,  we have 
ep)(q)-  J G ,  whence A: (~)  = - 2rriN(E), 
A,s(q)=O, s f 0. Taking into account M by perturbation 
theory, we obtain 

and comparing the expressions (51) with Eq. (35) gives 

The decomposition into regular and irregular parts is not 
unique and admits a "gauge transformation" 

up to which the identity (53) is valid. For this reason, it is 
convenient to set by definition 

making the assumption that the diffusion coefficient 
D(w,q) determined in this manner is related to the observed 
diffusion coefficient Dob,(w,q) by relations of the type (53) 
and (54). For any B(q) and C(q),  we have 
D(0,O) = Dobs(O,O), and D(0,q) and DobS(O,q) vanish simul- 
taneously. In practice, the difference between D(w,q) and 
Dob,(w,q) is not important. The point is that the spatial dis- 
persion of D ( o , q )  on the scale q - A (A is a parameter of 
the order of the inverse interatomic distance) is of little in- 
terest; only the "anornalous" dispersion, determined by the 
scale 5- ' , which can arise near the Anderson transition, is of 
interest. The quantity B(q) does not contain anomalous dis- 
persion, since it is determined by the function AGk(q), 
which is regular at the transition point, and the function 
eiO)(q), which can be assumed to be constant (Sec. 5.4); this 
is also true of the quantity C(q),  relating, according to Eq. 
(54), two regular functions (see, however, Sec. 4). On the 
basis of what we have said above, the expression (38) as- 
sumes the form 

It follows from the relation (9) that q5kkt(q) contains a dif- 
fusion pole in the limit k+ kt+O, which can be separated 
from +::, (q> : 
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In diagrammatic language, the pole in the limit 9 4 0  is 
related to the fact that in the diagrams containing two or 
more blocks U (Fig. 2 4 ,  the contour of integration in the 
integrals (58) 

is confined between the poles of two Green's functions. For 
small U the divergence in the expression (58) in the limit 
w,q-+O is limited only by the small damping Im Z in the 
denominators of the G functions and compensates the small- 
ness associated with the addition of an extra block U; all 
diagrams in Fig. 2a are found to be of the same order, and the 
series diverges, leading to a diffusion pole. For arbitrary U 
the divergence of the series in the limit w,q+O is guaran- 
teed by the Ward identity (13); it is important that the diffu- 
sion pole is determined by diagrams with a large number of 
blocks U. Since G ( r , ,  r2 )=G(r2 ,  r , )  the result for 
+kkt(q) will remain unchanged, if in constructing the dia- 
grams the upper G line is expanded; then the diagram con- 
tains blocks (I (Fig. 2b), topologically equivalent to the 
blocks U, but taken for other values of the momenta. Now 
the poles of the two G-functions converge toward one an- 
other as k+kl+O, giving a second diffusion pole in the 
expression (57). When the upper G line in Fig. 2a is ex- 
panded, the diagrams containing two or more U blocks be- 
come irreducible and enter into a (I block (Fig. 2b) and, 
conversely, expansion of the G line in the diagram with one 
U block generates the entire sequence of diagrams in Fig. 2b 
with more than two (I blocks. For this reason, the second 
pole term in the expression (57) is contained, with no 
changes, in Ukkt(q), differing only by the contribution of the 
four terminal G lines. The result (12) with a function 
F(k ,k f ,q )  of the form 

F(k7k'7q)=i4~'kf+q)/2 ( k +  k ' )  

~ + ~ / 2 - ~ 1 2 1  + q / 2 - q 1 2 ) -  (59) 

is valid for Ukkt(q).  This proves the Vollhardt-Wolfle hy- 
pothesis. 

FIG. 2. a-Stn~cture of the diagrammatic series 
for 4kkt(q). b-same, with the upper G line 
expanded; the U and (I blocks are topologicnlly 
equivalent, but they correspond to different val- 
ues of the momenta. 

4. BEREZINSKIT-GOR'KOV CRITERION AND ITS 
CONSEQUENCES 

The spectral density (30) contains a singular contribution 
- S(w), originating from terms with s = s r ,  that is finite in 
the localized phase and vanishes in the delocalized phase in 
the thermodynamic limit. This is the Berezinskii-Gor'kov 
localization criterion.24 The S(w) singularity in (pEpE+,)q 

leads to, by virtue of the Eq. (32), a l/w singularity in the 
function +(q) (Ref. 10) 

A number of important consequences follow from the rela- 
tion (60). 

1. Comparing Eqs. (60) and (35) shows that in the lo- 
calized phase D(w,q) - w .  A slower dependence would de- 
stroy the l/w singularity in Eq. (60) and a more rapid depen- 
dence would cause the dependence on q to vanish in the 
singular part (35); such a dependence obviously exists ac- 
cording to Eq. (60). This result, valid in the D(w,q) gauge, 
in which the functions +,&q) in Eqs. (35) and (60) are 
identical, remains valid in any other gauge [see Eqs. (53) and 
(54)l. Therefore 

where it is assumed that the limit w-+O is taken in the func- 
tion d(q).  Therefore it follows from the Berezinskii- 
Gor'kov criterion that D(0,q) vanishes for all q. This com- 
pletes the proof of all of the main localization criteria.6210 In 
view of Eq. (62), the second diffusion pole in Eq. (57) leads 
to the singularity l/w in the sum over s in Eq. (51). To 
eliminate this singularity from +,&q) the expression (54) 
must be transformed with C(q)- l/w, without destroying at 
the same time the proportionality of D(w,q) and ~ ( w , ~ )  to 
the frequency. The function C(q) is determined, by virtue of 
Eq. (57), by the quantities AGk(q) and ehO)(q), which are 
regular at the transition point and do not lead to anomalous 
dispersion, while the associated renormalization of D(w,q) 
is small near the transition because of the divergence of d ( q )  
(see below). 
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FIG. 3. Possible configurations of  the exponcnls 
p,, and y,, for 510 ( a )  and ( > O  (b). 

2. A relation between the diffusion coefficient and the 
properties of the wave functions follows from Eqs. (33 ,  
(60), and (62): 

Exponential localization of the wave functions leads to ex- 
ponential decay of A(r)  in the limit r -+m [see Eq. (61)] and 
the finiteness of the coefficients in the expansion over q of 
the right-hand side of Eq. (63). Because of isotropy in the 
mean, there are no odd powers of q and d(q)  is a regular 
function of q2; it is important that it does not contain non- 
integer powers of q ,  which arise naturally in the case of 
diffusion over fractal ~tructures.~ '  The reality and positive- 
ness of d (q )  follow from the reality of A(q) and the in- 
equalities O<A (q) < 1.'0,24 

3. Restrictions on the form of the spatial dispersion of 
D(w,q) follow from the relation (63). In the localized phase 
the spatial dispersion is determined by the expansion2) 

where P n a O ,  since the contributions associated with the 
atomic scale A - '  and the corresponding Pn=O, obviously 
exist. 

Different estimates show that the smoothed (over oscil- 
lations) behavior of the squared modulus of a typical wave 
function has the form 

This behavior should actually be expected on the basis of 
Poincark's theorem on the analytic dependence of the solu- 
tion of a differential equation on a parameter: If the behavior 
of the wave function at the transition point is characterized 
by the exponent b (OSbGm) ,  I @,(r))2-rph,  then near the 
transition for large r we have @(r)=@,(r) on the basis of 
Poincari's theorem; the theorem is valid only for a finite 
region, whose maximum size is determined by the scale 5 on 
which the exponential decrease of @(r) starts. By virtue of 
Eq. (61) the function A(r) has a similar behavior 

where const is chosen from the condition A(q)  = 1 at q = 0. 
The series expansion of A(q) 

and the estimate of the integrals arising in Eq. (6 1)  show that 
only two variants are possible: (a) yn=  2n for 5 < 0  and (b) 
y n =  max{0,2n - 5) for 5>0. Substituting the expressions 
(64) and (67) into Eq. (63) gives a relation between y, and 

P n  
 ma^^+^+^+ ... = n{Pi+Pj+Pk+ . . .}, (68) 

leading to the two possibilities for the exponents P,: 
=2 ,  P n < 2 n  for 5 < O  (Fig. 3a) and Pn=max{0,2n- 5) 

for (>O (Fig. 3b). For these results to be valid it is important 
only that if the integral of A(r) rn  diverges in the limit 
t + m  as e, then the integral of ~ ( r ) r " + ~  should diverge as 
S"+m, since it is determined by the region r-  6. The specific 
approximation (66) is actually not used, but it is convenient 
for interpreting the results. To determine the localization 
length 5 from the known diffusion coefficient, in general, it 
is necessary to know all the exponents pn. The result 
D(w,O)-(- i w ) t 2  proposed in Refs. 18 and 10 is valid only 
for [<0. From Eq. (25) we obtain for the permittivity 

-t2,  5 < 0  

e(0 ,0)= I + 4 . r r e 2 ~ ( e F ) d ( 0 ) =  -t2-', 0 < 5 < 2 ,  (69) 

- 1 ,  [>2 

i.e., on the basis of the general analysis, e(0,O) can diverge 
according to a law that is different from t2 (obtained by 
cutting off the metallic behavior of ~ ( O , q ) - q - ~  on the scitle 
q- ( - I ) ,  and ~ ( 0 , 0 )  can even be finite in the limit 5-+m 

(see the discussion in Refs. 23, 40, and 41). 

5. BASIC STRUCTURE OF THE THEORY 

It is convenient to begin the construction of the theory 
by analyzing the localized phase, obtaining the metallic state 
as a result of the instability of the localized phase. 

5.1 Spectrum of the operator i in the localized phase 

Let M be the set of values of the index s that enumerates 
the eigenvalues X ,  of the operator i. We shall show that in 
the localized phase the decomposition 
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FIG. 4. Evolution of the spectrum of eigenvalues X, on transferring from 
is,, to i, i.e., with the "gradual switching on" of the operator L R g .  

such that 

(Fig. 4) is valid. The set Mo is not empty, since it contains 
the element Xo- w ,  related with the diffusion coefficient. We 
shall show that it is not the only element. According to Eq. 
(57) +kkl(q) contains the singularity - l / w ,  associated with 
two diffusion poles. In Eq. (38) this feature originates from 
terms with s  E Mo . Comparing these two representations and 
taking into account the fact that the diffusion pole at q=O 
corresponds to the term with s=O in Eq. (38), we obtain 

where Mh is the set Mo without the element s=O. Since 
d ( q )  diverges as [see Eq. (64)], the left-hand side of 
Eq. (72) contains a 8-function singularity in the limit 
k+ kl+O, which terms of the form fkfkt on the right-hand 
side of Eq. (72) with k t - +  - k cannot have at the point k 
which is in no way distinguished. The same is true of the 
sum of a finite number of such terms. The example of the 
Fourier expansion 

shows that the pole term in Eq. (72) can be reproduced by an 
infinite number of terms of the form fkfkt and that this does 
not require a complete system of functions (eliminating from 
the sum in Eq. (73) terms with small x leads to the appear- 
ance of a smooth component, but it does not change the 
singularity in the limit k +  k l+O) .  It is clear from what has 
been said above that the set Mo contains an infinite number 
of elements, but generally speaking it does not coincide with 
the set M .  

~ a d o v s k i i ' ~ ~ ~ ~  proposed a localization criterion according 
to which a nontrivial solution of the homogeneous Bethe- 

Solpeter equation appears in the limit w+O. A stronger as- 
sertion follows from what has been said above: An infinite 
number of such solutions appears at the transition point. 

The following decomposition of the operator i follows 
from Eqs. (36) and (1 2): 

,. A 

L=Lreg+ Lsing, (74) 

In the localized phase the diffusion pole in ~~'""ives a 11 
o singularity: 

where the limit o + O  has been taken in the operator i, . 
Terms of higher order in w are included in Lreg. From Eqs. 
(76), (12), and (72) we obtain the following representation 
for i , 

whence it is clear that the eigenvectors of the operator i , ,  
corresponding to nonzero eigenvalues, lie in the subspace 
constructed on the vectors g f ) ( q ) ,  and the number of eigen- 
values is equal to the number of elements in MA. The non- 
zero eigenvalues of i, correspond to the eigenvalues - llw 
of the operator L , ~ , , ~ .  

The overall picture is as follows (Fig. 4). The operator 
ishe has an infinite number of eigenvalues - l / w  and an 
infinite number of eigenvalues equal to zero. When the op- 
erator Lreg- 1 is added, the eigenvalues - l / w  change very 
little and form the set M ,  of the operator i ;  the zero eigen- 
values become, generally speaking, of order one, forming the 
set M I ,  but some of them remain - w  and lie in the set 
M , .  The number of elements in M ,  is equal to the number 
of elements in MA ; no assertions can be made with respect 
to the set M ,  , but this is not important for what follows. 

5.2 Relation between i and i,,,, 
We now introduce the spectrzl representation for the sin- 

gular part of the operator Lsin, = L , I w 

and find a relation between L and Lsin,, regarding LEg as a 
perturbation. For s  E M, the ordinary perturbation theory can 
be used, since all differences of the eigenvalues - I/w and a 
regular expansion in powers of w is obtained: 
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For s E Mo @ M I  we seek the eigenfunctions of I: in the form 

where C,s ,D,- I .  Substituting for the eigenvalues in the 
equation, we obtain a system of equations for C, and D, ,  
which can be solved by iterations in w.  Eliminating D,, , we 
obtain to first order in w 

i.e., an ordinary secular equation taking into account the first 
correction from transitions into states with s E M, . 

5.3 Mechanism for satisfying the Ward identity 

We now demonstrate the cancelling of the singular con- 
tribution - I/w, associated with the diffusion pole in 
Ukkr(q), on the right-hand side of the Ward identity (13). 
The specific form of iEg was not used in Eqs. (5.1) and 
(5.2). To determine iKg in the form (75) with M = O  we have 

since is the exact eigenfunction of i belonging to 
the set Mo. By virtue of the relation (80), the difference of 
I U , ~ )  from le,) for s E M ,  is of order w for any i,, , whence 

Comparing Eqs. (76) and (79), we have 

so that the singular contribution on the right-hand side of Eq. 
(13), taking into account Eq. (84), has the form 

and the I/w singularity cancels. For the same reason, there 
will be no singularities on the right-hand side of Eq. (13) as 
the transition into the metallic phase is approached. In this 
case the spectrum of the operator L has the same structure 

(Fig. 4) with w replaced by Do-the characteristic value of 
the diffusion coefficient (Sec. 6.2)-and we obtain on the 
right-hand side of Eq. (86) O(Do)lDo. 

5.4 Symmetry approach 

The symmetry of the system is clearly expressed in the 
properties of the operator LsillR : 

(a) The spatial uniformity in the mean makes it possible 
to introduce the three-momentum notations (Fig. Id) and to 
introduce the operator I: in general and the operator i,;,,, in 
particular. 

(b) Thc isotropy in the mean, combined with tinie- 
reversal invariance, guarantees that L and L,,,,, are self- 
conjugate and the existence of orthonormal bases of eigen- 
vectors for them. 

(c) As a result of time-reversal invariance, isi,, has a 
high symmetry, manifested in the existence of an infinite 
number of zero modes.3) 

The decomposition (77) represents the operator i as a 
sum of the operator LSi,, with a high degree of symmetry and 
a regular operator LRg of a general type. It is similar to the 
decomposition (1) and is convenient for symmetry analysis. 
The condition on the transition point will be determined be- 
low and the origin of the parameter T will thereby be deter- 
mined. 

Following Sec. 1, we consider the response of the sys- 
tem to a perturbation 6Lmg of a general form. Not all changes 
in the system will be important. We decompose the change in 
the operator i into two parts 

where six changes the eigenvalues and 6i, changes the 
eigenfunctions of i. For an infinitesimal change 6 i  such a 
decomposition is trivial-six and 6i, are the diagonal and 
off-diagonal parts of 6 i  in the representation of the eigen- 
vectors les). Changes of the type 6i, do not change the 
eigenvalues of i and therefore the diffusion coefficient 
D(w,q),  directly related with Xo(q) and determining 
uniquely the location of the system-in a localized phase, in 
a metallic phase, or at the transition point. It is clear that the 
changes ~ i ,  do not drive the system out of the transition 
point, they only displace the system along the critical 
surface.' Such displacements do not lead to nonanalyticity of 
the physical quantities4) and they can be ignored. The critical 
exponents obtained by motion along the normal to the criti- 
cal surface are identical to the exponents obtained under an 
arbitrary nonzero angle to the tangent plane. Similarly, in 
perturbations of the type ~ Y L ~  the part corresponding toa 
change in X, with s E M I  @ M, need not be considered. 

Only the changes in the eigenvalues A ,  from the set 
Mo,  whose response to a perturbation is indeed nontrivial, 
are important. Let the system lie deep in the localized phase. 
A small perturbation 6Lreg does not drive the system out of 
the state of localization and preserves the proportionality 
A,Y- w for s E Mo. On the other hand, a perturbation 6Lreg of 
a general type possesses nonzero matrix elements with the 
respect to the eigenvectors le,) of the subspnce Mo and 

935 JETP 81 (5), November 1995 I. M. Suslov 935 



should lead to small but nonvanishing, in the limit w+O, 
values of A,, . The resolution of this contradiction will lead to 
the self-consistency equation (Sec. 5.6). 

5.5 "Rotation" of the singular operator 

To formulate an adequate language for the further dis- 
cussion, we shall examine the following problem of the "ro- 
tation" of a singular operator. 

Let the decomposition (77), where w 4 0 ,  be valid for 
the operator i .  The operator ireg acts in the space R ,  while 
the operator L, has nonzero eigenvalues - I in the subspace 
R ,  , which is a part of fZ = cRO 63 R ,  . This justifies retaining 
in Eq. (77) two terms of different orders. Let 6 i ,  be a per- 
turbation of the operator i If this perturbation is of a gen- 
eral form, then the correction 6 i  I / w  to the operator i can 
be studied by the standard perturbation theory and gives cor- 
rections - l l w .  Let the perturbation 6LI be such, however, 
that the operator i + 6i  has the same properties as the 
initial operator i , . Then the dimension of the subspace In I 
remains the same; only a "rotation" of the operator occurs 
(in this case 6 i I  has no nonzero matrix elements in 0,) .  It 
is required to determine the result of such a perturbation in 
the subspace no. 

Let 17, and (us) be the eigenvalues and eigenvectors of 
the initial operator i . The operator iRg can be neglected in 
the "upper" subspace f l l ,  and in the "lower" subspace 
Ro a secular equation in the matrix elements ( ~ , l i , ~ ~ ( & , ~ )  

must be formulated. The perturbation a i l  produces the 
change 6u,  - 6 i  , of the eigenvectors 1 u,) and the matrix of 
the secular equation is determined by the elements 

The qualitative result is that a limitation of the form of the 
operator 6 i ,  weakens its action on the lower subspace: The 
effective perturbation 6c is found to be - k,  instead of 
6 i  / w  for the operator of general form. 

The change in ( u , ~ )  in the subspace R  I can be calculated 
by the standard perturbation theory, since all differences of 
the eigenvalues - 1 and a series in the small parameter 
arises: 

An arbitrary choice of lus) that is compatible with the or- 
thogonality relations can be made, in view of degeneracy, in 
the subspace R o .  To first order in a i l  we can set 

Substituting the expression (90) into Eq. (88), we obtain for 
the matrix elements of the effective perturbation 

5.6 Self-consistency equation 

It is now easy to understand how to resolve the contra- 
diction stated in Sec. 5.4. The perturbation 6LEg produces 
the change 6d(q) in the diffusion coefficient (62), which in 
view of the relation 

gives the following change in i, 

Rotation of the subspace M, of the operator isin, produces 
in the subspace Mo the effective perturbation 6 c ,  which in 
zeroth order in w  compensates 6LRg. 

Introducing into Eq. (82) the small changes 6ireg and 
6 i l  [the latter enters via the change in the eigenfunctions 
(90)], we obtain for the matrix of the secular equation 

where the overbar denotes the unperturbed value, and T and 
6c are determined by the expressions (82) and (91) (with the 
substitution cRI +M, , Ro+Mo 63 M I ) .  In the terms - w  we 
confine ourselves to zeroth order in the increments. The 
choice of the vectors li,,) in the subspace Mo @ M I  is arbi- 
trary in view of the degeneracy. We choose them so as to 

diagonalize the matrix T-then, to zeroth order in w ,  they 

are identical to the eigenvectors 12,) of the operator L [see 
Eq. (81)]. Since the eigenvalues of the matrix f are identical 
to the eigenvalues of i, we have 
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For infi nitesinial (YL,.,, and cTV, the diagonal elements of the 
matrix T determine the eigenvalues of the operator L 

and the off-diagonal elements determine the corrections to its 
eigenfunctions; the latter correspond to the perturbations of 
the type 6 i ,  (Sec. 5.4) and can be dropped. For constant 
le,) it is possible to switch in Eq. (96) from infinitesinials to 
finite increrncnts. Further, the changes in A ,  in the subspace 
M ,  can be ignored (Sec. 5.4). Finally, we note that fixing 
Ao(q) for all q means fixing the diffusion coefficient, which 
in turn determines all A,(q) with s E M A ,  which can be re- 
constructed according to the binary decomposition (72). 
Therefore if Eq. (96) is satisfied for s = 0 

(Eqs. (55), (91), and (80) were employed), then it is auto- 
matically satisfied for all s from M , .  It is easy to show (see 
Appendix) that the expansion in q of the right-hand side of 
Eq. (97) contains only even powers of q, and terms -qO are 
absent in each of the two terms. Setting 

and substituting the expression (93) into Eq. (97), we obtain 

where 6f(q) and B(q,q") are regular functions of general 
form of the arguments q2  and q2. The quantity W(k,kl,q) in 
Eq. (92) can be expressed, by virtue of Eqs. (76), (12), and 
(59), in terms of functions which are regular at the transition 
point. This makes it possible to vary only d (q )  on switching 
from Eq. (92) to Eq. (93). The equation (99) contains the 
diffusion coefficient on the right- and left-hand sides and 
replaces the self-consistency equation (16) of the Vollhardt- 
Wolfle theory. 

5.7 Condition on the transition point 

In the localized phase D(w,q) and ~ ( w , q )  vanish at 
w=O and Eq. (99) determines the change 
Sd(q) = - Q - ' Sf (q)  for the prescribed perturbation . 
Making the small changes k,eg, we obtain the correspond- 
ing changes Sd(q),  which preserve the proportionality 
D(w,q) - ( -  iw). 'This situation remains as long as there 
exists an operator inverse to Q, i.e. as long as all eigenvalues 
of Q are nonzero. Let a nonzero eigenvalue of the operator 
Q appear at some point in the course of the motion from the 
interior of the localized phase. As we shall see below, such a 
point corresponds to the physical notions of the Anderson 
transition. 

The divergence of d(q)  in the limit [+m (Sec. 4) means 
[see Eq. (IOO)] that at the transition point the operator Q 
vanishes entirely or on some subspace. For this reason, it 

should be kept in mind in the analysis that many or even all 
eigenvalues p, of the operator Q, for each of which it is 
convenient to introtluce the critical exponent c T , a O  

can vanish simultaneously at the transition point. As 
d ( q ) + a ,  the changes of the function B(q,y) cannot make 
the operator Q finite and therefore they do not drive the 
system out of the critical point; they only displitce it along 
the critical surface ancl can be ignored. For the function 
B(y,q") which is independent of r, the equality 

cannot be satisfied for any function 4 ( q ) ,  since it corre- 
sponds to the presence of a zero niode for the transposed 
operator Q" and therefore for the operator Q itself, not only 
at the transition point but also in an entire neighborhood of 
the transition point. 

6. SOLUTION OF THE SELF-CONSISTENT EQUATION 

6.1 Classification of the possible solutions 

The self-consistent equation for the metallic phase can 
be derived only by making specific assumptions about the 
functional form D(w,q).  For this reason, it is convenient to 
examine several cases which exhaust all possibilities. 

(a) Let there be among the exponents 4 in Eq. (101) a 
maximum exponent (for definiteness, So), i.e., among the set 
of soft modes, one mode is the softest. Then, as the transition 
is approached, the component con~tc$~(q),  contained in 
Sf(q), will give rise to an anomalously large response 
constr- '04,(~) in the function Sd(q). For this reason, near 
the transition the solution can be sought in the form 

D(w,q)=D,[4,(q)+ cp(4)l, cp(4)+ 40(q). (103) 

For +,(q) to dominate for all values of q ,  it is necessary that 
4,(O) # 0, which we shall assume is the case. 

(b) Let several exponents have the maximum value 
So= SI= ...= $, and let at least one of the functions 
40(q) ,  4 1 ( q ) , . . . , 4 ~ ( q )  [for example 40(q)1 be different 
from zero at q =O. Then near the transition 

+ C,,4,,(4> + cp(q)l, ( 104) 

where C ,  - C2-. . . - C,,- 1, cp(q)4 &(q). 
(c) If for the two eigenfunctions as q--10 we have 

40(q)-42"0, q51(q)-q2"l and n o > n l ,  cYo>Sl, then in the 
expansion of D(w,q)  in 4 , ( q )  both functions must be re- 
tained. Although the coefficient of $,(q) grows more rapidly 
near a transition, the function 4, (q)  dominates for small 
values of q. In the general case, d ( y )  must be sought in the 
form of the expansion (64) with arbitrary P,, . 

Actually, as we shall see below, the case (b) is realized 
(Sec. 6.3), but the analysis of this case is virtually identical 
to the simpler case (a) (Sec. 6.2), which reproduces the so- 
lution of the self-consistent theory of loca~ization.'~ Analysis 
of the case (c) requires a special mathematical apparatus 
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(Sec. 7), and it is sufficient to perform the analysis for the 
localized phase, since the solutions which differ from those 
reducing to (b) do not exist. 

a 

6.2 Case of a single dominant mode 

We seek the solution in the form (103). The definition of 
the operators il and Q in Sec. 5 presumed that only the 
dependence on w in the localized phase is investigated. To 
investigate the dependence on w and 7 it is necessaiy to take 

b 

into account the fact that near the transition and in the me- 
tallic phase the magnitude of the diffusion denominator is 
determined by the parameter Do+w. Making the decompo- 
sition 

C 

1 

- i w + ~ ( w , q ) Y ~  

iw - 2  I FIG. 5. Selection of the solutions of the self-consistency equation: 

~P(Y)-  Y a-Intersection of the terms with o = O ;  &splitting into physical and un- 

- physical branches for w>O;  c-behavior of DO(r )  for the physical branch 
with w=O.  

(Io5) where the last term is different from zero in view of the 

we write LSi,, in the form impossibility of Eq. (102), and the term with q(q)  is absent 
since ($o , Q ~ ~ ) = ( ~ , Q ~ $ ~ ) = ~ ~ ( ~ , & ~ )  = O. Written out 

,. i,+si, 
L .  =- in detail Eq. (1 10) has the structure 

s*g Do ' (106) 
B(q") 

where i l  and correspond to the first and second terms in 
(~(4) .  

the braces in Eq. (105). Substituting a i l  into Eq. (97) gives, + O ( B ) ~ ~ [ [ -  + 6 0 ( 6 ) ~ ~ ]  

instead of Eq. (99), the equation (1 11) 

where we have neglected q(q) in the denominator of Eq. 
(105), and have written 6f(q) in the form rf(q) and taken 

into account the fact that ~ ( w , q ) = o ,  since the operator i, 
corresponds to the limit w,r+0 (see Fig. 5 below). For the 
decomposition (103) to be unique, we require that q (q)  sat- 
isfy the condition 

($O(q) is an eigenfunction of Q: that corresponds to the 
eigenvalue p!), expressing the requirement that cp(q) "not 
contain in itself" the component const. +O(q). Forming the 
scalar product of the expression (107) with we obtain 

For d> 4 the integral is determined by large values of q" and 
-iwlDo in the denominator can be neglected. For d<4 the 
integral is determined by small q" and we can set q"= 0 in the 
slowly varying functions B(q") and +O(q"), and the dimen- 
sions of the region of integration can be made to go to infin- 
ity and the expressions can be made dimensionless. The re- 
sult for both cases can be written in the unique form 

introducing exponent v according to Eq. (1 8). The equation 
(112) has two types of solutions: in the metallic phase 
Do= const # 0 as w+O and Eq. (112) gives Do=A7 in 
accordance with the value s= 1 for the conductivity expo- 
nent (18); in the dielectric phase Do= ( -  iw) t2  (in the case 
at hand, the configuration of exponents P,, corresponds to the 
case Fig. 3a) and 5- r-" in accordance with the definition of 
the exponent of the localization length. The equation (1 12) 
and the values of the indices s and v are identical to those 
obtained in Ref. 18. 

For the case d> 4 Eq. (1 12) reduces to a quadratic equa- 
tion and it is easy to trace how the solutions are selected 
(Fig. 5). For o = 0 the terms Do= A 7 and Do = 0 (Fig. 5a); 
for finite w, the degeneracy is removed by the amount - w11(2v+ I )  (Fig. 5b), and of the two branches, only one 
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satisfies the condition Re D(w,q)aO, following from Eqs. 
(31) and (35) and the non-negativity of (p,<p,+,,,),. Choos- 
ing the indicated branch and passing to the limit w+O, we 
obtain finiteness of Do only on one side of the transition- 
for definiteness, for r > 0  (Fig. 5c). 

From Eq. (107) we have for the function ~ ( q )  

where p, is a projection operator onto the subspace which is 
orthogonal to $o(q). Since dR-  1 (see below), we obtain 
cp(q) - max{[d ,~"(~  '+ I)}, which justifies the assumption 
cp(q)+ +O(q). For d > 2  the integral in Eq. (108) is deter- 
mined by large values of q" for any regular function cp(q") and 
all eigenvalues pp of the operator dR are found to be of 
order unity. For the operator Q from Sec. 5 (which differs 
from QR in the localized phase by the factor t - 2 )  this means 
that all ,us vanish according to the same law. Therefore the 
assumption that one mode predominates is not confirmed by 
the result and actually the case (b) of Sec. 6.1 obtains. 

6.3 Case of several dominant modes 

We seek D(w,q) in the form (104), where the choice of 
the function cp(q) is fixed by the conditions ( C $ ~ , ~ ) = O ,  
Ci= const(r) as r+0  (if cp is required to be orthogonal to 
4, ,. .. , 4 p ,  then the coefficients Ci are functions of r ,  and 

this leads to inconveniences in defining the operator L ,  cor- 
responding to the limit m, 7-0 and not depending on r).  
Using instead of +o the "correct" linear combination 
+o + C I 4, + . . . + C,+, and repeating the arguments of Sec. 
6.2, we arrive at equations of the type (107) and (108); form- 
ing the scalar product of the first equation with &o, we arrive 
at Eq. (1 12) with all consequences following from this. Once 
again, all eigenvalues of Q vanish according to the same law 
and the limit p--too must be taken in Eq. (104), i.e., all 
4,(q) must be included in the correct linear combination. 
Forming the scalar product of the analog of Eq. (107) with 
6, ,J2 ,. . ., we obtain a system of equations for Ci : 

where p7- 1. The function cp(q) is found to be - r, and in 
the limit (140,  it has a discontinuity at r = 0 ,  i.e., 

Substituting the expression (1 15) into Eq. (1 14), we obtain in 
the limit w t O  the equations 

for the metallic and dielectric phases, respectively. For any 
Ci the equations (1 16) can be satisfied by appropriate choice 

of BY and B Y ,  i.e., the coefficients of the correct linear 
combination arc completely arbitrary. 'l'he meaning of this 
arbitrariness will be explained in Sec. 8. 

Finally, D(w,q) near the transition has the form 

where the function d(q)--d(q)ld(0) varies on the scale 
q- A.  This result, obtained for D(w,q) defined as in Eq. 
(59 ,  is also valid for the observed diffusion coefficient 
D,,,(w,q), since the renormalizations associated with the 
functions B(q) and C(q) in Eqs. (53) and (54) either contain 
no anomalous dispersion or they are small. 

7. UNIQUENESS OF THE SOLUTION 

In this section the self-consistent equation (99) in the 
localized phase is investigated assuming for d(q) an expan- 
sion of the general form (64). 

7.1 Method of reference points 

In what follows, integrals of the form 

play a large role. The asymptotic expressions of these inte- 
grals in the limit 6 4  rn are calculated by the method of "ref- 
erence points." We now choose an appropriate scaling in 
order to make the integral dimensions, making the substitu- 
tion q =  t-", and removing the common factor from the 
denominator, as a result of which the indices a, become 
a ,  - a - 2sb. By choosing appropriate values of a and b the 
exponents in the first two terms of the denominator in Eq. 
(117) can be made to be zero and the remaining exponents 
become negative. Then 

If s , and s2  satisfy the condition 2 s l  < d + 2k< 2s2 ,  guaran- 
teeing that the integral converges after the sum over s is 
dropped (to avoid indeterminacies, we assume that d is non- 
integral, and pass to the limit of integral d in the final re- 
sults). The procedure described above admits a simple geo- 
metric interpretation.5) We construct a plot of sequence a,, 
(Fig. 6a), mark on the abscissa axis the point 
x k =  (d+2k)/2, and construct an upper tangent at the point 
xk to the set of points (n,a,,): If the points are graphically 
represented by nails, then this construction is made with the 
aid of "sticks" (solid line in Fig. 6a) and "rope" (dashed 
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FIG. 6 .  a-Construction of the upper tangent at 
the point .\I to the set of points ( I I , ~ , , ) ;  

b--convex envelope &(,I-) for the sequence 
<?,8 . 

X 

line). The numbers of the points, on which the upper tangent 
"lies," determine s , and s 2 ,  and its equation a = a + 2 b n  
determines the parameters a and b. 

Constructing the broken line, consisting of segments of 
the upper tangents (Fig. 6b), we obtain a convex envelope 
&(x), in terms of which the result (118) assumes the form 

By construction the function &(x) is increasing and convex 
(in the nonrigorous sense). For a bounded sequence a, with 
maximum at n =  no ,  &(x) is strictly increasing for x<no and 
constant for x>no  (for xk>no the reference point s2 lies at 
infinity). For a strictly increasing and strictly convex se- 
quence a , ,  the following inequalities follow from Eq. (1 19): 

For an arbitrary sequence a , ,  some of the strong inequalities 
are replaced by weak inequalities. In what follows, for defi- 
niteness, we proceed from the strong inequalities in Eqs. 
(120) and (121), having in mind the fact that the results 
remain valid in order of magnitude in the general case. 

7.2 Symmetrization of the operator Q 

We set in Eq. (99) Gf (q) = Grf  (q)  and expanding all 
functions in series 

we obtain in the limit w-.O 

where 
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The matrix B = I I ~ ~ ~ t l l  and the column matrix j= 1 1  fkll are of 

general form with elements - 1. The column matrix f  
=B- '1  has the same properties. Multiplying Eq. (123) by 
B -  ' we obtain 

i.e., an equation of the type (99) but with the symmetrized 
matrix of the operator Q. 

Using the expansion (64) for d ( q ) ,  the integrals (124) 
acquire the form (117) with the exponents 

and an extra q 2  in the numerator. The exponents P, are non- 
negative and increase more rapidly than 2n (Sec. 4). This 
guarantees the condition a , > O  and make is possible to con- 
struct a convex envelope. 

7.3 Inversion of the operator Q 

Limiting the upper limit of the summation in Eq. (122) 
by some finite n ,  we obtain in Eq. (125) a system of equa- 
tions of finite order that can be solved by Cramer's rule. The 
determinant of the matrix Q in Eq. (125) consists of all pos- 
sible products of the form 

where k o , k l  ,..., k,, is a permutation of 0, 1 ,..., n.  We sepa- 
rate in Eq. (125) the pair I k , + , s I k ~ + , s t  with s < s r .  If 

J 

k , > k , , ,  then it follows from Eqs. (120) and (121) that 

and the product (127) can be increased by interchanging k ,  
and k,s ,  , without touching the other k i .  It is obvious that in 
the maximum product among the products (127), which de- 
termines the order of magnitude of the determinant Q,  
should have k o < k l <  ... <kt , ,  whence k o = O ,  k ,  = 1, ..., 
k,, = n and therefore 

det Q -  101214 .. . 12,,. ( 129) 
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The minor Q; of the matrix Q, obtained by crossing out the 
ith row and the jth column, consists of all possible products 
of the form 

where kO , k l  ,. . . ,k i_ ,  , kj+ , ,...,kt, is a permutation of 0, 
1 ,..., i -  I, i+ 1 ,..., n .  In the maximum product these two 
sequences are identical. It is easily verified that 

Solving Eq. (125) by Cramer's rule and using Eqs. (129) and 
(1 3 l), we obtain 

and, using Eq. (1 19), the result can be expressed in terms of 
the sequence ak . For a convex sequence Pk , we have from 
Eq. (126) a2,,,=2Pm, a2m+l=P, , l+~m+l ,  which can be 
written in the form ak= 2Pk12, if the sequence Pk is addi- 
tionally defined at half-integral points by the relation 
Pk+ 1,2= ( P k +  Pk+ 1)/2. Since the values of Pk+ lie on the 
convex envelope p(x) ,  for arbitrary x we obtain 

This result remains valid for an arbitrary sequence Pk. To 
prove this, it is necessary to introduce an auxiliary convex 
sequence p k = p ( k ) 2 p k  and note that replacing Pk by pk 
does not change the value of the integrals Ik.  For convex 
pk we have 

which makes it possible to switch from the convex envelope 
directly to the values of Pk . In the general case Eq. (134) is 
correct with Pk replaced by pk . Setting 

d 4 m + 4 * ,  m-integer, 0 G + 1  (135) 

we obtain from Eqs. (132), (119), (133) and (134) in the limit 
n+m 

where the limit p,=limk-+,pk is assumed to be finite in 
accordance with the considerations of the next section. 

7.4 Impossibility of unbounded growth of p, 

For an unbounded sequence Pk the convex envelope 
pk is strictly increasing and the hierarchy (120) continues to 
intinity. By virtue of Eq. (132), this means that 6dk diverges 
as n - t m .  To clarify the reasons for the divergence, we note 
that the off-diagonal part of the niatrix Q in Eq. (125) under 
the conditions (120) and (121) can be regarded as a pertur- 
bation. Its eigenvalues in leading order are equal to 12, and 

they bunch up near zero in the limit k+m. In the proof of 
Fredholm's theorem it is shown46 that when the expansions 
(122) are truncated at the rith term, the ( tz+ 1) maximum 
eigenvalues of the operator Q are reproduced; in the limit 
n m ,  arbitrarily small eigenvalues are reproduced and the 
response of the system to a small perturbation diverges. This 
situation occurs not only at the transition point but also in a 
neighborhood of the transition point (as long as .$%A -I); it 
is unphysical, since the system is unstable with respect to an 
infinitely small perturbation of a general form. 

This result has important qualitative consequences, since 
it excludes the cases corresponding to Fig. 3b and proves the 
uniqueness of the results D(w,0 ) - ( io ) t2  and e(0,O) -5' 
in the localized phase. 

7.5 Change in d(q) as the transition is approached 

Expanding the numerator in Eq. (92) in powers of g2,  
we obtain integrals that can be calculated by the method of 

reference points and which are of order ~ - j ( ~ o ) ,  (-Bcxl), and 
so on. We set 

where the terms t P y k i k  arise from the higher order terms in 
the expansion in q2 and from corrections to the main scaling 
in the method of reference points. Changing the definition of 
il from the definition (77) makes it possible to separate the 

main singularity as 7 4 0  and introduce the operator L1,  cor- 
responding to the limit W, r+ 0. 

In Eq. (137) it was assumed that Pk is constant. Now, let 
the change 67 in the parameter T generate the changes 36 
and 6Pk in the quantities 5 and Pk. Then 

where only the term with the minimum index y is retained, 
and 6L1 is determined by the expression (93) with 6d(q) of 
the form 

Using as 6 i in Eq. (97) the quantity i (5+  60 -i (5) we 
obtain instead of Eq. (99) 

where rYD(w,q)+O as w+O. In the case of exact scaling, 
when 6d(q)=O, the first two terms on the right-hand side 
cancel one another, whence y = llv. In the general case, 
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they are of the same order of magnitude. Inverting the op- S r  
erator Q according to Sec. 7.3 and comparing with Eq. (139), aflk- - In 5 tYk, 
we have 

adk- a r t  j ( v ~ ) + ~ ( k ) - , $ f i k + i  In @ P k +  (141) 
where it is convenient to write yk in the form 

whence 

All combinations in parentheses are non-negative and 
yk>O. For fixed 5 the definition of the exponents Pk in Eq. 
(64) is not unique: the coefficient of q2k can be written as 
cktPk and a change in Pk is equivalent to a change in C k  . 
The specific configuration of the exponents Pk make sense 
only if it remains unchanged when r changes. According to 
Eq.  (142), for yk>O a large change in the exponents occurs. 
The changes SPk- 6rIln ,$ can be included in the changes in 
C , ,  which are small for a small change in r ,  only for 
yk= 0 .  The condition yk= 0 requires that all combinations in 
parentheses in Eq. (142) vanish and it fixes the only configu- 
ration of exponents that is different for d >  2 and d <  2: 

By definition, Po=O and d < 2  all exponents are equal to 
zero. This means that d(q )  does not diverge and the local- 
ized phase remains for all 7." For d>2 ,  all indices can be 
made equal to 2 in accordance with the requirement P I  = 2 
by defining ,$ (Fig. 3a). All eigenvalues of Q vary according 
to the same law and we return to the case (b) of Sec. 6.1. 

8. CHANGE IN SYMMETRY AT THE ANDERSON 
TRANSITION 

A change in LRgAgives rise to a rotation of the subspace 
M ,  of the operator LSi,,, . This is analogous to a rotation of 
the magnetization vector M  accompanying a change in the 
magnetic field H in a ferromagnet. This analogy is formal- 
ized in the form of Table I. We shall give some 
e ~ ~ l a n a t i o n s . ~ )  

The operators Lreg and LSi,,, have many degrees of free- 
dom, many of which do not appear in the self-consistency 
equation. The important degrees of freedom are determined 
by the functions f ( q )  and [see Eq. (116a)], whose ex- 
pansion coefficients 

TABLE I. Analogy between a ferromagnet and a disordered system. 

Ferromagnet Disordered system 

Orientation of the magnetic field H: Operator LRp : 
Components of the unit vector Coefficients f, 
Orientation of the magnetization M: Space M, of the operator LSi,, 
Components of the unit vector Coefficients d, 
Squared modulus of the field H' Frequency w 
Squared modulus of the Diffusion coefficient Do 

magnetization M~ 
Magnetic susceptibility tensor ,yij Operator Q-' 
Paramagnetic phase Localized phase 
Ferromagnetic phase Metallic phase 
Curie point Point of the Anderson transition 
T -  T,  Distance to the transition T 

can be regarded as components of the unit vectors H and M. 
In the localized phase small changes in them are related with 
the operator Q, whose inverse is analogous to the magnetic 
susceptibility tensor xi,. 

The finiteness of the frequency w  smears the transition, 
similarly to the finiteness of the magnetic field in a ferromag- 
net. In the localized phase Do- w and in the metallic phase 
Do= const ( w ) ,  which is analogous to the appearance of 
spontaneous magnetization, i.e. the quantities Do and w are 
analogous to IMI and IHI. In view of the qualitative charac- 
ter of the analogy, this identification is not unique. For ex- 
ample, any monotonic function F ( I M I ) ,  equal to zero for 
I MI = 0 ,  can be taken as the analog of D o ;  as a function of 
the magnetization itself, it has the form F ( M 2 ) ,  since a sca- 
lar must be formed from a vector. Finally, for small M 2 ,  it 
can be expanded in a series, obtaining an analogy of Do to 
M'. Similarly, H' is the only analog for w.  

In the analogy found, it is important that (a) the number 
of components of the vector M  is infinite, since the number 
of expansion coefficients d l ,  is infinite, and (b) the ferromag- 
net is isotropic. The latter property is obvious from the fact 
that all eigenvalues of the "susceptibility tensor" Q - I  di- 
verge at the transition point according to the same law and 
for small changes in d l ,  and f, ,  they can be made equal by a 
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?-independent linear transformation. The analog of colinear- 
ity of M and H in an isotropic ferrornagnet exists with the 
following stipulation: The problem is that in the case of the 
Anderson transition the "vector I HI " and the "vector IM( " 
lie in different subspaces and there is no natural method for 
establishing the mutual orientation of these subspaces. For 
this reason, for a fixed function f (q)  the choice of d(q)  is 
arbitrary (Sec. 6.3) in accordance with the arbitrariness in the 
choice of bases in the two subspaces. For the special choice 
BY =O in Eq. (115) we have f.(q)-i(y), which corre- 
sponds to the choice of the "correct" mutual orientation of 
the bases. 

The model of an isotropic ferromagnet with the number 
of components n + a  is well known in the theory of phase 
transitions and is the basis for the lln expansion.' Its critical 
exponents are known exactly. Specifically, for the magneti- 
zation exponent M - rfl and the correlation length exponent 
5- 7-" we have 

which, since s = 2p, corresponds exactly to Eq. (1 8). 

9. CONCLUSIONS 

The approach to the theory of localization based on the 
formalism of u-models22247248 is currently considered to be 
the most rigorous approach. However, its rigor should not be 
overestimated. First, the degree to which the approximations 
employed in the derivation of the a-models retain exact in- 
variance under time reversal of the initial disordered system 
and the satisfaction of the Ward identities (13), which are 
important for reconstructing the pole structure of Ukkt(q),  is 
not clear. Second, to take into account the spatial dispersion 
of D(o ,q ) ,  it is necessary to introduce into the Lagrangian 
of the u-model additional gradient vertices which grow 
anomalously at the initial stage of the renormalization group 
tran~formations.~~ The analog of such growth can be ob- 
tained from Eqs. (142) and (143), assuming for the initial 
configuration of exponents PI = 2, Pk=O ( k 2 2 : )  

Growth of Pk with k 2 2  indicates intensification of spatial 
dispersion of D ( o , q )  as the transition is approached, and in 
the language of the magnetic analogy (Sec. 8) a transfornia- 
tion of a uniaxial ferromagnet into an isotropic 
ferr~magnet.~) Apparently, the renormalization group trans- 
formations transform analogously the zero-component 
a-model into an infinite component model. These difficulties 
apparently are not important in low orders in ~ = d - 2 ,  sincc 
for small E Anderson's transition falls in the region of weak 
disorder, for which the derivation of the u-model is indeed 
substantiated. 

We now discuss the possible reasons for the disagree- 
ment of Eq. (18) with the result of Ref. 28 for the exponent 
s. The result of Ref. 28 for the permittivity e(O,O)-t corre- 

sponds to the case [= I of the Sec. 4. This is also indicated 
by the expression given in Ref. 28 for the function A (r) from 
Eq. (66). For [= 1 the exponents PL increase linearly with k .  
It is clear from Sec. 7.4 that if the result of Ref. 28 corre- 
sponds to the exact solution of some idealized model, then 
this model is unphysical in view of the instability with re- 
spect to an infinitesimal perturbation of a general form. More 
likely, the approximations employed in the derivation of the 
(J-model and the selection of diagrams in Ref. 28 destroy the 
pole structure of Ukkt(q). In this connection, the fact that the 
results for models in which the time-reversal invariance is 
and is not destroyed agree with one another is suspicious. 
Finally, in the derivation of the u-model for a large d it is 
necessary to introduce a construction consisting of weakly 
coupled granules, for which, because of the presence of arti- 
ficial small parameters, the critical region can narrow anoma- 
lously and, as a result of the approximations, contract into a 
point. The results of Ref. 28 could correspond to some inter- 
mediate asymptotic behavior. 

There are some objections to the arguments of ~ f e t o v ~ ~  
that the diagrammatic approach in principle does not "feel" 
the noncompactness, which in his opinion determines the 
main difference between the theory of disordered systems 
and the theory of phase transitions. One can agree with the 
last assertion: Noncompactness is a consequence of the 
added imaginary terms t i t ? ,  determining the type of Green's 
function, which lead to nonperturbative contributions giving 
rise to the difference between the two indicated theories.I7 
However, the nonperturbative contributions can be obtained 
from the diagrammatic technique.16 The added terms + - i s  
play an important role in the separation of the diffusion 
poles, since as a result of these additions, the integration 
contour in Eq. (58) is confined between the poles of two 
Green's functions. 
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APPENDIX 

Expansion of the self-consistency equation in powers 
of q 

If we have for the operator i 

then it is easy to prove that: (a) the eigenvalues of i are even 
as a function of q,  A,(q) = A,(- q);  (b) thc eigenfunctions 
e t ) (q )  can be chosen so that e f ) (q )  = e?L(- q); and, (c) if 
there are several operators of the type (Al), then the matrix 
elements of one operator with respect to the eigenfunctions 
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of the other operator are even functions of q. The operators 
A A 

L ,  L l c g ,  and L I are of the form ( A l )  and, by virtue of (a-c), 
the right-hand side of Eq. (97) is even in q and can be ex- 
panded in powers of y2. 

Since the operator i ,  in Sec. 5.1 is independent of w, 
we obtain that in Eq. (86) O(w)=O and the definitions (75) 
and (76) are equivalent to the following definitions: 

- \ I h ~ k ( q ) ~ ~ k r ( q ) $ k 1 ] .  ('43) 

For the definition (A2) we have, on account of Eq. (39), 

iEgleo)  =iEg{const-+ O(q) l=  ~ons t (ek+~12  

- €kkql2) m+ ~ ( q ) = ~ ( q )  

and the contribution o ( ~ O )  is absent in each term on the 
right-hand side of Eq. (97). 

 or definiteness, all quantities refer to the same spin projection. For purely 
potential scattering the spin subsystems are independent and the number of 
spin components can be easily taken into account in the final results. 

')1n expansions of the type (64) the coefficients are assumed to be arbitrary. 
Taking them into account falls outside the limits of accuracy of the present 
analysis. 

3 '~heir  presence (see Sec. 5.1) is associated with the existence of a diffusion 
pole for k+kf+O, which follows from Eq. (9) (see Sec. 3). A magentic 
field or magnetic impurities eliminate this pole and cause all A,(q) in the 
set MA [Eq. (72)] to become finite in the limit w+O, as a result of which 
iSing is left with only one null mode corresponding to Ao(q). 

"~in~ulari t ies  associated with a change in the type of phase transition-for 
example, a second-order phase transition into a first-order phase 
transition-can occur on the critical surface. We assume that the system is 
far away from such singularities. 

'l~imilar constructions arise in the investigation of Burgers equation." 
6 ) ~  similar, but not identical, analogy was discussed in Ref. 41. 
7 ) ~  detailed investigation of the evolution of 0, requires a knowledge of the 

proportionality coefficients in Eq. (64) and (142). 
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