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The structure of negative ions in dense gases and nonpolar liquids is investigated. It is shown 
that the competition between the polarization attraction and the exchange repulsion 
between the outer electron of a negative ion and the atoms of the medium can lead to the 
formation near the negative ion of a cavity surrounded by a denser layer. The dependence of the 
cavity radius and the structure of the denser layer on the temperature and density of the 
medium leads to anomalous behavior of the negative ion mobility. Estimates of the mobility of 
the 0; ion in helium and neon agree well with the available experimental results. O 1995 
American Institute of Physics. 

Over several decades, numerous investigators have been 
drawn to study the transport properties of charged particles 
injected into a dielectric medium. The transport properties of 
electrons in gases and liquids have been most fully 

In the interaction of an electron with the atoms or 
molecules of a medium, polarization attraction is predomi- 
nant at large distances, while at short distances exchange 
repulsion takes over. This has the consequence that in media 
with predominant repulsion (for example, He, Ne, and Hz), it 
may be thermodynamically advantageous for an electron to 
be localized at density fluctuations (rarefactions ) with sub- 
sequent formation of a bubble. In media with high polariz- 
ability, the localization of an electron may occur at fluctua- 
tions of concentration type and lead to the formation of 
multiatomic charged clusters, as appears to happen in dense 
gaseous Xe (Ref. 5). Clusters are also formed in the case of 
self-trapping (localization) of positrons, since in this case 
there is no exchange intera~tion.~ 

The structure and transport properties of positive ions 
have also been well studied. Because of the electrostriction 
effect, the local properties of the medium (density, pressure, 
viscosity) are strongly changed near an ion, and under cer- 
tain conditions this leads to solidification of the liquid near 
the ion7.' and to the formation of a cluster. This explains the 
rather low mobility of positive ions in liquid helium and 
some other liquids at low temperatures, and the weak depen- 
dence of the mobility on the species of the positive ion. 

Much less is known about the structure and transport 
properties of negative ions. Of particular interest is the 0, 
ion, since oxygen is present as an impurity in essentially all 
experiments. Thus, in Bartels's study8 not only electrons but 
also negative oxygen ions were investigated in strongly su- 
percritical helium. The mobility of 0; ions has also been 
measured in supercritical dense neon? and in liquid argon, 
krypton,10 and 

The electrostriction effect does not depend on the sign of 
the charge. Therefore, the model proposed by ~ t k i n s ~  to ex- 

plain the transport properties of positive ions has also been 
used in the case of negative ions. However, the authors of 
Refs. 8-10 encountered serious difficulties. For example, 
~artels '  unsuccessfully attempted to explain the anomalous 
mobility by proposing the existence in He of an 0, complex. 
Borghesani et a1.Y using one of the modifications of Atkins's 
model, proposed that a cluster of Ne atoms is formed around 
the O;, and they took into account the local change in the 
properties of the medium around the cluster to calculate the 
mobility. However, they did not take into account the short- 
range repulsive part of the ion-atom interaction and were 
forced to use the cluster radius as a fitting parameter. In Refs. 
10 and 11 there was also no convincing explanation of the 
differences between the mobilities of positive and negative 
ions. 

In this paper, we show that the short-range repulsion of 
an outer weakly bound electron of a negative ion leads as a 
result of interaction with the atoms of the medium to the 
formation around the 0, of a cavity rather than a cluster. 
This is due to the fact that the outer electron is localized in a 
spatial region with a characteristic size appreciably greater 
than that of the electron shells of the oxygen molecule. Such 
an electron interacts actively with the atoms of the surround- 
ing medium. As in the case of free electrons, the competition 
between the long-range polarization attraction and the short- 
range exchange repulsion can lead to the formation of an 
almost empty cavity in the immediate vicinity of the ion, the 
cavity being surrounded by a denser layer. The density of the 
atoms in this layer may appreciably exceed the mean density 
of the atoms in the medium. 

We first consider a very simple model that completely 
ignores electrostriction effects and takes into account only 
the exchange repulsion between the outer 0; electron and 
the atoms of the medium. The model can be used in the case 
of gases whose atoms have low polarizability and at suffi- 
ciently high temperatures, for example, in He under the con- 
ditions of Bartels's experiment.8 Further, in the framework of 
the self-consistent field method with allowance for interac- 
tion between the atoms, we find the connection between the 
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concentration of the atoms of the medium near the negative 
ion and the wave function of the outer electron of the nega- 
tive ion. We determine the effective interaction potential be- 
tween the negative ion and the atoms of the medium. We 
calculate the density profiles of the atoms near the 0, ions 
and their mobility in He and Ne. The results of the calcula- 
tions are compared with the available experimental data and 
the theoretical calculations of Refs. 8 and 9. 

2.RECTANGULAR WELL MODEL 

The binding energy of an electron in the oxygen mol- 
ecule is fairly low: e=0.46 eV. Therefore, the orbit of the 
outer electron of the molecular ion 0: is appreciably more 
extended than the orbits of the inner electrons (Ri 
- hl = 4.2ao, where a. is the Bohr radius). The inter- 
action of this electron with the atoms of the medium is a 
polarization interaction only at large distances. At short dis- 
tances the repulsion associated with the exchange interaction 
of the outer electron of the negative ion with the electrons of 
the outer shells of the atoms of the medium is predominant. 
It is the presence of the exchange repulsion that is the most 
important reason for the difference between the properties of 
positive and negative ions in dense media. It leads to the 
appearance of a cavity near a negative ion. This effect is 
most clearly seen in dense helium, in which the low polariz- 
ability of the atoms has the consequence that the electrostric- 
tion effect plays a secondary role. The situation is similar to 
the case of electron and positron bubbles in gaseous and 
liquid helium and neon,'7234x6 the bubbles around excited 
atoms,'' and around positive ions of rare-earth metals13 in 
liquid helium. In the latter two cases, the analogy is most 
complete, since the bubbles are formed by the interaction 
with the ambient atoms of localized electrons that are also in 
extended orbits. 

As in the case of free electrons, the interaction of the 
weakly bound outer 0; electron with the atoms of the me- 
dium can be considered in the framework of the optical 
model.I4 This interaction leads to a shift in the energy of the 
bottom of the electron conduction band by an amount Vo, 
which is a function of the density of the medium. Therefore, 
the fluctuations of the density lead to fluctuations of Vo. In 
helium, the exchange repulsion is predominant, Vo is posi- 
tive, and the density fluctuations of rarefaction type lead to a 
local lowering of the electron potential energy. In the case of 
free electrons, this is the main reason for self-trapping when 
the electron binding energy in the potential well of a fluctua- 
tion is greater than the work needed to create the fluctuation. 
In the case of negative ions, the electron is localized even in 
the absence of fluctuations. However, its binding energy is 
changed inside a fluctuation whose characteristic diameter is 
comparable with that of the electron wave function. The op- 
timum shape of the fluctuation can be determined by mini- 
mizing the free energy or, in other words, by maximizing the 
difference between the increase in the binding energy of the 
electron in the negative ion and the work needed to create the 
corresponding fluctuation. 

Before we turn to a more detailed analysis of the effect 
of the medium on the spectrum of the outer electron in a 

FIG. 1 .  Model of  the potential that acts on an electron in a negative ion. 

negative ion, we discuss the main properties of the isolated 
negative ion. This can be done by means of the simplified 
model potential shown in Fig. 1: 

for r > R ,  
(2.1) 

for r S R ,  

where a is the polarizability of an atom or molecule, and R is 
the effective radius of the short-range hard core. This poten- 
tial has the correct long-range polarization asymptotic behav- 
ior and takes into account the short-range exchange repul- 
sion. As was shown in Ref. 15, the energy spectrum of an 
electron in the potential (2.1) can be determined with good 
accuracy from the condition of matching of the logarithmic 
derivatives of the short-range asymptotic behavior of the ra- 
dial electron wave function 

to its long-range asymptotic behavior 

at the point 

In (2.2)-(2.4), A and B are numerical constants, and e is the 
binding energy of the electron in the atom or molecule. The 
relationship between R ,  a, and e is given by 

In the case of the 0 2  ion, the binding energy is e=0.46 eV, 
and the polarizability of the 0, molecule is a= 10.6~:. The 
solution of Eq. (2.5) gives R z 0 . 9 3 ~ ~ .  Note that the exact 
solution of the Schrodinger equation for the potential (2.1) 
gives the very similar result R z 0 . 9 2 ~ ~ .  In the derivation of 
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(2.5), we assumed that the binding energy E is small com- 
pared with the depth a e 2 / 2 ~ 4  of the potential well; it is 
readily seen that this assumption is easily satisfied in 0, ion. 

We now turn to a discussion of the effect of fluctuations 
in the density of the atoms of the niediunl on the spectrum of 
the negative ion. We consider the simplest model, in which 
the fluctuation is a cavity with radius R2. In this case, by 
analogy with (2.1) and with allowance for the influence of 
the atoms of the medium, the model potential in which the 
electron is localized can be represented in the form 

for R < r < R 2 ,  

1.. for r s ~ .  

This potential is also shown in Fig. 1. Note that in this model 
we do not take into account the effect of the polarization 
interaction of the electron with the atoms of the medium 
either on the form of the potential within the cavity or on the 
distribution of the atoms outside the cavity. The validity of 
this approximation for helium will be discussed below. 

As before, the wave function of the outer electron ~ ( r )  
near the core will be the same as (2.2). At large distances 
(rBR,), ~ ( r )  will be equal to the function (2.3) if y, is 
replaced in it by y2 determined by the expression 

In the intermediate region (R , < r < R,) , the wave function 
has the form 

Matching the logarithmic derivatives of the wave functions 
at the points r = R ,  and r = R, , we obtain an equation relat- 
ing the electron binding energy E in the negative ion to the 
cavity radius R,: 

In the limit Vo+O or R,+m, there is a transition to the case 
of an isolated ion, and Eqs. (2.9) and (2.5) are indeed iden- 
tical. 

Upon formation of a bubble around the negative ion, the 
free energy F of the system is reduced by the increase in the 
electron binding energy in the negative ion and increased by 
the work done against volume and surface forces: 

FIG. 2. Radius of the cavity formed around an ion in helium as a function of 
the temperature for density N=2.5.102' of the medium. 

where (T is the coefficient of surface tension. The optimum 
bubble radius is determined by minimizing the free energy: 
dAFldR2=0.  

Having in mind a subsequent comparison of our calcu- 
lations with Bartels's results on the mobility of 0; ions in 
dense gaseous helium (see Sec. 4), we calculated R2 under 
the conditions of this experiment8 at T=77.6 K and at den- 
sities from 2.5.10~' to 7.5.10~' ~ m - ~ .  We also varied Vo 
from 0.08 to 0.24 eV (Ref. 16). The cavity radius under these 
conditions was found to be essentially constant and equal to 
9ao .  

The dependence of the cavity radius on the temperature 
is shown in Fig. 2. As the temperature is reduced, there is a 
tendency for the bubble radius to increase. For example, in 
saturated He vapor at T ~ 4 . 2  K the bubble radius is 
R2=20a0. However, the estimates of R2 in this model at 
such low temperatures must be treated with caution. The fact 
is that, as will be shown below, the importance of the polar- 
ization attraction increases strongly with decreasing tempera- 
ture, and this leads to the formation of a significant density 
enhancement of the medium around the cavity, allowance for 
which is necessary but complicated in our simplified model. 

We now discuss the limits of applicability of the pro- 
posed model associated with the neglect of polarization at- 
traction. This effect can be nominally subdivided into three 
components. Above all, the polarization attraction directly 
affects the value of Vo. For example, in a sufficiently rarefied 
gas Vo can be estimated in the framework of the optical 
model, ~ ~ - 2 ~ f i ~ l , , ~ l r n ,  where N is the density of the me- 
dium. The polarization interaction can be taken into account 
here by means of the electron scattering length L, for scat- 
tering by an atom of the 

where a;, is the polarizability of an atom of the medium, and 
R,, is the radius of its core. The scattering length is an inte- 
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grated characteristic of the scattering process and takes into 
account both the exchange repulsion and the polarization at- 
traction. 

On the other hand, the polarization interaction changes 
the energy of the electron level in the negative ion. In our 
model, this change A s ,  can be estimated as a function of the 
cavity radius: 

The possibility of ignoring this effect is determined by the 
condition 

Using the optical model for a rough estimate of V,, we ob- 
tain from (2.12) and (2.13) the condition 

which when satisfied allows us to ignore the direct effect of 
the polarization interaction on the binding energy of the elec- 
tron in the negative ion. It is easy to show that in He the 
condition (2.14) is satisfied (LHe- 1 a o )  However, already in 
Ne (cuN,g2.67ai, L,,=0.45ao), this condition ceases to 
hold. 

In addition, because of electrostriction a denser layer 
forms around the cavity, and, as will be shown below, its 
importance increases as the temperature is decreased. The 
influence of this effect is negligible if 

where A T  = iil is the thermal electron wavelength. At 
T=77 K in He, the condition (2.15) is easily satisfied, and 
the role of the denser layer can be ignored. At lower tem- 
peratures in He, the condition (2.15) is violated. For ex- 
ample, at T=4.2 K, h $ a a l a o R ~ >  1,  and this effect must be 
taken into account. In Ne at T=45 K, the condition (2.15) is 
also not satisfied ( k $ a U l a o ~ ~ =  1.9). 

Bearing in mind the facts noted above, in what follows 
we shall use the self-consistent field model to take into ac- 
count more correctly the interaction of the electron with the 
medium. 

3. SELF-CONSISTENT FIELD APPROXIMATION 

We now turn to the consideration of a model that can be 
regarded as a generalization of the self-consistent field 
method (which is widely used in the theory of self-trapping 
of free electrons2s4) to the case of an electron localized in the 
field of an atom or a molecule and forming a negative ion. 
The use of this approach makes it possible to take into ac- 
count correctly the polarization effects mentioned in the pre- 
vious section and enables us to describe from a consistent 
point of view states with both strong rarefaction and appre- 
ciable concentration of the medium near the ion. 

We shall assume that the electron is in the ground state 
in the field of a complex formed by an 0; molecule and a 

fluctuation in the density of the atoms of the environment 
with binding energy E measured from the lower boundary of 
the conduction band Vo of the free electron: 

where V(r) is the two-body potential of the interaction be- 
tween the electron and an atom of the medium. In Eq. (3.1), 
Vo is also the average field that acts on a free electron in the 
case of a uniform distribution of the atoms of the medium. 

We also assume that the electron interacts simulta- 
neously with a large number of atoms: 

where a is the characteristic range of the electron-atom 
forces. Then the averaged Schrodinger equation for the elec- 
tron has the form 

where m is the electron mass. The averaged electron wave 
function q ( r )  reproduces the general behavior of the real 
wave function but does not have irregularities near the cen- 
ters of the atoms. The difference between (3.3) and the cor- 
responding equations known in the theory of electron 
s e ~ f - t r a ~ p i n ~ ~ . ~  consists of the introduction into this equation 
of the field U(r) (2.1) of the molecule in which the electron 
is localized. The expression in the curly brackets in (3.3) 
determines the potential of the mean field, the emergence of 
which is due to the deviation of the concentration of the 
atoms of the medium near the ion from the mean value. The 
formation of a fluctuation of atoms of the medium leads to a 
change A S  in the entropy of the ion-medium system. At the 
same time, the work TAS is expended on the formation of 
such a fluctuation. 

In a dense gas, it is necessary to take into account the 
correlations of the atoms of the medium with each other. 
These correlations can be taken into account approximately 
by the means of the lattice gas model, which leads to the 
following expression for the free energy of the ion-medium 
system:' 

X d r -  a p  [ ~ ( r )  - ~ ] ~ d r .  I (3.4) 

Here b = 1/2N, and a = T, IN, are, respectively, responsible 
for the repulsive and attractive interactions of the atoms of 
the medium with each other (T, and N, are the critical pa- 
rameters of the lattice gas). Variation of (3.4) with respect to 
all possible distributions N(r) of the atoms of the medium 
around the ion gives an equation for the local density: 

904 JETP 81 (5), November 1995 Volykhin et a/. 904 



At high densities, the expression (3.5) takes into account the 
fact that the density of the atoms cannot exceed the close- 
packing density 2N,. in the lattice model. In (3.5), f ( r )  is the 
effective potential of the interaction of the electron with an 
atom of the environment, and it is the quantum-mechanical 
expectation value of the potential of the electron-atom inter- 
action V(r-r'), where r is the position vector of the atom of 
the medium, and r' is the position vector of the electron: 

On the other hand, since the interaction of the electron 
with an atom or the molecule of a negative ion through the 
potential U(r) is included in (3.2) and influences the form of 
the electron wave function in (3.5), ?(r) can be regarded as 
the effective potential of the interaction of the negative ion 
with the atoms of the environment. 

Thus, to establish the structure of the complex around 
the negative ion, it is necessary to solve the self-consistent 
system of equations (3.3)-(3.5), taking into account (2.1) 
and (3.6). In view of the complexity of the problem, we shall 
seek the solution of this system by the direct variational 
method on the class of test wave functions that do not have 
zeros at r > R : 

where C is a normalizing constant, and A is a variational 
parameter that determines the characteristic distance over 
which the wave function varies. The preexponential part of 
(3.7) models the behavior of the function near the atomic 
core and takes into account the fact that at the core q ( R )  =O. 
In the limit r--tm, (3.7) gives the correct asymptotic behavior 
of the wave function: qmexp(- rlA)lr. The use of (3.7) for 
the 0, molecule in vacuum to calculate the radius of the 
hard core of the electron-molecule interaction with effective 
potential (2.1) leads to very slight changes in 
R ( R g  0 . 9 0 7 ~ ~ )  compared with the exact value R ~ 0 . 9 2 ~ ~ .  

We now specialize the electron-atom potential V(r) in 
(3.6) and consider the scattering of a slow electron by this 
potential. Following Ref. 2, we decompose V(r) into two 
components: 

where 

Here a, is the polarizability of an atom of the medium, and 
R, [like R in (2.1)] is the effective radius of the short-range 

core of an atom of the medium; it is related to the scattering 
length for scattering of the electron by the atom by the rela- 
tion (2.11). Assuming that the condition A%R, holds, as 
Vl(r) we can use the effective Fernii potential 

Here R ,  is the electron scattering length corresponding to the 
potential Vl(r). This immediately gives for f in (3.6) 

We use the asymptotic representation well-known in scatter- 
ing theory for the zeroth scattering phase shifts of an electron 
in a centrally symmetric field:I4 

Here k is the modulus of the electron wave vector, So and cpo 
are the phase shift and radial wave function of the electron in 
the field V(r) with orbital angular momentum 1=0, and 4, 
and cpO1 are the analogous quantities in the truncated poten- 
tial V,(r). 

In the Born approximation, cpo in (3.12) can be replaced 
by cp,, . However, this requires fulfillment of the condition 
R:% aa laO,  which is violated in practically all the inert gases 
except for helium. Already in neon R ~ ~ ( Y , I ~ ~ ,  and it is 
necessary to substitute the exact electron wave function cpo in 
(3.12). Following Ref. 15, we approximate the electron wave 
function by functions that are identical to the exact one near 
the core and at infinity: 

k(r-L,) 
y U  ( sin , r > r ~ ,  

where L, is the scattering length of a slow electron scattered 
by the atom. The point of separation r ,  is determined from 
the condition of equality of the kinetic and potential energies 
of the electron and is the point at which the two asymptotic 
behaviors of the wave functions are matched: 

As k-+O, we have rI+m, and the condition of matching of 
the wave functions gives 

Substituting (3.13) in (3.12), we can obtain the approximate 
connection between the zeroth scattering phase shift and the 
electron wave number. 

We now turn to the calculation of the effective potential 
of the polarization interaction: 
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Here \I!(rr) is a smoothed electron wave function and does 
not take into account the behavior near the cores of the atoms 
of the medium. Allowance can be made for this by analogy 
with (3.13), and then (3.15) can be represented in the form 

1 
( r - r r ) = D  s i n  ( r-rrI - $11. (3.17) 

By analogy with (3.13), this function takes into account the 
exact behavior of the electron wave function near the atomic 
core. In addition 2 ( r - r r ) +  1 as Ir-rrl+w. Calculation of 
V2(r) in the form of (3.16) is difficult due to the presence of 
the angle dependence Ir-rr12~, in the limit of integration. 
This difficulty can be eliminated by extending the region of 
integration to the complete space r r 2 R  (R is the radius of 
the core of the 0; molecule) by introducing the cutoff func- 
tion 

Then from (3.16) we obtain 

The significance of the introduction of the cutoff function is 
to prevent penetration of the electron into the region of the 
core of an atom of the medium and to eliminate the diver- 
gence of the integral (3.16) at r = r r  . The choice of the cutoff 
function is fairly arbitrary. For example, the investigation of 
electron self-trapping in polar liquids in Ref. 18 used a dif- 
ferent cutoff function, though, admittedly, this did not free 
the authors from the need for a numerical integration and the 
use of fitting parameters. In this paper, we propose a consis- 
tent method for introducing the cutoff function. 

Indeed, the introduction of the cutoff function in (3.16) 
to calculate the effective potential affects the characteristics 
of the electron scattering by an atom and, in particular, the 
scattering length. To take into account these changes, it is 
necessary to introduce the cutoff function f(r)  in the equa- 
tion for the zeroth phase shift (3.12) too, extending the inte- 
gration to the complete region. Thus, for the scattering length 
of a slow electron scattered by an atom we obtain the zeroth 
approximation in k 

Taking into account (3.13) and noting that 
cp,, =sin k ( r  - R)l k,  we obtain 

Knowing the electron-atom scattering length L, from ex- 
periment, we can use (3.21) to determine the radius of the 
core of the exchange repulsion with allowance for the error 
introduced by the use of the cutoff function. 

Having determined Ru and using the explicit form of the 
smoothed electron wave function (3.7), we can calculate the 
total effective potential by means of (3.1 1) and (3.19). Sub- 
stituting this potential in (3.5) and finding the local density of 
the medium N(r)  near the ion as a function of the variation 
parameter A, we can minimize the free energy functional 
(3.4) of the ion-medium system and find A,, the optimum 
length of variation of the smoothed electron wave function in 
the medium. Finally, substituting A,, in (3.9,  we can find the 
optimum profile of the density fluctuation of the medium 
around the negative ion. It turns out that Am depends very 
weakly on the temperature, density, and species of the atoms 
of the gas. Therefore, although the self-consistent field 
theory takes into account only the averaged configurations of 
the atoms, the influence of the fluctuations of the concentra- 
tion of the atoms Am can be ignored. Below, to simplify the 
estimates, we shall also ignore the fluctuations in the size and 
shape of the complex. This is entirely justified, since the 
number of particles in a complex is usually large, and under 
the conditions in which we are interested A F  has a sharp 
minimum, max P J A F J S  I. 

4. DISCUSSION OF THE RESULTS 

We first consider helium under the conditions of Bar- 
tels's experiment (Ref. 8): T=77.6 K, 2.5. lo2' 
~ m - ~ S ~ S 7 . 5 . 1 0 ~ '  cmP3. The experimentally known scat- 
tering length for scattering of a slow electron by a helium 
atom is Lo= 1.16ao, and the polarizability of the helium 
atom is a,= 1 .39~;  (see, for example, Ref. 2). Equation 
(3.21) gives R,= l.68ao, and the condition of applicability 
of the Born approximation, ~ ~ S a , l a ~ ,  can be regarded as 
satisfied. For the given parameters, the minimization of the 
free energy of the ion-medium system gives the value 
A,=4.8ao for the optimum length of variation of the elec- 
tron wave function. Thus, the condition R,4Am can also be 
assumed to be satisfied. 

The calculated profiles of the local density as functions 
of the distance from the center of the ion are shown in Fig. 3. 
The radius of the cavity formed around the negative 0; ion 
in helium is approximately 9ao  and depends weakly on the 
density of the medium, completely confirming the conclu- 
sions drawn in Sec. 2 by means of the simpler model. As can 
be seen from Fig. 3, the increase in the density of the me- 
dium near the cavity at T=77.6 K is very slight and can be 
ignored. In this case, the exchange repulsion plays the main 
role and determines the cavity radius. The polarization at- 
traction on its background is slight and can be ignored. The 
bubble radius is in fact determined by the radius of the hard 
core of the effective potential of the interaction of the nega- 
tive ion with the atom of the medium. 

The situation is different in helium at lower tempera- 
tures. Here, as was pointed out in Sec. 2, ~ ~ a , l a ~ ~ ~ 2  1,  
and, as can be seen from Fig. 3, the increase in the density 
that arises near the bubble is appreciable. 
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FIG. 3. Local density as a function of the distance from the center of the 0; 
ion in He constructed for a density N=2.5.102' cm-3 of the medium in the 
unperturbed state and for different temperatures: 1) 5, 2) 10, 3 )  77.6 K .  

Under the conditions given above of the experiment of 
Ref. 8, the mean free path exceeds the cavity radius. To 
calculate the mobility, we can use the solution of Boltz- 
mann's equation for a heavy particle moving in an ideal gas. 
The cross section for scattering of a helium atom by the 
cavity surrounding the negative ion is approximately 4 7 ~ ~ : .  
In reality, in a sufficiently rarefied gas it is not particularly 
meaningful to speak of the formation of a cavity or bubble. 
However, the ion kinetics will, as before, be determined by 
the scattering of the atoms of the medium by the effective 
potential of the negative ion, which is determined above all 
by the value of R2. Thus, to estimate the mobility in the 
so-called Knudsen regime, we use the expression2 

where M is the mass of an atom of the medium. The results 
of calculation in accordance with this expression are pre- 
sented in Fig. 4. It can be seen that they are in good agree- 
ment with the experimental results of Ref. 8. 

We now consider dense neon under the conditions of the 
experiment of Ref. 9: T=45 K, 2.5. lo2' ~ m - ~ s ~ < 2 . 5 .  
cmP3. The scattering length for a slow electron scattered by a 
neon atom is L,=0.45ao, and the neon polarizability is 
aaz2.67a;. Using (3.21), we obtained R,= 1 . 3 4 ~ ~  and 
A , =  4 . 8 ~ ~ .  The results of the calculations of the profiles of 
the relative local density as a function of the distance from 
the center of the negative ion are shown in Fig. 4, in which 
the values of N(r)IN are plotted for different densities of the 
medium in the unperturbed state. It can be seen from Fig. 5 
that the radius of the cavity around the ion is, as before, close 
to 10ao and is essentially independent of the density of the 
medium. On the other hand, the increase in the density 

FIG. 4. Mobility of the O2 ion in He at T=77.6 K. The curve is calculated 
in accordance with (4.1). and the points are the experimental results of Ref. 
8. 

around the cavity depends strongly on the density of the 
medium, this being due to the change in the nature of the 
interatomic correlation when N is changed. Thus, once it has 
reached its greatest value, the maximum of the density en- 
hancement begins to decrease with increasing N, this being 
due to the sharp decrease in the compressibility of the me- 
dium. At the mostly liquid density N ~ 2 . 5 - l o 2 2  ~ m - ~ ,  the 
density enhancement disappears essentially completely. 
Since in this range of densities the mean interatomic separa- 
tion is much less than the characteristic radius of the cavity 

FIG. 5. Local density of Ne atoms as a function of the distance to the ccntcr 
of the 0, ion plotted for T=45 K and different densities of the medium in 
the unperturbed state: 1) 8 .  lo2', 2 )  1OZ2, 3) 1.4.10~~. 4) 2.5. loL2 cm '. 
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FIG. 6. Reduced mobility pN of the 0, ion in Ne as a function of the 
density of the medium: I) the theoretical calculations of Ref. 9; 2) the 
experimental results of Ref. 9; 3) the results of our estimates. 

formed around an ion, to estimate the 0, mobility in neon at 
T=45 K we can use the well-known expression for the 
Stokes mobility: 

where 11 is the viscosity of the medium, and Ri is the radius 
of the complex. As Ri in this expression, we can choose the 
radius of the maximum of the density profile, and as the 
viscosity of the medium at this point. The result of our cal- 
culations is given in Fig. 6. We have plotted here the experi- 
mental results and the theoretical calculations of Ref. 9. It 
can be seen from Fig. 6 that our results are in good qualita- 
tive agreement with the experiment. More accurate calcula- 
tions of the mobility require allowance for the profiles of the 
local density and viscosity in the solution of the Navier- 
Stokes equation. 

Thus, we have shown that the conipetition between the 
polarization attraction and the exchange repulsion leads to 
the formation around the negative 0; ion of a complicated 
complex in the form of a cavity surrounded by a denser 
layer. In a raretietl gas at sufficiently high temperatures and 
in a liquid the density enhancement is rather small, ancl for 
estimates one can use the model of an empty bubble with 
rectangular potential walls. In the general case, it is neces- 
sary to use the self-consistent field method. The dependence 
of the cavity radius and the structure of the denser layer on 
the temperature and density of the medium have made it 
possible to explain the anomalous behavior of the mobility of 
the 0; ion in helium and neon. 
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