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The equilibrium temporal spin autocorrelation and cross-correlation functions, which determine, 
for example, the rate of thermal mixing in a system of abundant and rare nuclear spins at 
high polarizations of the abundant spins, are calculated using the spin-wave approximation. The 
properties of the correlation functions obtained are studied. It is shown that the cross- 
correlation functions decay exponentially as the distance between the nuclei increases. The 
autocorrelation functions have an oscillatory character at low dipole temperatures. O 1995 
American Institute of Physics. 

I. INTRODUCTION 

The study of the dynamics of nuclear spins in a solid 
diamagnetic insulator at high polarizations is of considerable 
interest owing to the development of dynamic nuclear polar- 
ization  method^,"^ which have made it possible to obtain 
values for the polarization of nuclear spins close to unity, as 
well as the very unusual behavior of spin systems at low 
temperatures observed in numerous experiments.' Among 
the most interesting phenomena observed in the system of 
nuclear spins in a solid insulator is the transition to a mag- 
netically ordered state occurring when the nuclear subsystem 
is cooled to spin temperatures comparable to the strength of 
the internuclear dipole-dipole interactions.' Absolute tem- 
peratures matching the present record low, i.e., temperatures 
below 1 nK, have been successfully achieved in the nuclear 
spin systems of metak3 Such experiments raise the question 
of devising an adequate theoretical description of spin dy- 
namics at low temperatures. 

Quantities measured at magnetic resonance are usually 
simply related to temporal spin correlation functions: but 
some correlation functions are measured directly with a high 
accuracy in experiments. For example, correlation functions 
can be measured down to amplitudes amounting to of 
the initial amplitude using the NMR of p-active nuclei5 The 
calculation of various correlators is thus a central problem in 
spin dynamics. 

Practically all the work in this area has hitherto been 
restricted to the development of methods for calculating tem- 
poral correlation functions in the limiting case of infinitely 
high spin temperatures. The behavior of a spin system be- 
comes significantly more complicated when the temperature 
is lowered. The dynamic correlations in the motion of the 
spins become stronger. Static correlations, which are respon- 
sible for transitions to various magnetically ordered states, 
also appear.' At the same time, if we restrict ourselves to the 
case of high nuclear polarizations alone, there is an approach 
which gives even a simpler description of the dynamics of 
systems than in the high-temperature case over the entire 
range of dipolar spin temperatures and makes it possible to 
directly calculate the temporal correlation functions. It is 
based on going over to the spin-wave forrna~isni."~ The sini- 

tion of a large part of the Hamiltonian of the system achieved 
in the transition to spin waves or, after quantization, to mag- 
nons. This transition is analogous to the transition to phonons 
in the description of small vibrations of atoms in a solid. It 
reduces the study of the dynamics of a spin system to the 
study of the dynamics of a low-density magnon gas. 

We shall consider a system of nuclear spins (S= 112) 
which are located at the sites of a simple cubic lattice and are 
coupled by a dipole-dipole interaction. Thus, in a strong 
applied field Ho directed along the z axis the Hamiltonian 
has the form 

where os= ysHo, ys is the gyromagnetic ratio of the nuclei 
with a spin S, Spl is the cu component of the nuclear spin at 
lattice site I ( a = x , y , z ) ,  Sfdz is the secular (with respect to 
the z axis) part of the dipole-dipole interactions, and bill is 
the constant of that interaction for the spins located at lattice 
sites I and 1'. The transition to the spin-wave formalism can 
be accomplished by replacing the spin operators Sf and 
SF = S f t  iST by the Bose creation and annihilation opera- 
tions a: and a l  using the Dyson-Maleev transformation8 

followed by the Fourier transform 

where 6= 1- I' and N is the number of S spins. As a result, 
the Hamiltonian takes on the 

the energy ek of a magnon with a momentum k being given 
by the formula 

plification attained here is associated with the diagonaliza- E L =  w , ~ -  bo- $br . ( 5 )  
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Henceforth the sample is assumed to be spherical, so that 
bo=O. Each magnon carries a quantum of magnetization cor- 
responding to the flipping of one spin in the sample. Thus, 
the polarization p is simply related to the overall magnon 
density: 

where n = C k n k =  Ck(a:ak) is the total number of magnons. 
The dynamics of nuclear spins at high polarizations is 

considered here in the example of the problem of the thermal 
mixing of rare nuclei of spin I interacting with a system of 
nuclei of spin S. On the one hand, this makes it possible to 
show how the correlation functions are related to the observ- 
able physical quantities and to discuss some general proper- 
ties of the correlation functions. On the other hand, the prob- 
lem of the thermal mixing of the abundant spins at high 
polarizations is of considerable interest. In fact, important 
information on the dynamics of nuclear spins in a solid can 
often be obtained by studying the NMR spectra of impurity 
nuclei, which are always present, as a rule, in crystals. These 
impurity nuclei essentially serve as natural probes, which 
monitor the processes occurring in the spin system of the 
host. The simplest example is provided by the 4 3 ~ a  nuclei 
(their natural abundance is 0.13%, and their spin I= 7/2) in a 
Ca& crystal. The observation of 4 3 ~ a  NMR makes it pos- 
sible to obtain diverse information on the transition of the 
spins of the '47 nuclei to an ordered state at a spin tempera- 
ture of order 1 ,uK (Ref. 9) and on the nature of such 
ordering.lv9 The sensitivity problem is solved here by achiev- 
ing a high polarization of the 4 3 ~ a  nuclei (up to 80%) 
through thermal contact between their effective Zeeman sub- 
system and the dipole-dipole reservoir of the fluorine 
nuclei.' The literature does not offer a theoretical investiga- 
tion of the process of thermal mixing when the temperature 
of the reservoir of dipole-dipole interactions is low. 

In the next section we obtain the kinetic equations for 
thermal mixing at low temperatures, which describe, in par- 
ticular, the temporal evolution of the polarization of the rare 
spins using a quasithermodynamic approach.'0911 In the fol- 
lowing sections of this paper we calculate (in the spin-wave 
approximation) the correlation functions appearing in these 
equations. The general properties of the correlation functions 
are also studied, and the relationship between the results ob- 
tained and the fluctuation-dissipation theorem is pointed out. 

The approaches developed in this paper can also be ap- 
plied to the study of the cross-relaxation? cross- 
polarization,'2*13 and spin-lattice relaxation of nuclear 
spins14 at low temperatures. 

2. KINETIC EQUATIONS 

Let us consider a system of nuclear spins in a solid con- 
sisting of abundant nuclei with a spin S =  1/2 and rare nuclei 
with an arbitrary spin I in a constant magnetic field ~ ~ 1 1 ~ .  
Since the concentration of rare nuclei is assumed to be small, 
we can consider the interaction of one rare I nucleus with a 
system of abundant S nuclei. The Hamiltonian of such a 
problem has the form 

where of= ylHo, yl is the gyromagnetic ratio of the I spins, 
.Hcl, is the secular part of the dipole-dipole interaction of 
the S spins, which is defined by Eq. (1). The interaction 
VIs between the S and I spins is assumed to be small. To 
consider the problem of the thermal mixing of the nuclear 
spins it is sufficient to restrict ourselves to the following 
expression for the Hamiltonian Vls 

where Fl  is the constant of the interaction of an I spin with 
an S spin at site I, and 1'=lX~ilY. The structure of the 
interaction (8) shows that fluctuations of the z component of 
the S spin due to its interaction with the environment cause 
flipping of the I spin. In other words, the relaxation rate of 
the z component of the I spin makes it possible to evaluate 
the intensity of the fluctuations of the z component of the S 
spins at the transition frequency o, . 

After a time r - [ (  1 -p)wl,,]-' (wi,= Tr %~,/ 
Tr s:, and p is the polarization of the S spins) a quasiequi- 
librium state is established in the system, in which the den- 
sity matrix po has the form 

where PI-' , Pi '  , and P i 1  are the values of the tempera- 
tures of the I and S spins and of the reservoir of dipole- 
dipole interactions of the S spins, and the statistical sum Z 
equals 

The kinetic equations for the temporal evolution of the mean 
values of the observable quantities at t 9  r can be obtained 
by the standard method." After performing two iterations of 
the equation for the density matrix in the representation of 
the interaction, we obtain, in particular, an equation for the 
evolution of the polarization of the rare spins: 

where 

and the angle brackets denote the average at equilibrium: 
(B) = Tr(poB). The correlation functions G;, (r) are defined 
by the expression 

where 
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It follows directly from the definition (13) that 

Therefore, the cross-correlation functions G;,(t) are real, 
and the Gll,(t) are imaginary functions of time. Equation 
(11) contains both an autocorrelation function and cross- 
correlation functions of the S spins. In the next section we 
shall see that the autocorrelation function plays a major role 
in the calculation of the rate of thermal mixing. In the limit 
Pd+O the correlation functions Gll,(t) are equal to zero, 
and the second term in (11) vanishes. However, at finite di- 
polar temperatures just this term ensures a nonzero value for 
the equilibrium polarization of the I spins, which is obtained 
from (11) when d(Iz)ldt=O: 

In (16) the spectral densities gl~,(wI) of the correlation func- 
tions G;, (t) are given by the formula 

The relation (16) can be simplified significantly by introduc- 
ing the eigenfunctions of the operator Sd, and expressing 
the correlation functions appearing in (16) in terms of the 
sums of the matrix elements of the corresponding operators. 
Then going from summation to integration, after several 
transformations we can obtain 

Comparing (16) and (18), we find 

Thus, there is a definite relationship between the correlation 
functions g1j,(u) and gL,(o). It is a direct consequence of 
the fluctuation-dissipation the~rem, '~ . ' ~  which relates the 
imaginary part of the susceptibility (for the S spins) and the 
spectral density of the fluctuations. 

Of course, the expression (18) for the equilibrium polar- 
ization must coincide with the ordinary thermodynamic 
mean 

For a spin I =  112 the identical nature of (18) and (20) is 
obvious, and this property is proved for an arbitrary spin in 
the appendix. 

Equation (1 I) must be supplemented by an equation for 
the rate of variation of the dipolar energy of the abundant 
spins. It can be found from the conservation law of the total 
energy of the spins, which, with consideration of the main- 
tenance of the polarization of the S spins with time in the 
problem under consideration, gives 

where NI is the number of rare spins in the sample. The 
system of equations (1 1) and (21) completely describes the 
process of the thermal mixing of the rare spins with the di- 
polar subsystem of the abundant spins at low temperatures 
and generalizes Provotorov's approach'0"' to the case of ar- 
bitrary temperatures. 

3. CALCULATION OF CORRELATION FUNCTIONS IN THE 
SPIN-WAVE APPROXIMATION 

With the aid of (2) and (3) the spin operator S5 at the site 
I can be expressed in terms of the magnon creation and an- 
nihilation operators: 

Hence, after some elementary calculations we find that 

where the energy ek of a magnon is given by Eq. (9, and the 
equilibrium Planck di~tribution~'~ should be used for the oc- 
cupation numbers of the magnon energy levels: 

Here the chemical potential p plays the role of a second 
independent thermodynamic parameter. The presence of two 
independent parameters in the equilibrium distribution is due 
to the existence of two integrals of motion: the dipolar en- 
ergy and the polarization or, in terms of magnons, the energy 
and the number of particles. At a given temperature the po- 
larization (the total number of magnons) can be varied by 
varying the chemical potential p. The correlation functions 
C;,(t) are defined using (23) in the following manner: 

Below we shall assume that the deviation of the polar- 
ization from unity, which is equal to twice the magnon den- 
sity [see (6)], is a small parameter, and we shall neglect the 
terms which are quadratic with respect to the number of 
magnons. In this approximation we can neglect the interac- 
tions between the magnons. The interactions result in scat- 
tering of the magnons by one another and a finite lifetime in 
one state 7- I=( l - p )  wlOc. Therefore, the approach devel- 
oped here makes it possible to calculate the correlation func- 
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tions only at times t 4 r .  Nevertheless, it is obvious that 
diffusion-controlled transfer of the z component of the mag- 
netization will occur at times t+  7. 

In experiments performed at a high polarization of the 
nuclear spins the temperature of the reservoir of dipole- 
dipole interactions can vary over a very broad range. The 
cases of high and low dipole temperatures will be considered 
below. 

3.1. High dipole temperatures (P,wl,+ 1) 

Since w,, coincides in order of magnitude with the 
width of the magnon spectrum, at high dipolar temperatures 
(Pdwl,G 1), as is seen from (24), all the occupation num- 
bers of the magnon energy levels can be assumed to be iden- 
tical: nk=n/N. Neglecting the terms which are quadratic 
with respect to the number of magnons in Eqs. (25) and (26), 
we obtain 

where 

In the high-temperature limit the correlation functions sought 
can be obtained using Eqs. (27)-(29). 

The magnon spectrum ek has a complicated anisotropic 
character. Qualitatively, it can be treated as the sum of two 
contributions: a contribution from the nearest neighbors, 
which can be represented in the Holl[OO1] orientation in the 
form6 

0- Y 2fi 
ekF7(2 COS k,a - cos k,a- cos kya) 

2 a 

(a is the lattice constant), and a contribution from large dis- 
tances, which produces a singularity in the spectrum when 
k t O .  This spectrum can be obtained with a high accuracy 
only by a numerical calculation using the algorithm proposed 
in Ref. 17. Nevertheless, the nearest-neighbor approximation 
(30) is a good approximation for the magnon spectrum for 
the Holl[OO1] orientation." Since, as will be shown below, 
the correlation functions can be calculated analytically in this 
case, it would be expedient to use the simplified expression 
(30) for the spectrum in order to be able to study some gen- 
eral properties of the correlation functions. 

Passing from summation to integration in (29), we ob- 
tain 

nld 

d'k 
= J J J e x - -  (31) 

N 

Here V is the volume of the sample, and the integration is 
performed over the Brillouin zone. Next, it is convenient to 
move over to dimensionless variables which are such that 
tr = I. Now the vector I- I' is a vector with integer conlpo- 

nents. After replacing EA in (3 1) by e: from (30) and using 
the known integral representation of Bessel functions,19 we 
obtain 

where a= y2h/2a3, the (1-l'),,,,, are the projections 
(which are also integers) of the internuclear vector I- 1' , and 
J,(x) are Bessel functions of order n. Taking into account 
that J-,(x) = (- l)"J,(x) (Ref. 19), from (27) and (32) we 
obtain 

Since the asymptotes of the Bessel functions Jh(x) at large 
values of X and fixed values of x have the form19 

the correlator GI:, (t) decays exponentially as the distance 
between the nuclei increases. A special role is played by the 
autocorrelation function GI: ( t ) :  

We also point out that at large times the correlators oscillate 
with a small amplitude and decay according to a (a t ) -3  law. 

The total z component of the magnetization is an integral 
of motion. Therefore, it follows from (13) that in the limit of 
high dipole temperatures considered here the correlation 
functions must satisfy the condition El r GI:, (t) = const. Tak- 
ing into account the known property of Bessel functions 
z ~ = - , J ~ ( ~ ) =  1, we see that our calculated correlation func- 
tions (33) do, in fact, satisfy the condition of the conserva- 
tion of the total z component of the magnetization. 

It would also be of interest to compare the second mo- 
ment of the correlation function of the z component of the 
electron spin calculated in Ref. 20 and the second moment of 
the correlation function (35). Expanding the Bessel function 
(35) into a series, we can easily see that these moments co- 
incide, if the calculation of the lattice sum in Ref. 20 is 
restricted to nearest neighbors. 

Figure 1 presents the correlators calculated from Eq. 
(33) for nuclear spins at neighboring lattice sites, as well as 
the autocorrelation function (35). It is seen from Fig. I that 
the correlations of the z components of spins positioned 
along the direction of the applied field Ho significantly sur- 
pass the analogous correlations of spins in a plane perpen- 
dicular to H,. Figure 2 shows the spectral densities of these 
correlators. 
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FIG. 1 .  Time dependence of the correlation functions 
~ ; , ( f ) =  [2/(1 - p ) ]  [G;,- (p2/4)] at high dipole temperatures. Curve I 
corresponds to I = I f ,  and the autocorrelation function G;(f) was calculated 
from Eq. (35). Curves 2 and 3 correspond to 1- I' = ae, and I- 1' = ae, (e, 
and e,, arc unit vectors along the z and x axes, and x lz ) .  The correlation 
functions G;,(r) were calculated from Eq. (33). The time r was made di- 
mensionless by multiplication by the frequency a. 

We stress that the nearest-neighbor approximation used 
in this section for the energy spectrum of magnons is not 
fundamental and can be discarded in numerical calculations 
of the correlation functions. 

3.2. Low dipole temperatures (P,w,,& 1) 

In the case of low dipole temperatures (PdwlocS 1 ), only 
energy levels near the bottom of the band are populated. 
Neglecting the terms which are quadratic in the magnon 
number in (23), we obtain the following expression for the 
correlator 

FIG. 2. Spcctrnl densities of the corrclntors S ( w ) =  J" , e " " " "~~ , ( r ) t l r  pre- 
sentcd in Ftg. I .  The numbers just ahovc the curvcs corrcspond to the nom- 
hers in Fig. I .  

where Cll,(t) is defined in Eq. (29), and 

Near the minimum of the magnon spectrum, which is 
achieved in the ~ ~ l l [ 0 0 1 ]  orientation at k=k*=(O,O,.rrla), 
the spectrum can be represented asI8 

where Sk=k- k*, Al-0.31, and cl= 1.21 ly2hla3. Now 
passing from summation to integration in (37), we obtain 

v 
B1lt(t)= - 

4 . r r 2 ~  
exp[i.rr(l- l'),] 

for P d C I S  1 we can utilize a known t e ~ h n i ~ u e ~ " ~ , ' ~  and re- 
write (39) in the following manner 

where ji = p - 2 C I is the chemical potential calculated rela- 
tive to the bottom of the band. After some simple transfor- 
mations, from (40) we obtain 

Equations (32), (36), and (41) make it possible to calculate 
the correlator Gllr(t),  i.e., the correlation functions ~ i , ( t ) .  
The Gaussian decay Blll(t) with the distance between the 
nuclei is, in fact, not so rapid, since we have P t I C I S  I in 
(41). 

Let us go into greater detail on the derivation of simpler 
formulas for the autocorrelation functions G;(t). Setting 
I =  I' in (41), we can easily find that 

where cb,,, = arctan(tlmp,/>. Using Eqs. ( 1  3) ,  (32), (36),  and 
(42), we obtain 
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f 4. CONCLUSIONS 

The theory developed in this paper, which is based on 
the use of the spin-wave approach, makes it possible to cal- 
culate spin auto- and cross-correlation functions and pro- 
vides a detailed description of the spin dynamics at high 
values of the nuclear polarization. The problem of thermal 
mixing considered here can serve as a model example of the 
application of the quasithermodynamic approach at low tem- 
peratures. Cross relaxation, cross polarization, spin-lattice 
relaxation, and other problems concerning the thermal mix- 
ing of several subsystems can be treated in a similar manner. 

This research was performed with support from the In- 
ternational Science Foundation and the Russian Government 
(grant No. NJ5300). 

FIG. 3. Time dependence of the autocorrelation functions APPEND~XA: 
Q; (r) = [Gi(r)  - p Z 1 4 ] l [ ~ ~ ( ~ )  -p2/4] at low dipole temperatures. The 
autocorrelator Gi(r )  was calculated from Eq. (43); plu= -0.05, Proving the identical nature of Eqs. (18) and (20) re- 
&a = 10. duces to proving the identity 

m 
em P i i  dx 

p2 Jo(2at)J;(at) 
~ i ( r )  = 7 + C ('41) 

~ ( T C ~ A , ) ~ ' ~  m = l  (m2~2+t2)3'4 Here we have written x= Pdol ,  f (x) = Tr{exp(xlZ)), and the 
definition (12) was taken into account in the derivation of 

(43) (Al). The use of the familiar equation23 

1 ~ = ( 1 ~ ) ~ + 1 ~ + 1 - 1 +  

reduces (Al) for q(x) to 

The most effective method for obtaining low dipole tem- 
peratures is adiabatic demagnetization in the rotating frame 
(ADRF).' Here the initial state with high polarization is the 
high-temperature equilibrium state in the laboratory frame 
( f i -  - wo). After the rf field is turned on, the system tends 
to achieve equilibrium in the rotating frame, and the chemi- 
cal potential ii begins to increase, tending to the value 
,G= 0, which corresponds to the new equilibrium.18 When the 
value ,ii = 0 is achieved, the magnons in the system undergo 
Bose c~ndensat ion? '~.~ ' .~~ which results in a transition to a 
magnetically ordered state with a tilted magnetization and 
ordering of the transverse spin components. During further 
demagnetization, the spin temperature ceases to decrease, but 
the percentage of particles in the condensate increases. Thus, 
under the conditions of this experiment a spin system cooled 
to low dipole temperatures (/3,101,c9 1 ) above the phase- 
transition point is characterized by a negative value of the 
chemical potential and < oioc. 

Figure 3 presents the autocorrelation function G;(t) cal- 
culated from Eq. (43). Note the oscillatory character of 
G;(r), which arises because the bulk of the magnons are 
located near the bottom of the energy spectrum at low dipole 
temperatures. This produces strong correlations in the mo- 
tions of neighboring spins. Destructive interference, which 
results in the disappearance of beats at high temperatures, is 
practically absent here. 

Now, using the formulas23 for the matrix elements of the 
operators I' 

we obtain 

In the first sum on the right-hand side of (AS) we replace M 
by M - I .  Using (A4) we now have 
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Thus, Eqs. (18) and (20) lead to identical values for the po- 
larization of the rare nuclei. 
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