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A systematic quantum-mechanical method is developed for correcting the Thomas-Fermi model 
at short distances from the nucleus, where the semiclassical approximation is invalid. The 
proposed approach covers both degenerate and high-temperature systems and makes it possible 
to eliminate the defects of the Thomas-Fermi model associated with proximity to nuclei, 
namely, divergence of the quantum corrections to the energy values at the point r=O and the 
disagreement with the results of perturbation theory in the region of superhigh pressures 
andlor temperatures. Specific applications are to the theory of the equation of state of matter with 
high energy density. O 1995 American Institute of Physics. [S 1063-7761 (95)005 10-91 

1. INTRODUCTION 

In the theory of electron-nucleus systems with high en- 
ergy density, one traditionally uses the Thomas-Fermi statis- 
tical which is distinguished by its elegance and 
simplicity of the calculations. In particular, this model pos- 
sesses the property of self-similarity, which makes it possible 
to describe matter with different values of the charge Z S  1 of 
the nucleus in a unified manner. The Thomas-Fermi model 
is usually combined with replacement of the solution of the 
multi-center problem (matter) by consideration of a single- 
center neutral cell with radius R equal to half the mean sepa- 
ration between the nuclei of the matter, R- ( z I ~ , ) " ~  (n, is 
the electron concentration), with corresponding boundary 
conditions. 

The region of applicability of the Thomas-Fermi model 
is determined by the condition for quasiclassical motion of 
the electron in the self-consistent field U(r): 

where p ,  = J2(CL-U)'l2(p 2 U), pCL=O(p< U) is the 
Fermi momentum, and p is the chemical potential. Here and 
in what follows, we use atomic units. For 5 < 1, the results 
can be improved if we take into account the quantum (gra- 
dient) and shell corrections to the Thomas-Fermi  mode^.^.^ 

In an isolated atom (R=co), the condition (1) is satisfied 
at distances 1/Z<r< 1, i.e., it is violated in the neighbor- 
hood of the nucleus and at large distances. For atoms of 
strongly compressed and/or heated matter, this condition is 
also satisfied in their peripheral part, where the electron dis- 
tribution is nearly uniform. This explains the success of the 
Thomas-Fermi model in the description of extreme states of 
matter. However, in a small region of radius r, adjoining the 
nucleus, the condition ( I )  is violated under all external con- 
ditions. To determine the value of r, in the general case, we 
use the fact that the field U(r) in the neighborhood of the 
nucleus, r < r o ,  is practically identical to the Coulomb fieltl: 

This enables us, using the condition (= 1 at r =  r , ,  to 
find readily ro=Z-'  and ro = & I p [  -314, respectively, in the 
regions 

It can be seen from this that in the case of "cold" (tempera- 
ture T=O) compressed matter the ratio of the radius ro to the 
cell radius R in the region (3a) increases with increasing 
compression as p1I2, reaches values 2-'13<1 for p-Z2, and 
then decreases as ,u-lI4 (see Fig. la) in the region (3b). in 
contrast, in the case of a constant-density plasma (on an iso- 
chor) an increase in the temperature (increase in the absolute 
value of the chemical potential) does not change the ratio 
rolR- (nlZ4)'I34 1 in the region (3a), but in the region (3b) 
the ratio decreases as - I , u ( - ~ ' ~  (see Fig. Ib). 

The answer to the important question of whether the 
electrons on the scale ro are affected by an external pertur- 
bation is determined by the ratio I,ulrolZ, the value of which 
is less than (or greater than) unity in the region (3a) [or (3b)l. 
It follows from this that in the region (3b) the failure of the 
condition ( I )  near a nucleus must affect the value of the 
pressure and the specific heat. 

This violation of the condition (I) leads to the following 
defects of the Thomas-Fermi model: 

1) the integrated energy values calculated with it differ 
appreciably from the exact values, and the quantum correc- 
tions to these values are expressed in terms of integrals over 
the volume that diverge at the point r=O ; 

2) even if this last difficulty can be avoided by consid- 
ering only the change in the energy values as a result of 
compression and/or heating,6*7 in the region (3b) the results 
of perturbation theory with respect to the interaction, which 
is valid here, are not reproduced.598 

In the literature, various methods for eliminating these 
defects of the Thomas-Fermi model have been 
described."-" One of them consists of treating the lowest 
quantum correction on an equal footing with the remaining 
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FIG. I .  Ratio of the radius r ,  of the region of 
nonsemiclassical behavior in the neighborhood 
of the nuclei to the mean separation 2 R  between 
nuclei of the matter as a function of the chemi- 
cal potential p: a--on the zero isotherm T=O; 
b n  the isochor n,=const. 
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teims of the energy functional (in particular the exchange 
energy) in the variational method; this makes the extremal 
(the density) a regular function of r." Such an approach, 
which is known as the quantum statistical  mode^,'^-'^ leads 
to an Euler-Lagrange equation in which the contribution of 
the quantum corrections of the higher orders is replaced by 
the nonlinear contribution of the lower correction. A second 
method consists of an artificial "truncation" of the energy 
distribution of the levels at its lower limit using a specially 
chosen quantity.'0 Finally, a third approach, a development 
of which is the approach adopted in this paper, is based on 
the expression (2) and on the fact that for the Coulomb field 
the exact solution of the problem is known. In particular, this 
makes it possible, using the exact spectrum, to "cut off" the 
divergences of the quantum corrections to the energy at ro by 
replacing them with the Scott c~r rec t ion :~"~. '~  

However, none of the methods we have described satis- 
fies the complete set of requirements, namely, the elimination 
of the defects of the Thomas-Fermi model described above, 
the ability to deal with all types of extreme states (heavy 
atoms, compressed and hot matter), a consistently quantum- 
mechanical derivation, and retention of the simplicity and 
self-similarity inherent in the Thomas-Femi model. The 
aim of the presence paper is to propose a general method for 
correcting the Thomas-Fermi model at short distances from 
a nucleus so as to fulfill all these requirements. A brief de- 
scription of the approach and preliminary results have been 
published in Refs. 17 and 18. 

To conclude this section, we note that from the method- 
ological point of view the correction of the Thomas-Fermi 
model in the neighborhood of a nucleus is intended to com- 
plete the many years of work on the improvement of this 
model and extend the domain of its applicability. The re- 
maining efforts, concerned with methods of describing the 
exchange, correlation, and shell effects, have been fairly well 
developed and are described in the literature. 

2. THE METHOD OF THE APPROACH 

To solve the problem we have posed for an arbitrary 
integrated physical quantity A, it is convenient to operate 
with the difference 6A of the values of this quantity corre- 
sponding to the Hartree approximation and the approxima- 
tion of the Thomas-Fenni model (near a nucleus, the ex- 
change ancl correlation corrections are relatively small ancl 
can be consicle~.etl independently). Namely, this difference, 

which is the total sum of the quantum (gradient) and shell 
corrections of all orders, becomes small when the condition 
(1) is satisfied and is very sensitive to its violation. In what 
follows, except in Sec. 7, we shall consider only the part of 
SA that corresponds to the total sum of the quantum (gradi- 
ent) corrections, i.e., we remove from it the shell corrections. 
When the condition (1) is satisfied, the sum of the quantum 
corrections in which we are interested reduces to the quan- 
tum correction of the lowest (second) order S2A, which is a 
quantity integrated over space and for which, in particular, 
the defects listed in the Introduction are characteristic. 

The problem is to correct this quantity, i.e., to go from 
S2A to a quantity SAC corrected in the neighborhood of a 
nucleus. The density that occurs in the latter expression must 
be equal to the density in the first for r> ro  and to the exact 
solution of the Coulomb problem for r < r o  [see (2)]. The 
simplest and most transparent way of making such a transi- 
tion, which was proposed by one of the present authors in 
Ref. 19, is as follows. Besides the original problem, one 
solves an auxiliary problem (the quantities relating to it will 
be identified below by the addition of a tilde), in which the 
electrons are assumed to interact only with the nucleus and 
not with each other, so that Eq. (2) will hold in the complete 
space. The chemical potential ji of this system is assumed to 
be equal to the chemical potential p of the original problem 
in the Thomas-Fermi approximation. 

We now show that representation of the required quan- 
tity SAC in the form of the combination 

satisfies the imposed conditions. Indeed, for r <  ro, when Eq. 
(2) holds, the densities of the first two terms on the right- 
hand side of (5) must cancel, and the result is identical to the 
exact solution of the Coulomb problem. In contrast, at dis- 
tances r>ro ,  where the motion is semiclassical in accor- 
dance with the definition of ro, the densities of the last two 
terms of (5) cancel, and the result reduces to the density of 
the original quantity 6,A. Note that the integrals over space 
that arise in (5) are taken over the volume of the cell for the 
original problem, while for the auxiliary problem they can be 
taken over the whole of space. 

The descl-ibecl method is suitable both for a "colcl" sys- 
tem (T=O) ancl for a nonzero temperature. In the second 
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case, i t  must be borne in mind that although for T > n ,  the 
quantum corrections become small compared with the corre- 
lation corrections and it would appear that their consider- 
ation becomes largely meaningless the existence of the re- 
gion near the nucleus in which the behavior is not 
semiclassical has the consequence that the revised quantum 
correction is by no means small, as will be shown below, and 
must definitely be taken into account. 

3. GENERAL RELATIONS 

In this paper, we restrict consideration to energies, un- 
derstanding by A the free energy .F (at T=O, simply the 
energy a. Therefore, in what follows we shall deal with the 
quantities B F ,  88, etc., in which the corresponding differ- 
ences (see Sec. 2) are taken at the same values of the tem- 
perature T=P-', the volume V, and the total number N of 
particles. As is well known?' such differences are equal to 
the corresponding differences for the thermodynamic poten- 
tial cR corresponding to the same values of T, V, and p and 
are denoted below by the symbol 6. Thus, we have5 

Here p is the chemical potential in the Thomas-Fermi ap- 
proximation, and N(p) is related by 

@(x) = 
l + e x p x '  (7) 

to the level density of the system: 

Here A=G2/2+u(x) is the single-particle Hamiltonian, and 

is the retarded Green's function of an electron in the self- 
consistent field. Taking the trace with respect to the system 
of plane waves exp(ipx) and bearing in mind that the 
Thomas-Fermi model corresponds to n!glect of the commu- 
tators of the terms of the Hamiltonian H (Ref. 21), we have 

where d3p = dpl(2rr)3, the gradient acts only on U ,  and 

At zero temperature (PAW), the expressions (6) and (7) give 

The same expressions lead to a relationship between the cor- 
rections 8P and Ci%: 

and this relationship makes it possible to carry cut the most 
laborious part of the calculations in the low-temperature 
limit and go over to finite values of p only in th: final stage. 
The operation B introduced in (13) leads to the results 

where 

is the Fermi-Dirac function, which satisfies the recursion 
relation 

and has the asymptotic behavior 

Note that in the expression (12) it is possible to trans- 
form to integration over p'ap by using the sum rules17 

which are obtained by accurate consideration of the contri- 
bution of the Coulomb singularity in the region of large p'. 
Like anomalies in quantum field theory, the nonvanishing 
right-hand side of the second relation (14) (although it van- 
ishes formally as a result of the substitution of (10)) is asso- 
ciated with precisely this contribution. 

4. QUANTUM CORRECTIONS OF LOWEST ORDER 

In this section, we shall determine for the original and 
the auxiliary problem the quantities S 2 8  and a2g, the dif- 
ference of which occurs in the expression (5). We emphasize 
that in what follows it is necessary to distinguish p ,  the 
chemical potential in the Thomas-Fermi model, from p ' ,  the 
independent argument, with respect to which integration will 
later be performed in the transition to nonzero temperatures. 
Using the standard method2' and expanding (10) to second 
order in the gradients, we obtain 

substitution of which in (12) gives the well-known relation 

Further, using the equation 
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we can readily reduce the expression (15) to the form 

where YE, which is generated by the term with the diver- 
gence in (16), is a sum of surface integrals over the outer 
surface of a cell of radius R and over a surface of infinitesi- 
mal radius surrounding the point r=O. The first of these in- 
tegrals is equal to zero for a neutral cell, while the second 
integral is infinite (inf,) on account of the singularity of (2) at 
the point r=O. Further, we take into account the Thomas- 
Fermi equation 

Here in the first term on the right-hand side 

is the electron charge density in the Thomas-Fermi model. 
The second term in (18) contains the charge density of a 
point nucleus, which is one further source of infinities (inf,). 
n u s ,  we can write 62g(p1) in the form 

The appearance of the infinities inf, and inf2 corresponds to 
the difficulty 1 (see the Introduction). 

For the auxiliary problem, the same relations (15) and 
(16) hold. At the same time, by virtue of (2) the surface 
integral around the point r=O is exactly equal to the analo- 
gous integral for the original problem inf, (see above). Be- 
cause of the absence of the interelectron interaction, the 
Thomas-Fermi equation now has the form 

Therefore, the second source of the infinities-the right-hand 
side of (20)-also leads to the same expression for inf, that 
was obtained for the original system. Therefore, the differ- 
ence 82ZF(p')-82t?(p') in (5) will be a finite quantity, i.e., it 
will be free of difficulty 1. However, because of the slow 
decrease of the Coulomb potential, the integral over the outer 
surface, which will be infinite in the case of the auxiliary 
problem, will have a nonzero value for p l > O .  With allow- 
ance for this contribution, the lowest quantum correction for 
the auxiliary problem has the form 

where 8 (x)=O (x<O), 8 (x)= 1 (x>O). 

5. EXACT SOLUTION OF THE AUXILIARY PROBLEM 

In accordance with the expression (9, it remains for us 
to find the exact expression for the difference S8(pr ) .  As 
was emphasized at the beginning of Sec. 2, from this quan- 
tity it is necessary to remove the shell corrections that arise 
when p' crosses the discrete energy levels. Accordingly, we 
begin by considering the region of bound states: p<O.  The 
level density of the tliscrete spectrunl has the obvious form 

where n is the principal quantum number, and n2 is the de- 
generacy of the level. Using for the calculation of the sum 
the well-known Poisson formula 

which follows from the equation 

separating the term with k=O, and extending the integration 
over n to zero, we obtain 

Here the first term in curly brackets corresponds to the 
Thomas-Fermi model and the second corresponds to the 
shell effectsY2 while the third term can be written in the form 

and, since both sides of (23) are even in n, the function S(n)  
is symmetric about the point n=O. Subtracting the first and 
second terms from (24) in accordance with what we said 
above and substituting the remainder in (12), we find in ac- 
cordance with (4) 

We make three remarks. First, from the condition that the 
spectrum is bounded below [p(pr)=O for pr<-2,121 it fol- 
lows that the Scott correction can be represented in the form 

where gTF(pl )  = z3/  is the energy in the Thomas- 
Fermi model, and &sh(p'), is the shell correction23 for the 
auxiliary problem. It is also clear that this relation is valid 
not only for the auxiliary problem but also for all the 
electron-nucleus systems that we consider, since the region 
,up<-z2/2 corresponds to strongly bound electrons, for 
which the condition (2) holds. Therefore, in the general case 

Second, since the Scott correction can be expressed in terms 
of S (n) [see (25)], it can be regarded as a cancellation of the 
unphysica.1 state with n=O and Eo=-cc taken into account 
redundantly in the Thomas-Fern~i model and in the shell 
correction [see (27)]. Third, as is clear, for example, from the 
problem of an isolated atom, where e2-~-2/"see (I)], the 
Scott correction to the energy is nonanalytic with respect to 
this parameter since it has the order @ relative to the prin- 
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TABLE I.  The funct~on f (cr) and its derivative ]'(a). 

cipal term in the Thomas-Fermi model (-Z7I3). Therefore, 
in the power-law expansion of this quantity in even powers 
of 5 infinities arise (difficulty 1; see the Introduction). 

We turn to consideration of the case p > O .  It is clear, in 
the first place, that the contribution of the region p 1 < O  to the 
integral (12) is, as before, determined by the expression (26). 
With regard to the contribution of the region O<pl<p, in 
which there are no shell effects, it is expressed in accordance 
with (8)-(12) in terms of the exact Coulomb Green's 
function24 

where 

For the free Green's function (Z=O), the exact value is equal 
to the semiclassical value, from which we obtain the equa- 
tion 

Accordingly, we can write &i in the form 

2 IT /rdrr2{2/;ds sin 

Cumbersome but in principle simple calculations1) give 

dx 
A = lo ;r sin x[coth(ru) - x u  

Substitution of (29) in (12) leads to the final expression 

For a e l ,  the condition of semiclassical behavior (1) is 
satisfied for the Coulomb problem, and for o-% 1 perturbation 
theory with respect to the Coulomb interaction is valid. For 
the function f(a) in (30), we have the following expansions. 
The series in powers of u has the form 

(B, are the Bernoulli numbers) and it begins with the small 
(for small a )  term 

In the opposite case ( u s l )  

(In y=C is Euler's constant, [ is the Riemann zeta function), 
and the corresponding asymptotic behavior is 

In the general case, introducing the mean value 

we can express f(u) in terms of the gamma function of 
imaginary argument: 

The results of numerical calculation of the function f(cr) and 
its derivative are given in Table I and in Fig. 2. where 
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FIG. 2. The function f(a) and its derivative fl(u). 

6. REVISED QUANTUM CORRECTION: ZERO 
TEMPERATURE 

To obtain expressions for the revised quantum correc- 
tion, it remains to substitute the results (17), (19), (21), and 
(30) obtained in Secs. 4 and 5 in the expression (5), under- 
standing by A the free energy 9. If we use (13), this substi- 
tution gives 

(33) 

The second term on the right-hand side of (33) is the finite 
part of the lowest quantum correction to the free energy: 

The general case of finite temperatures will be considered in 
more detail below in Sec. 7; here we restrict ourselves to 
calculating the revised quantum correction to the equation of 
state of the matter at zero temperature. In this case, the elec- 
tron density in the Thomas-Fermi model is 

d @Id,'= - S (p'  -p), and from (33) we obtain 

The first term on the right-hand side (the finite part of the 
quantum correction to the energy) is 219 of the exchange 
c~rrection.~' For an isolated atom, the chemical potential ,u 
in the Thomas-Fermi model is equal to zero, from which, 
adding to (35) the principal term of the Thomas-Fermi 
model and the exchange correction, we obtain the well- 
known three-term expression 

which for Z>4 describes, to an accuracy of fractions of a 
percent, the energy of the electron shell of an atom in accor- 
dance with the Hartree-Fock 

A positive chemical potential in the Thomas-Fermi 
model corresponds to compressed matter with cr>O, and the 
final term in (25) gives a nonzero contribution. We first in- 

vestigate the role of this term in the region n , > z 2 ,  where the 
electron distribution can be assumed to be  homogeneous^ in 
accordance with which 

For z2<n,<Z" when we are within the region (3a), we 
have a4 I, and the final term in (35) is negligibly small [see 
(31)]. Then for the revised quantum correction to the energy 
per cell of volume Zln,, we obtain the expression 

the principal term of which in the considered region is given, 
as in the case of an atom, by Scott's expression (4). Since for 
n,<Z2 the value of a is even smaller than in the region of 
homogeneity, the expression (35) without the final term can 
be used for n,<z3, i.e., in the complete region (3a). 

The situation is different in the region (3b), in which 
n,>z3 and a > l  hold. The asymptotic form (32) gives for 
the final term in (35) an expression that exactly compensates 
the first term in (33,  and all that remains is the Scott correc- 
tion, which is relatively small in the region in question. Thus, 
we have shown that the second-order quantum correction, 
which before revision destroys the agreement with perturba- 
tion theory in the region (3b), vanishes after the revision in 
this region. Thus, difficulty 2 (see the Introduction) is elimi- 
nated (so far, only in the case T=O). 

Of real physical interest is the correction to the pressure 
P=-dLYldV, where 8 is the energy per cell, the corrections 
to which are given by the expressions (35) and (37). In the 
region of homogeneity (n,>z2), the unrevised quantum cor- 
rection to the pressure has the form 

while the revised correction is 

S2PC=S2P[1 -3f1(u)]. (39) 

In the region (3b), the quantities in the brackets in (39) can- 
cel in accordance with perturbation theory. Figure 3 shows 
the relative deviation from the Thomas-Fermi model of the 
results of calculating the pressure of aluminum as a function 
of the compression in accordance with the different models 
in the homogeneity region transitional between (3a) and (3b). 
It can be seen that there is fairly good quantitative agreement 
of the results of the theory presented above and the complete 
quantum-mechanical calculation by the augmented-plane- 
wave method.27 

7. THE CASE OF FINITE TEMPERATURES 

To calculate the correction to the free energy at finite 
temperatures, it is necessary to use the general expressions 
(33) and (34). We first consider the case of a Boltzmann 
plasma at superhigh temperatures (pz2- 1 )  corresponding to 
the region bounded between (321) and (3b),2' where the elec- 
tron distribution is practically homogeneous and the chemi- 
cal potential is negative and large in absolute nlagnitude: 
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FIG. 3. Comparison of different models of the equation of state of alumi- 
num: I-Thomas-Fermi model with exchange correction (perturbation 
theory); 2-Thomas-Fermi model with exchange correction and unrevised 
quantum correction (38); 3-Thomas-Fermi model with exchange comc- 
tion and revised quantum correction (39); the plus signs correspond to the 
augmented-plane-wave method (Ref. 27). Here ala, is the reduced lattice 
constant, aN=7.65288, a = & / 2 ~ .  

p<O, pp 9 1. In this case, (34) gives for the second term in 
(33) Fqu = - .rrpZn,/6, the finite part of the unrevised quan- 
tum correction, which here is 113 of the exchange energy 
Fe,. With regard to the third term in (33), its value depends 
on the value of the product pz2 ,  which for a homogeneous 
plasma is equal to .rrne/36Z and .rrpZn,/6, respectively, in 
the regions p Z 2 9  1 (3a) and pz24 1 (3b). In the first of them, 
the third term in (33) is negligibly small, and in the second it 
is compensated by Fqu, and there remains only the Scott 
correction: 

It is obvious that also in the complete region (3a), and not 
only for a homogeneous plasma, the final term in (33) can be 
ignored, and the revision of the correction to the free energy 
(and, accordingly, to the internal energy) reduces to replace- 
ment of the divergences of the Scott correction and has no 
effect on the response functions-the pressure and specific 
heat. Therefore, in this region the unrevised results (see, for 
example, the tables in Ref. 7) do not require revision. In the 
intermediate region between (3a) and (3b) the quantum cor- 
rection Fq, "dies out" in accordance with (33), and not only 
the corrections to the energy quantities but also the correc- 
tions to the pressure and the specific heat differ from the 
uncorrected values. At the same time, it is found, in particu- 
lar, that E ~ , = z ~ / ~  is large compared with the exchange en- 
ergy - mPZn12 by a factor VT, and its presence in the region 
(3b) [see (40)] contradicts the result of perturbation theory: 

In addition, in the analysis of - the principal term in the 
Thomas-Fermi model the term .TTF, which is an additional 
term compared with the first two terms of (41), stands out in 
the region (3b) considered. This term is the contribution of 

the electrons with a nucleus is large, and perturbation theory 
is locally invalid. The discrepancies noted above correspond 
to the difficulty 2 at high temperatures. 

As was shown in Refs. 22 and 28, this problem can be 
solved by introducing into the statistical model the shell cor- 
rection 

Then the free energy in the corrected Thomas-Fermi model 
is made up of the principal term, the exchange term, the shell 
correction, and the revised quantum correction: 

We note here that at zero temperature the role of the shell 
effects is small for the cases considered above of an isolated 

and strongly compressed matter, and the introduc- 
tion of FS, does not affect the results presented in Sec. 6. 

Comparing (43) and (40) with (41), we find that in the 
region (3b) the following three-term combination is "redun- 
dant": 

We have here used the operation introduced in (13), which 
in the integral over p' contains the bell-shaped function 
&3(p(p'-p))Idp' with extremum at the point p and expo- 
nential decrease on both sides of this point. Since Ip19Z2 
holds in the region (3b) in which we are interested, the real 
region of integration over p' satisfies the condition 
, ~ ' < - 2 ~ / 2 .  Hence, bearing in mind the relation (27) in Sec. 
5, we obtain cancellation of the terms in (44) to the accuracy 
of the integrands, and this means that the results of the sta- 
tistical model (43) agree with the results of perturbation 
theory (41). 

Note that the use of the approach (43) with shell correc- 
tion in the region (3a), where the shell structure of the ions 
persists, leads to very good agreement with the results of 
Saha's  mode^.'^'^^'^^ 

This work was done with support of the Russian Fund 
for Fundamental Research (Project No. 94-02-0359 1). 

')introducing in the integrand of the integral over r a regularizing exponen- 
tial exp(-2krv), in which is later made to tend to zero, we find that the 
integral over r of the final terms in the curly brackets reduces to Mac- 
donald functions, while the integral of the first term can be calculated by 
means of the tabulated expression of Ref. 25. 

')TO logarithmic accuracy in this region, IpI-P '=I'. 
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