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Studies are reported of the expansion into vacuum of a cloud of dense vapor produced by the 
action of a nanosecond laser pulse on the surface of a solid body. The investigation is 
based on the well-known particular solution of the gasdynamic equations describing the expansion 
into vacuum of a gas cloud in the shape of a triaxial ellipsoid. The analysis presented here 
provides an explanation for the "flipover" effect observed in a deposited spot. It is shown that the 
solution thus constructed can be used to interpret the results of time-of-flight mass 
spectroscopy and to describe the shape of a vapor cloud expanding into a medium with an 
ambient pressure. The rate of flow of vapor onto a planar substrate and the transverse profile of 
the film that forms as a result of vapor condensation on the substrate are calculated. The 
dependence of this profile on the shape of the focal spot is determined. A simple analytical 
expression is found for the transverse profile in the range of parameters typical of the 
laser technique for obtaining thin films. O I995 American Institute of Physics. 

1. INTRODUCTION 

In recent years vaporization by pulsed laser radiation has 
come into wide use for depositing thin films. This technique 
is used to obtain and process films of high-temperature su- 
perconducting materials, multilayer metal mirrors for x-ray 
radiation, diamondlike carbon films, etc. (see the reviews in 
Refs. 1-6). The deposited films are nonuniform in thickness. 
The profile of the film thickness is determined by the angular 
distribution of the flux of vaporized material, which depends 
in turn on the vaporization regime and the shape of the focal 
spot. The angular distribution of laser ablation products has 
been studied in considerable detail both experimentally and 
theoretically (see, e.g., Refs. 7-18). However, in almost all 
theoretical treatments the expansion of the vapor has been 
assumed to be isothermal, which is inconsistent with both 
e ~ ~ e r i m e n t ' ~ - ~ '  and with numerical simulations (see, e.g., 
Ref. 22). ~ r e v i o u s l ~ ' ~  we have considered the case of adia- 
batic vapor expansion. However, the analysis in Ref. 17 ap- 
plies to the special case of axisymmetric vapor flow, which is 
obtained when the focal spot has a circular shape. Experi- 
ments and applications frequently use beams with noncircu- 
lar aperture which are obliquely incident on the target. Under 
these conditions the vapor flow is nonaxisymmetric. It 
should be noted that the cloud does not "forget" the initial 
asymmetry as it expands. On the contrary, the shape of the 
cloud in the late stages of expansion and the profile of the 
deposited film are determined by precisely this initial asym- 
metry. ~xper iments~ . '~ . '~  reveal, e.g., that in the case of an 
elliptical focal spot the deposited material forms a spot on 
the substrate which is also of elliptical shape, but with axes 
rotated through 90' (the so-called flipover effect). Such ef- 
fects can naturally not be explained if we restrict ourselves to 
treating axisymmetric flows. 

Note that the spatial structure of a vapor (plasma) 
formed on the surface of a solid target under the action of a 
nanosecond laser pulse was studied experimentally in detail 
as early as the 1960s. It was established (see, e.g., Ref. 19) 

that a dense cloud ( n a  lo2' ~ m - ~ )  of vaporized material 
develops right at the surface of the target, and that its size 
increases in the course of the laser pulse. This increase in the 
dimension is due mainly to evaporation of the target mate- 
rial. It is sharply reduced after the end of the pulse. Then the 
observed boundary of the dense cloud begins to slowly shift 
back toward the surface because of expansion of the cloud 
into vacuum. This process of the expansion of the dense 
cloud will also be studied in the present work. Because the 
density of the evaporated material is high we will describe 
the expansion process using the gasdynamic equations, as is 
done in the majority of treatments of vaporization by laser 
pulses. A simple estimate shows that in typical cases this 
approximation remains fairly accurate as long as the size of 
the cloud is less than 3-10 cm. If the radiation intensity is 
sufficiently high the dense cloud is surrounded by a tenuous 
plasma envelope, the outer layer of which consists of elec- 
trons and the inner of ions. Because its mass is relatively low 
this plasma envelope has essentially no influence on the ex- 
pansion dynamics of the dense core. 

The study of the three-dimensional dynamics of the gas 
flare presented below is based on the well-known particular 
solution of the gasdynamic equations describing flows with 
uniform deformation. This particular solution exists by virtue 
of the invariance of the gasdynamic equations with respect to 
a certain Lie group (for more detail see Refs. 23 and 24). 
One-dimensional flows of this type (with flow velocity pro- 
portional to the distance from the center of symmetry) were 
first studied by ~ e d o v . ~ ~  ~ v s ~ a n n i k o v ~ ~  considered the gen- 
eral three-dimensional case and showed that for flows with 
uniform deformation the gasdynamic equations can be re- 
duced to a system of ordinary differential equations describ- 
ing the dynamics of a point in a nine-dimensional space. This 
same result was later derived by  s son.^^ The system of 
equations derived in Refs. 26 and 27 has been integrated 
n u m e r i ~ a l l ~ , ' ~ , ~ ~ - ~ ~  or analytically30 in a number of special 
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FIG. 1 .  Schematic of  an experiment for laser deposition of films. 

cases. ~ o ~ o ~ a v l e n s k i ~ l  carried out a qualitative investigation 
of this system of equations. 

Particular solutions of this class can be constructed for 
an arbitrary initial temperature profile. In recent years simple 
solutions of the form given in Ref. 26 with constant tempera- 
ture have been used frequently to analyze experimental data 
on laser ablation (see, e.g., Refs. 10, 11, and 14). The authors 
of these treatments, in all probability, are unfamiliar with the 
more general results derived in Refs. 23-31, and they re- 
stricted themselves to the approximation of isothermal flow, 
which, as was noted above, does not entirely agree with the 
experimental situation. The physical inadequacy of the iso- 
thermal solution (there is no mechanism in gasdynamics that 
would maintain a finite temperature at the boundary of the 
vapor cloud) is well known and has been discussed in detail, 
e.g., in Ref. 24. Since in the present work we are interested 
mainly in the motion of the vapor after the conclusion of the 
laser pulse, it seems closer to reality and physically more 
correct to assume that the vapor flow is isentropic, as was 
done in Ref. 17. In the present work we will follow the 
formulation of the problem used in Ref. 17. 

We will treat the adiabatic expansion of a one- 
component vapor cloud into vacuum. A schematic of the ex- 
periment is shown in Fig. 1. We will assume that the time for 
the formation of the vapor cloud at the target surface (which 
is close to the duration of the laser pulse) is much less than 
its expansion time, which is determined by the distance be- 
tween the target and the substrate on which the vaporized 
material condenses. For this reason the expansion of the va- 
por cloud into vacuum can be treated independently of the 
formation process. We will assume that the focal spot has an 
elliptical shape with semiaxes Xo and Y o .  The expansion of 
the cloud of vaporized material will be modeled by the ex- 
pansion of a triaxial gaseous ellipsoid whose semiaxes are 
initially equal to Xo,  Y o ,  and Zo=c,ro ,  where to  is the du- 
ration of the laser pulse and c, is the speed of sound in the 
vaporized material. In this formulation the problem of the 
three-dimensional expansion of the vapor cloud admits a 
relatively simple solution, and the profile of the film thick- 

ness can be described by a simple analytical formula. 

2. MODEL 

Consider the adiabatic expansion into vacuum of a gas 
cloud in the shape of an ellipsoid with semiaxes X o ,  Y o ,  and 
Z o .  The expansion is described by the equations of gasdy- 
namics 

where p, p ,  v ,  and S are respectively the density, pressure, 
velocity vector, and entropy of the gas. We will describe the 
vaporized material using the ideal-gas equation of state with 
a constant adiabatic index y= cp lcV . In this case Eq. (3) for 
the entropy in the system (1)-(3) can be transformed into an 
equation for the pressure p :  

JP 
- + v V p +  y p  div v=O.  
d t  

A particular solution describing the expansion of an el- 
lipsoid can be written in the form26 

Here r i ( r )  are the Eulerian coordinates of a gas particle and 
r k ( 0 )  are its Lagrangian coordinates. Summation is implied 
by repeated indices. The diagonal elements of the matrix Fik 
describe the change in volume of the cloud and the off- 
diagonal elements describe its rotation. Neglecting rotation 
we can write the matrix Fik  in the form 

where X o ,  Y o ,  and Zo are the initial values of X ( t ) ,  Y ( t ) ,  
and Z ( f ) .  From (5) it follows immediately that the mass 
velocity of a gas particle depends linearly on its radius vec- 
tor, 

v i = g i k ~ k j 1 r , ,  (7) 

where F-' is the reciprocal of the matrix F and the dot is 
used to indicate differentiation with respect to time. It can be 
shown (see, e.g., Ref. 3 1) that for adiabatic motions of a gas 
of the form (5) the gasdynamic system of equations (1)-(3) 
reduces to a system of ordinary differential equations if the 
pressure and density of the gas have the form 
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where A and B are constants and gik is a constant symmetric 
matrix. For a matrix Fik  of the form (6) the pressure and 
density profiles can be written as follows: 

Y- 1 

p(r,t)= 12(y)XYZ " [*I XYZ 

Here M=Sp(r,t)dV is the total mass and 
E = ( y - 1 ) - 'Jp(r,O)dv is the initial energy of the vaporized 
material. The normalization constants I ,  and I 2  appearing in 
Eqs. (9) and (10) are equal to 

where T(z) is the gamma function. 
After substituting ( 9 ,  (9), and (10) into the gasdynamic 

equations (1)-(3) we arrive at a system of ordinary differen- 
tial equations for the matrix elements X(t), Y (t) ,  and Z(t). 
These can be written in the form of equations of motion of a 
point mass in classical mechanics: 

where 

The initial conditions for Eqs. (11) can be written in the form 

In (13) we have assumed that the initial kinetic energy of the 
vapor is much less than its thermal energy. 

In the general case Eq. (1 1) must be solved numerically. 
Examples of the numerical integration of such equations can 
be found in Refs. 10, 14, 17, and 27-29. In Ref. 30 it is 
shown that for y=5/3 (in terms of the equations of mechan- 
ics this corresponds to a potential which is a homogeneous 
function of the coordinates of degree -2) the system (11) 
has an additional integral, which in the case of two degrees 
of freedom enables us to reduce the integration of Eqs. (11) 
to quadratures. This integral and the energy integral can be 
used to check the accuracy of a numerical calculation. 

When we go over to the numerical integration of Eqs. 
(1 1) it is convenient to transform them somewhat. We choose 
the coordinate axes so that X o 2  Yo holds. In other words, we 
label the longest semiaxis of the initial gas ellipsoid with X,. 
We introduce dimensionless variables, using Xo as the length 
scale: 

t=X/Xo,  ?,l= Y/Xo, {=Z/Xo, T= t ~ ' 1 2 / x o ,  
(14) 
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The equations of motion (11) and initial conditions (13) are 
then transformed to 

In the variables (14) the energy integral takes the form 

where 

E = U ( T = O ) / ~ = ( ~ -  I)- ' .  

In the special case y=5/3 Eqs. (15) have the additional con- 
stant of motion 

3. NUMERICAL SOLUTION: THE FLIPOVER EFFECT 

From (15) it is clear that the solution we are seeking 
depends on the three parameters y, v O ,  and fb .  The system 
of equations (15) was integrated numerically over the whole 
range of these parameters of interest for experiments on laser 
ablation. From Eqs. (15) it follows immediately that in the 
late stages of expansion the motion of the gas acquires an 
inertial character. In the limit T-+W the ratios of the lengths 
of the axes of the ellipsoid which determines the cloud shape 
approach certain limiting values. These asymptotic values 
determine the angular dependence of the mass flux and the 
thickness profile of the film that forms. We introduce the 
variables k , ( ~ )  = Q(T)/((T) and kc(?) = ~(T)/((T),  which 
determine the shape of the cloud at time 7. Examples of the 
functions k , ( ~ )  and kc(?) for different values of y, 70, and 
5, are shown in Figs. 2 and 3 respectively. 

The curves displayed in Fig. 2a correspond to different 
values of the adiabatic index y for fixed 770 and 5,. Note that 
for y<5/3 the function k , ( ~ )  reaches its maximum at finite 
T and then approaches its asymptotic value k,(m) from 
above. If we have y 2413 then k,(r) grows monotonically as 
a function of 7, and for T of order lo3 it reaches its limiting 
value k,(m). Figure 2b shows a family of k , ( ~ )  curves cor- 
responding to different values of 71, (the quantities y and 5, 
are held constant). For small T the function k,(r) grows with 
time and for 7-10 it reaches values k,= 1. At this point the 
expanding cloud becomes symmetric with respect to the z 
axis. Subsequently k, continues to grow, i.e., the expansion 
proceeds more rapidly in the direction of the large initial 
pressure gradient (in the direction of the short axis). As a 
result, the deposited spot is rotated relative to the focal spot 
through an angle 90". This is the explanation for the flipover 
effect mentioned above. Evidently this rotation effect should 
be observed for a focal spot of any shape having an axis of 
rotation of order n ,  C,, . The corresponding rotation angle is 
equal to d n ,  i.e., the angle between the long and short sym- 
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FIG. 2. Time variation of the shape of the vapor cloud in the ( x , y )  plane FIG. 3. Time variation of the shape of the vapor cloud in the ( x , z )  plane 
(see text). (see text). 

metry axes of the figure. For a rectangle (as in the case of an 
ellipse) this angle is equal to 90"; for a regular triangle it is 
60"; for a square it is 45O. Effects of this sort involving the 
rotation of a triangle and a square were recently observed in 
the condensation of vaporized material back on the original 
target in a medium with an ambient pressure.'8 

The family of curves in Fig. 2c illustrates the effect of 
the parameters I& on the nature of the cloud expansion in the 
( x , y )  plane. It is clear that for the values and y shown in 
the figure this effect is negligible: changing lo by a factor of 
30  results in a change in k ,  by a few percent. As y increases 
and 770 decreases the effect grows. 

Figure 3  shows the function k g ( r )  for different values of 
y,  q,, and 6. The behavior of k g  qualitatively resembles that 
of k , .  From Fig. 3a we see that the function k g ( r )  is non- 
monotonic for y < 5 / 3 .  Figure 3b shows the strong depen- 
dence of k g ( t )  on the parameters lo, while Fig. 3c shows that 
the dependence of k & t )  on vo is weak. To summarize, we 

can say that the expansion of the cloud consists of a super- 
position of two weakly interacting motions. For a given adia- 
batic index y the expansion of the cloud in the y direction is 
determined mainly by 770 while expansion in the z direction 
is determined by lo. If y is not too close to unity, both mo- 
tions become inertial for values of T of order 100-1000. 
From then on the shape of the cloud remains practically un- 
changed, and the ratios of the lengths of the axes of the 
ellipsoid remain approximately equal to their asymptotic val- 
ues k & w )  and k , ( m ) .  Some of these values are given in 
Tables I and 11. In these tables the columns and rows show 
the dependence on the variables for which the dependence is 
"strong": lo and y  for k g ( w ) ,  and q, and y for k , ( m ) .  The 
column of three numbers in each box of the table illustrates 
the dependence on the least sensitive parameter: in Table I 
three values kg(  vo = 1 ) / k g (  ?;lo= 0 . 3 ) /  kg(  vO= 0.1 ) (reading 
downward) are given, while in Table I1 they are 
2-k,(~o=0.001)lk,(~o=0.01)lk,(~o=0.1). Note that 
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TABLE I. 

kc = k c ( 6 ,  7)  

the time needed to establish the asymptotic expansion regime 
depends sensitively on the value of the adiabatic index. For y 
close to unity the approach to the limiting value is slower. 
For example, for y = 1.1 the value of k & ~ )  at r = lo6 differs 
by approximately 1% from its limiting value as TAW. 

The data in Tables I and I1 confirm the conclusion drawn 
previously, that the expansion of the cloud in the z direction 
is weakly coupled to its expansion in the ( x , y )  plane. Nev- 
ertheless, these two motions are coupled, and in a certain 
region of parameter space the interaction can be significant 
(it may reach tens of percent). This effect can be used to 
obtain important information about the parameters of the ini- 
tial vapor cloud. Note the nonmonotonic behavior of the cor- 
responding functions. For example, the ratio of k g ( m )  at 
?lo=O.l to kc(m)  at q,= 1 increases as a function of y for 
y<5/3 and falls off for y >5/3. 

4. TIME-OF-FLIGHT SPECTRA 

One of the experimentally determined characteristics of 
the vapor expansion process is the time dependence of the 
number density of the evaporated atoms at a fixed point in 
space. Mass spectroscopy techniques are usually employed 
to measure this quantity. For this purpose the time-of-flight 
technique, first used to analyze the products of vaporization 
induced by a laser pulse more than thirty years ago?' proves 
convenient. In these and similar studies most of the attention 
is paid to the fast ions, which move in the collisionless re- 
gime in the external region of the laser flare. In this case the 
interpretation of time-of-flight spectra does not give rise to 
difficulty. Matters become more complicated when we study 

TABLE 11. 

k ,  = k,(rlol 7) 

the dynamics of a dense cloud expanding in a dense medium. 
Note that in a number of investigations (cf. Refs. 14,33, and 
34) the results of time-of-flight mass spectrometry of laser 
flares were interpreted by taking the mass velocity of the 
vapor flow in the inertial stage to be the same as the thermal 
velocity of particles in some hypothetical Maxwellian distri- 
bution, and the temperature of this distribution was derived 
from the experimental data. This procedure makes use of a 
formal analogy between a Maxwellian distribution and the 
Gaussian density profile in an isothermal gasdynamic flow 
with uniform deformation. But if the flow is not strictly iso- 
thermal (which is always the case), the density profile is not 
Gaussian and this formal analogy cannot be employed. It is 
clear that the quantity determined by the above methods does 
not have the properties of a thermodynamic temperature. 
This can be seen from the fact that such a "temperature" is 
different for the distributions of different velocity compo- 
nents, with the differences being dependent on the geometry 
of the initial vapor cloud (thus, the use of the term "elliptical 
temperature" in Ref. 14 does not make the procedure in 
question more rigorous physically). 

In actuality, as a function of time particles propagating 
under different conditions and in different regimes pass 
through a given observation point. The behavior varies from 
free molecular motion at the edge of the expanding cloud to 
a dense medium with a local equilibrium distribution of at- 
oms in the densest part (see, e.g., Ref. 35). A rigorous de- 
scription of the vapor flow in the general case requires solu- 
tion of the kinetic equation. The simplest examples of such a 
solution are given in Refs. 36 and 37, where numerical tech- 
niques were used to study plane and spherically symmetric 
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w 3 trace. The temperature reaches a maximum at time r=26.7 
a 1.0 2- and then slowly falls off with increasing time. This slow 2 

c. - variation is a consequence of the fact that the adiabatic index 
K .  
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u g i.e., the temperature varies much more slowly than the den- 
Q) - 2 0.4 F; sity. For y not so close to unity the temperature depends 
cn 3 more sensitively on time, and the approximation of the gas- 

0.2 $ dynamic distribution by a function of the form (19) is less 
accurate. 
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Dimensionless time, r 

FIG. 4. Time variation of the density (circles) and temperature (broken 
curve) of the vapor at the point z = 10 on the z axis. The solid curve corre- 
sponds to the approximate form of p(r)  given by Eq. (19). 

expansion respectively of vapor into a vacuum. In these 
cases, when the vapor density is high and the hydrodynamic 
description is valid, it is natural to use the adiabatic solution 
of the gasdynamic equations discussed in the present work to 
analyze the results of time-of-flight mass spectrometry. In 
Fig. 4 the circles indicate the vapor density at an observation 
point on the z axis (z = 10, y = 1.1) derived using this solu- 
tion. It is noteworthy that this dependence is accurately ap- 
proximated by a Gaussian function, 

with the constants givenby A=1801.2, B=2.53667, and 
u=0.4368. Expressions of the form (19) were used to de- 
scribe time-of-flight spectra in Ref. 14. It is clear that the 
adiabatic solution (10) can be used equally well to analyze 
experimental data. The only difference is that the parameters 
that enter into Eq. (10) have a clear physical meaning. 

It is of interest to compare the functions (10) and (19) in 
the inertial stage of the expansion, when 

X=vxr, Y-vYr, z=vzr .  (20) 

At points on the z axis the vapor density for r> 21 v, is given 
by 

which follows directly from (10) and (20). Both expressions, 
(19) and (21), have the same asymptotic behavior (=rV3) for 
large r. By adjusting the parameters appropriately in Eq. (19) 
we can approximate the maxima and widths of these distri- 
butions closely (this is especially simple when y is close to 
unity). However, the vapor temperature determined by solv- 
ing the gasdynamic equations is of course different from the 
"temperature" found from the width of the Maxwellian dis- 
tribution approximating the gasdynamic solution. For the ex- 
ample given in Fig. 4 the time dependence of the vapor pres- 
sure at the observation point z = 10 is shown by the broken 

5. SHAPE OF THE VAPOR CLOUD FOR AN EXPANSION 
INTO A MEDIUM WITH AN AMBIENT PRESSURE 

Equation (9) for the pressure of an adiabatically expand- 
ing gas can be used to interpret experimental data on laser 
ablation in a gaseous medium. In particular, this formula can 
be used to predict the shape of a vapor cloud expanding into 
a medium with an ambient As is well known, 
when vapor expands into a medium with a back-pressure the 
motion is more complicated than for expansion into a 
vacuum. A shock wave develops in the surrounding medium. 
The region containing the gas compressed by the shock is 
separated from the expanding vapor by a contact discontinu- 
ity, which moves with decreasing speed as time increases. 
Because of the deceleration of the contact discontinuity a 
second shock wave develops, which propagates into the va- 
por cloud. 

The vapor density near the contact discontinuity is usu- 
ally higher than that of the gas compressed by the shock 
wave. This can be traced back to the fact that the pressure on 
both sides of the contact surface is the same, but the tem- 
perature of the gas compressed by the shock is higher than 
that of the adiabatically expanding vapor. In this situation the 
contact surface is unstable. An instability of this type is well 
known in hydrodynamics and is called the Rayleigh-Taylor 
instability. The nonlinear growth of the instability at the con- 
tact surface gives rise to turbulent mixing of the vapor with 
the surrounding gas near the contact surface. This interaction 
between the expanding vapor cloud and the gaseous medium 
is completely analogous to the expansion of the detonation 
products of a chemical explosive material into the surround- 
ing gas. The associated Taylor instability and turbulent mix- 
ing have been studied theoretically,40s41 and then observed 
experimentally in Refs. 42 and 43 (for an explosion) and in 
Refs. 44, 45, and 38 (laser ablation). The shock wave pre- 
dicted in the calculations of Refs. 41 and 43, which arises in 
the detonation products due to deceleration of the contact 
surface, has also been observed in laser ablation 
e~~erirnents .~ '  

The laser flare model discussed in the present work en- 
ables us to study the effect of the pressure of the surrounding 
gas on the dynamics of the motion of the contact surface for 
small values of the gas pressure. In this case we can assume 
that the contact surface is described by 
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FIG. 5. Size of the stationary cloud as a function of the pressure of a 
surrounding gas. 

where the vapor pressure p(x,y  ,z ,r)  is given by Eq. (9) and 
Po is the pressure of the surrounding gaseous medium. In 
dimensionless form this equation becomes 

where the dimensionless quantities po , x", y", f are given by 

At each point (x",f,z") of the surface defined by Eq. (24) 
the distance from the coordinate origin reaches a maximum 
value at some time T= ~ * ( ; , y , f ) .  At that point in time the 
group velocity vanishes. The set of all stopping points of the 
contact surface forms the boundary of the so-called steady 
vapor cloud. With sufficiently rapid exposure times the posi- 
tion of this boundary can readily be detected experimentally 
by means of photography.38y39 The length L of the stationary 
cloud in the z direction is given by 

An example of this behavior together with experimental 
data38 is shown in Fig. 5. In the experiments of Ref. 38 
ablation of a high-temperature superconducting YB%Cu307 
ceramic was studied in an O2 atmosphere, under the action of 
a KrF excimer laser. For these data the pulse energy was 
always equal to 100 mJ, and the dimensions of the focal spot 
were Xo = 1.1 mm, Y o  = 0 .25  mm. In dimensional units the 
experimental point at the upper right in Fig. 5 corresponds to 
an oxygen pressure Po=0 .2  mbar and a stationary cloud 
length z,= 43 mm. As can be seen from the figure, the results 
of the corresponding calculations are in good agreement with 
experiment. 

One property of this model is that it predicts a power- 
law dependence of the cloud length L on the gas pressure Po 
over a broad range of parameters: 

The constants G and /3 are easily found analytically for the 
case of a spherical expansion (see Ref. 38): 

TABLE 111. 

P = P(Cor,, Y) 

In the case of an ellipsoidal vapor cloud these coeffi- 
cients also depend on the values of 710 and l o .  The depen- 
dence of the exponent p on ?lo, l o ,  and y can be found by 
calculating L numerically from Eq. (26). An idea of this 
dependence can be gotten from Table 111. In each box of the 
table two values of P are given, for ?lo= 1 (upper row) and 
%=0.3. It is clear that /3 depends weakly on the parameters, 
so in order to estimate the adiabatic index from the measured 
value of the flare length as a function of pressure in the 
surrounding medium we can use Eq. (29). The experiments 
recently carried out by Proyer et a1.39 confirm that a depen- 
dence of the form (27) actually occurs over a wide range of 
variation of the pressure P o .  The departure from this behav- 
ior at high pressures (for the experimental data used in Fig. 
5, at Po>400 mbar) is related to the development of the 
Taylor instability, while that at low pressures is associated 
with the finite lifetime of the excited molecules which are 
responsible for the photographic image of the vapor cloud 
(for more details see Ref. 39). Because the power-law depen- 
dence persists over a broad range of pressures (approxi- 
mately three orders of magnitude of variation in Po), the 
exponent p can be reliably determined. Such measurements 
make it possible to develop a diagnostic for the vaporized 
material. In particular, by comparing the calculated and ex- 
perimental data in Fig. 5 we can find the value /3=0.287 for 
the exponent. This yields y-1.16, which agrees well with 
the values 1.1 S ys1 .3  given in Refs. 34 and 46, and is typi- 
cal for laser ablation of high-temperature superconducting 
ceramics. 

6. PROFILE OF THE FILM THICKNESS 

The solution obtained above enables us to calculate the 
profile of the film thickness deposited from a vapor cloud 
expanding onto a planar substrate. We will assume that the 
plane of the substrate is perpendicular to the z axis and lo- 
cated at a distance z,  from the evaporated target (Fig. 1). The 
mass flux density onto the substrate can be expressed in the 
form 
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Here t s ( x , y )  is the time at which the exterior boundary of the 
expanding cloud reaches the substrate ( z = z s )  at the point 
( x , y ) .  This time can be found by solving the equation 

By integrating the mass flux (30)  with respect to time 
and dividing the result by the film density p, we find the 
profile of the thickness in the form 

where 

In the general case the integration in (32)  can be per- 
formed only by numerical means and by using the functions 
X ( t ) ,  Y ( t ) ,  and Z(r )  obtained by numerical solution of Eq. 
(15) .  However, in experiments on laser film deposition the 
inequality zs%Xo often holds. In this limit the integral (32) 
can be evaluated analytically and yields a simple formula for 
the profile of the film thickness. Specifically, this inequality 
is equivalent to t s%-~o l /3"2 ,  which means that the expanding 
cloud reaches the substrate in the inertial stage of the expan- 
sion. Then the lengths of the axes of the ellipsoid are related 
linearly: 

X ( f ) = Z ( t ) l k S ( w )  and Y ( r )  = Z ( t ) k , ( w ) l k S ( m ) .  (34)  

Substituting (34)  in (32)  and using (31)  we find the pro- 
file of the thickness in the form 

where p =  l l k S ( m )  and q =  l l k , (m) .  
In the analysis of experimental data the assumption is 

often made that 

The formula (35)  which we have derived departs from this 
approximation. But at small angles 6,<arctanp, 
6,< arctan q  the two profiles are identical under the condi- 
tions 

In the special case of spherical expansion (35)  yields the 
relation 

-25 
-15 -10 -5 0 5 10 15 

ex , deg 

HG. 6. Profile of the film thickness. Shown are contours of constant density 
calculated from Eq. (35). 

Here 6 is the polar angle in a spherical coordinate system. 
The formula (38)  can easily be derived directly from the 
mass conservation condition. 

A contour plot of the function h(6,, 6,) derived from 
Eq. (35)  is shown in Fig. 6. Comparison with experiment 
reveals that the formula (35) provides a good description of 
the thickness profiles for small angles 6, and Oy, but at the 
edges of the spot the film thickness falls off more rapidly 
than predicted by Eq. (35) .  One reason for the discrepancy is 
failure to take into account the dependence of the attachment 
coefficient on the angle of incidence and the kinetic energy 
of particles incident on the substrate (see, e.g., Ref. 47). In 
some cases the asymptotic nature of Eq. (35)  may also play a 
role. Note that the profile of the film thickness can easily be 
found, even for an arbitrary relation between zs  and X o .  For 
this it is necessary to perform a simple numerical integration 
in Eq. (28) .  

7. CONCLUSION 

The relatively simple model considered in the present 
work provides an opportunity to estimate how the shape of 
the focal spot affects the spatial structure of the vapor flow in 
the profile of the film thickness formed when the vapor con- 
denses on a substrate without performing complicated three- 
dimensional gasdynamic calculations. 

The model contains two very important simplifications. 
First, it is assumed that the initial vapor cloud formed when 
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the laser pulse acts on the target has an ellipsoidal shape. The 
exact shape of the cloud is usually not known. A triaxial 
ellipsoid is a reasonable approximation to the actual shape. 
By solving the problem of the expansion of this ellipsoid we 
can establish the basic motion of the vapor, namely, that the 
expansion of a nonspherical cloud proceeds fastest in the 
direction of its shortest axis. Thus we have explained the 
flipover effect. 

The second important simplification in the problem is 
that we have assumed the specific entropy to be constant 
through the interior of the cloud. No reliable information is 
available about the entropy distribution in an actual cloud. 
There are indications that the expanding cloud of laser abla- 
tion products is n o n i s ~ t h e m a l . ' ~ ~ ~ ~  The isothermal models 
considered in Refs. 10, 11, and 14 are therefore far from 
reality. At the same time, the question of the entropy profile 
in an expanding gas cloud assumes particular interest in con- 
nection with the convective instability of the cloud described 
in Ref. 48 for the case in which the entropy in the external 
layers of gas is less than that in the internal layers (see also 
Ref. 49). Although the analysis of Ref. 48 applies only to a 
spherically symmetric cloud, simple qualitative arguments 
suggest that the expansion of an ellipsoidal cloud under simi- 
lar conditions can also be unstable. As far as we know, this 
type of instability in the expansion of vapor into vacuum has 
not yet been observed in laser ablation experiments. Conse- 
quently, if the initial cloud does have a significant entropy 
gradient, then it cannot be directed toward the center of the 
cloud. Of course the model of an isentropic cloud we have 
constructed cannot be used to describe such an instability. 

The particular solution of the gasdynamic equations con- 
sidered above can be used to interpret the results of time-of- 
flight mass spectrometry. We emphasize that the width of the 
particle distribution as a function of the time of flight (which 
depends on the observation angle) cannot be interpreted as 
the vapor temperature. 

Another way to use this solution of the gasdynamic 
equations is connected with the study of the effect of the 
pressure of the surrounding gas on the shape of the expand- 
ing vapor cloud. The results of the corresponding calcula- 
tions (see Fig. 5) when the gas pressure is low are in good 
agreement with e ~ p e r i m e n t . ~ ~ . ~ ~  

In the range of parameters typical of the laser technique 
for depositing thin films the profile of the film thickness can 
be described by a simple analytical formula (35). This for- 
mula implies that at small angles 0, and 0, the film thickness 
is proportional to cosmO,cosn 8, , where the exponents m and 
n are determined by the asymptotic behavior of the expand- 
ing cloud [cf. Eq. (37) and Tables I and 111. For typical ex- 
perimental conditions the calculation yields values of m and 
n in the range from a few times unity to several times ten, 
which agrees with the experimental results. Since the shape 
of the focal spot can easily be controlled in the experiments, 
the analysis described above permits important information 
about the parameters of the initial vapor cloud to be derived 
from exact measurements of the exponents rn and n in the 
distribution of the film thickness. 

The present work was performed with support from the 
International Association for the Development of Collabora- 

tion with Scientists of the Former Soviet Union (Grant 
INTAS-94-902). We wish to express our thanks to Professor 
D. Bauerle and N. Arnold (Applied Physics Institute, Johann 
Kepler University, Linz, Austria) for many useful discus- 
sions. One of the authors (S. A.) takes this opportunity to 
express his gratitude to the Alexander von Humboldt Fund 
for hospitality and support. 

IS. V. Gaponov, Usp. Fiz. Nauk 146,343 (1985) [Sov. Phys. Usp. 28, 522 
(1985)l. 

'D. Bauerle, Appl. Phys. A 48, 527 (1989). 
'E. N. Sobol', V. N. Bagratashvili er al., "Review of high-temperature 
superconductivity," in Handbook of the International Center for Scientific 
and Technical Informarion No. 3, Moscow (1990). 

4 ~ .  Fogarassy and S. Lasare (eds.). "Laser ablation of electronic materials. 
Basic mechanisms and applications," Proc. E-MRS 4, North Holland - - 

(1993). 
'L. D. Laude (ed.), "Excimer lasers," NATO AS1 Series, E256, Kluwer 
Academic Publishers, Dordrecht (1994). 

6 ~ .  Bauerle, E. Arenholz et al., in Material Science Forum Vols. 173-174, 
41 (1995). 

7 ~ .  D. Aksakhalyan, S. V. Gaponov et al., Zh. Tekh. Fiz. 58, 1885 (1988) 
[Sov. Phys. Tech. Phys. 33, 1146 (1988)l. 
'T. Venkatesan, X. D. Wu et al., Appl. Phys. Lett. 52, 1193 (1988). 
'R. K. Singh, N. Biuno, and J. Narayan, Appl. Phys. Lett. 53, 1013 (1988). 

'OR. K. Singh and J. Narayan, Phys. Rev. B 41,8843 (1990). 
"R. K. Singh, 0. W. Holland, and J. Narayan, J. Appl. Phys. 68,233 (1990). 
"c. N. Afonso, R. Serna et al., Appl. Surf. Sci. 46,249 (1990). 
I3R. E. Muenchausen, K. N. Hubbard et al., Appl. Phys. Lett. 56, 578 

(1990). 
145. C. L. Kools, T. S. Baller et al., J. Appl. Phys. 68, 233 (1992). 
"A. Miotello, R. Kelly er al., Appl. Phys. Lett. 61, 2784 (1992). 
I6F. Davanloo, E. M. Juengerman et al., Appl. Phys. A 54, 369 (1992). 
17s. I. Anisimov. D. Baeuerle, and B. S. Luk'yanchuk, Phys. Rev. B 48, 

12076 (1993). 
"R. Kelly and A. Miotello, Nucl. Instrum. and Methods in Phys. Res. B 91, 

82 (1994). 
1 9 ~ .  G. Basov, V. A. Boiko et al., Zh. Eksp. Twr. Fiz. 51,969 (1966) [SOV. 

Phys. JETP 24, 659 (1967)l. 
''A. D. Aksakhalyan, Yu. A. B i t y u ~  et al., Preprint, Inst. Appl. Phys. 

Acad. Sci. USSR, Gor'kii (1981). 
'ID. B. Gwhegan, Thin Solid Films 220, 138 (1992). 
2 2 ~ .  K. Matzen and R. L. Morse, Phys. Fluids 22, 654 (1979). 
''L. V, Ovsyannikov, Group Analysis of Dgerential Equations, Academic, 

New York (1982). 
2 4 ~ .  V. Ovsyannikov, Lectures in Basic Gasdynamics, [in Russian], Nauka, 

Moscow (1981). 
"L. I. Sedov, Dokl. Akad. Nauk SSSR 90, 735 (1953). 
2 6 ~ .  V. Ovsyannikov, Dokl. Akad. Nauk SSSR 111.47 (1956). 
2 7 ~ .  J. Dyson, J. Math. Mech. 18, 91 (1968). 
2 8 ~ .  M. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875. 
2 9 ~ .  V. Nemchinov, Prikl. Mat. Mekh. 29, (1965). 
30S. I. Anisimov and Yu. I. Lysikov, Prikl. Mat. Mekh. 34, 926 (1970). 
" 0. I. BogoyavlenskiY, Methods for the Qualitative Treatment of Dynamical 

Systems in Astrophysics and Gasdynamics, [in Russian], Nauka, Moscow 
(1980). 

"N. R. Isenor, Appl. Phys. Lett. 4, 152 (1964). 
3 3 ~ .  P. Zheng, Q. Y. Y i g  et al., Appl. Phys. Lett. 54, 954 (1989). 
3 4 ~ .  H. Cheung, Q. Y. Ying et al., J. Appl. Phys. 69,6349 (1991). 
3 5 ~ .  Kelly and R. W. Dreyfus, Nucl. Instrum. and Methods in Phys. Res. B 

32, 341 (1988). 
3 6 ~ .  I. Anisimov and A. Kh. Rakhmatulina, Zh. Eksp. Teor. Fiz. 64, 869 

(1973) [Sov. Phys. JETP 37, 441 (1973)l. 
"v. I. Zhuk, Izv. Akad. Nauk SSSR, Mekh. Bid .  Gazov, No. 2,97 (1976). 
"E. Stangl, B. Luk'yanchuk et a/., in L. D. Laude (Ed.), Excimer Lasers, 

Kluwer Academic Dordrecht (1994). 
3 9 ~ .  Proyer, E. Stangl, and D. Baeuerle, Appl. Phys. A (1995) (in press). 
~OS. I. Anisimov and Ya. B. Zel'dovich, Pis'ma Zh. Tekh. Fiz. 3, 1081 

(1977) [Sov. Tech. Phys. Lett. 3, 645 (1977)l. 

137 JETP 81 (I), July 1995 Anisimov et a/. 137 



4 1 ~ .  I. Anisimov, Ya. B. Zeldovich, N. A. Inogamov, and M. E Ivanov, in "R. Srinivassan, Appl. Phys. A 56, 417 (1993). 
Shock Wuves, Explosions utid Deronutions, AlAA Prog. in Astron. and 4 6 ~ .  Kelly and A. Miotello, Appl. Phys. B 57, 145 (1993). 
Aeron. Series, Vol. 87, p. 218 (1983). "B. McCaml and G. Ehrlich, J. Chem. Phys. 38,523 (1963). 

"A. N. Davydov, E. E Lebedev, and A. V. Shumpov, Pis'ma Zh. Tekh. Fiz. 4 8 ~ .  L. Book, J. Fluid Mech. 95, 779 (1979). 
9,429 (1983) [Sov. Tech. Phys. Lett. 9, 185 (1983)l. "L. D. Landau and E. M. Lifschitz, Fluid Mechanics, Pergamon, Oxford 

"A. V. Shurupov, A. N. Davydov er a/., "Cylindrical Explosive Flows," (1984). 
Preprint No. 2-157, High-Temperature Inst.. AN SSSR, Moscow (1985). 

"K. Scott, J. M. Hantley er a/., Appl. Phys. Lett. 57, 922 (1990). Translated by David L. Book 

138 JETP 81 (I), July 1995 Anisimov et al. 138 


