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Low-frequency excitations in a uniaxial two-sublattice easy-axis antiferromagnet in a constant 
magnetic field directed along a selected axis are studied. It is shown that the equations 
of macroscopic electrodynamics can be used to analyze the magnetic and electromagnetic 
excitations in bounded magnetic materials. Attention is focused on the propagation of surface 
waves along the boundary of a sample occupying the half-space y > O  or a plate of thickness L .  
O 1995 American Institute of Physics. 

1. INTRODUCTION: FORMULATION OF THE PROBLEM cosB=HIHE,HE= 2SM. For fields H=HEBHsF the mag- 
netic sublattices "collapse," i.e., a second-order (spin-flip) 

The spectrum of low-frequency long-wavelength elec- phase transition occurs. 
tromagnetic oscillations of a magnetically ordered dielectric We have simplified somewhat the picture of the reorien- 
can be investigated the tational transition in antiferrornagnets. In particular, taking 
equations into account the anisotropy constants of the next higher order 

1 Sb 
can cause a first-order phase transition to split into two 

1 s d  
curl h= -- , curle=- --, (1) second-order phase transitions, or the first-order transition 

c St c St can acquire a hysteresis loop (a more detailed discussion is 

together with the constitutive equations which relate the in- 
duction vectors d and b to the electric and magnetic field 
intensity vectors e and h (lower case letters denote variable 
field intensities and inductions). 

We shall be interested in the oscillations caused by the 
rotation of the magnetization vectors of the magnetic sublat- 
tices of an antiferromagnet. The corresponding frequencies 
are much lower, as a rule, than the atomic frequencies which 
determine the frequency dispersion of the permittivity. We 
can therefore assume 

where i. is the static permittivity tensor of the medium. The 
magnetic susceptibility tensor pik describes the dynamics of 
the magnetic moments of the sublattices: 

Here and below, w is the frequency and k is the wave vector 
of the wave. The spatial dispersion of the components of the 
tensor pi, is caused by the existence of spin waves (mag- 
nons) which transport magnetic excitations through the 
sample.' 

In the present paper, we shall study low-frequency exci- 
tations in a uniaxial two-sublattice easy-axis (EA) antiferro- 
magnet in a uniform time-independent magnetic field H di- 
rected along a selected axis. The magnetic field alters the 
magnetic structure of the antiferromagnet. 

In easy-axis antiferromagnets in a weak field H (where 
H<HsF),Hm = M J2 6 ( ~ -  /?'),M- the magnetic mo- 
ments of the sublattices are antiparallel and directed along 
the axis (just as in the case H=O), and a first-order reorien- 
tational (spin-flop) phase transition occurs at H=HsF : The 
magnetic moments of the sublattices flip over and occupy a 
symmetric position making an angle 0 with the axis, where 

given in Ref. 2). 
In antiferromagnets in which the exchange energy is 

much higher than the anisotropy energy, HEBHsF, the ratio 
HSFIHE is a small parameter (see discussion below). Figure 
1 displays the equilibrium configurations of the magnetic 
moments of easy-axis antiferromagnets. 

In bounded magnets the position of the magnetic mo- 
ments relative to the plane of the sample is important. We 
shall assume that the magnetic moments are always parallel 
to the surface of the sample. 

To complete the description of the geometry of the prob- 
lem, we note that the wave propagates in the direction per- 
pendicular to the symmetry axis (an exception is the picture 
described in Sec. 2). The coordinate axes are chosen as fol- 
lows: The x-axis is oriented along the direction of propaga- 
tion of the wave, the y-axis is oriented perpendicular to the 
surface, and the z-axis is oriented along the symmetry axis. 
We recall that Hz = H and H, = H, = 0 (see Fig. 2). 

The magnetic susceptibility tensor of the antiferromag- 
net depends strongly on the magnetic ~onf i~ura t ion .~  In all 
cases of interest to us we can take 

in addition, ,ul = p2 holds outside the interval (HSF, HE) 
and there is no gyrotropy (,ul=O). The expressions for 
p l ,  p 2 ,  and p' are presented in Table I; spatial dispersion 
and dissipation are neglected. Most of the notation is stan- 
dard. We shall discuss in the concluding section the range of 
applicability of the results obtained by means of the expres- 
sion (4). 

722 JETP 80 (4), April 1995 1063-7761 /95/040722-08$10.00 O 1995 American Institute of Physics 722 



FIG. 1. Equilibrium states of an easy-axis antiferromagnet. 

2. VOLUME POLARITON AND MAGNETOSTATIC 
OSCILLATIONS 

In accordance with the title of this paper, we are con- 
cerned mainly with the propagation of surface waves along 
the boundary of a sample occupying the half-space y > 0 or a 
plate of thickness L . First, however, we shall derive the dis- 
persion law for volume magnetic polaritons. As a simplifica- 
tion we assume (and we shall adhere to this assumption 
throughout this paper) that the permittivity is isotropic 
(cik= E Sik , where E > 1). The extension to the anisotropic 
case does not present any difficulties. 

According to Eqs. (1)-(4), waves with two polarizations 
can propagate perpendicular to the axis in an antitjxromag- 
net. In waves with one type of polarization ey and h, are 
different from zero, the dispersion relation does not contain 
the components of the magnetic susceptibility tensor, and 

This is a bulk electromagnetic wave which is not associated 
with oscillations (rotations) of the magnetic moments of the 
sublattices. In waves with the other type of polarization e,, 
h,, and hy are different from zero, and the dispersion rela- 
tion contains p l ,  p 2 ,  and p' in the combination 

FIG. 2. Geometry of the problem. 

The frequency w as a function of the wave vector k is ob- 
tained by solving the dispersion relation 

This is an elementary excitation (quasiparticle), a volume 
magnetic polariton corresponding to an electromagnetic 
wave interacting with the oscillations (rotations) of the mag- 
netic moments of the sublattices. It is obvious that volume 
magnetic polaritons exist at all frequencies for which 
r~ef f>O.  

The values of peff for different cases are presented in the 
last column of Table I, and curves for a magnetic polariton 
which correspond to these cases are displayed in Fig. 3. The 
function w(k) specific to a magnetic polariton is related to 
the resonance properties of peff. In the limits w-0 and 
w+m the magnetic polariton "converts" into a photon: 

Since p2(0) > 1 holds, the phase velocity satisfies 
(wlk),,,<(olk),,, . The effective magnetic susceptibil- 
ity peff is an even function of the frequency with a positive 
derivative dpef f ldo> 0 . 

In the limit w-0 we can write 

Hence there follows an expression for the phase velocity 

In the limit w-+w we have 

Expressions for the frequencies wo and w, and for 
p(0)  can be easily written out for all fields (see Table 11). 

The notation "w-+a" is conventional: The frequency 
w must be much lower than the atomic frequencies (see 
above). Moreover, the magnetic permeability is of limited 
use: It is inapplicable at optical frequencies.3 In the case at 
hand, however, there is no limitation problem: peff+ 1 as the 
frequency increases. Note that this is a very general property: 
The magnetic permeabilities employed in the theory of mag- 
netically ordered media automatically "switch off" as the 
frequency w increases. 

The problem mentioned in the last paragraph may be 
important when the model of "rigid" magnetic sublattices, 
which is adopted here, is applied to magnets in which the 
magnetic atoms have anomalously low excited atomic states, 
the excitation corresponding to a rearrangement of the 
atomic shell such that the magnitude of the spin (magnetic 
moment) of the magnetic atom changes. 

According to Eqs. (6) and (7), for p' Z 0 the quasistatic 
limit (kc/w--fm) coincides with pl = 0. If we take into ac- 
count the spatial dispersion of the magnetic permeability, the 
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TABLE I. 

frequency o = w,(k) of a spin wave propagating perpendicu- 
lar to the magnetization (of course, for a k a  1, where a is the 
lattice constant) can be determined as a function of the wave 
vector k from the equation 

CL,(o,k) = 0. (9) 

Given the magnetic susceptibility and taking the spatial 
dispersion into account, we can of course determine the dis- 
persion relation for spin waves propagating in an arbitrary 
direction from the equations of magnetostatics 

curl h=0, div b=0,  bi=,uik(w,k)hk, (10) 

whence we immediately obtain 

and Eq. (9) in the particular case k =(k,O,O). 
In the interval ( H s F ,  H E )  the susceptibility components 

written out above (third row in Table I) do not pick up a 
branch of the oscillations, the rotations of the magnetic mo- 
ments around the symmetry axis. For k= 0 the characteristic 
frequency of such oscillations is zero. 

We underscore the fact that Eqs. (9)-(11) and, conse- 
quently, their solutions are approximate. Because of gyrot- 
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FIG. 3. Schematic plot o f  o =  w ( k )  for a volume magnetic polariton: 
a-H=O; b - O < H < H s F ,  wA=Cls,(l + 2 ~ / 4 - a ,  wB=ClSF(1+2m/S)  
+ a ,  o c = ~ s F ~ ( i + ~ / ~ ) + a ,  o D = a s F ( l + ? r ~ s ) - n ;  c-HSFcH<HE; 
o, =JR,+  ( s / ~ P ) C ~ & C O S ~ O ,  d q E C H ,  uA+ J w i ,  ~ ~ ~ = f l + C l ~  

ropy, for h,# 0 and pl = 0, the component by # 0 and the 
magnetic oscillations "engage" the electric field e, which 
ultimately changes the dispersion law of the oscillations. The 
change introduced in the dispersion law for spin waves by 
the finiteness of the speed of light can be written out for 
kc+ w. Near the frequency where pl(o,k)  vanishes 

Peff2: 
a: 

w?(k) - w2 

and the "corrected" spin-wave frequency is 

Here, w,,(k) is a root of Eq. (9), and 0, can be written out 
for all cases considered. The last formula is especially im- 
portant, if E has an appreciable imaginary part E", since it 
describes an additional, nonmagnetic mechanism of damping 

of spin waves. In the case of a semiconductor or metal we 
have E" = 4 .?rc ulw, where u is the conductivity. 

When there is no gyrotropy (H=O), we have 
pl = p2= p ,  p' = 0, and peff = p. The equation 

corresponds to the quasistatic limit, and 

follows from the equations of magnetostatics, the latter equa- 
tion being exact, since for hx# 0 and b,= p(w)hx=O the 
electric field e= 0. We note that in Eqs. (7) and Eq. (13), 
which follows from them, h, # 0. The longitudinal branch of 
the oscillations exists, strictly speaking, only for H=O and, 
as we shall now show, only when the wave propagates in a 
direction perpendicular to the symmetry axis of the crystal 
[we recall that p j = l ;  see Eq. (4)]. Indeed, if the wave 
propagates at an angle a with respect to the symmetry axis, 
there exist two magnetic polaritons with different polariza- 
tion and the dispersion relations 

while the equations of magnetostatics give 

Comparing Eqs. (15) and (16), we can see that for a+ ~ 1 2  
the dispersion relation for a magnetostatic wave is identical 
to the limiting dispersion relation (kc- ta ,  w k a )  for one of 
the magnetic polaritons, but for a= ?r/2 only one magnetic 
polariton exists [the first of Eqs. (15)] and the magnetostatic 
wave [Eq. (16)] "splits off" from the photon and Eq. (16) 
becomes exact: 

According to the first row of Table I, the frequency of a 
longitudinal magnetostatic wave is 

The frequency of the quasistatic wave (as the limit of a mag- 
netic polariton) is wk,=Cts,, close to the frequency of the 
longitudinal wave. It should be remembered that the polar- 
izations of the waves are substantially different: the wave 
(17) satisfies h, # 0 and h, = h, = 0, while a quasistatic wave 
satisfies h, Z 0 and h,= h,= 0. 

Figure 3 displays schematically the dispersion laws for a 
volume magnetic polariton for different values of the mag- 
netic field. Table I1 gives the frequencies wks in the magne- 
tostatic limits. 

We underscore the fact that in the present case the limit 
H =  0 is nontrivial. Of course, in the case H = 0 peff from 
the second row of Table I is identical to peff from the first 
row. We note, however, that in this case the factors 
pofliF-f12- w2 in the numerator and denominator cancel. 
As a result of this, the number of solutions (the number of 
values of the magnetostatic limit) decreases. 

725 JETP 80 (4), April 1995 M. I. Kaganov and N. 6. Pustyl'nik 725 



TABLE 11. 

3. SURFACE MAGNETOSTATIC OSCILLATIONS The requirement that the normal component of the induction 

In any type of magnetic material the surface oscillations vector be continuous gives the following dispersion relation 

in the half-space y > 0 can be described by the homogeneous for determining the frequency of a surface magnetostatic 

magnetostatic equations wave: 

curl h=O, div h=O, y<O, (18) 

curl h=O, div b=O, bi=pik(w)hk,  y>O, 

together with the boundary conditions 

where h, is a two-dimensional vector with the components 
hx and h,. Here, a fundamental point is that the spatial dis- 
persion of the components of the magnetic susceptibility ten- 
sor must be neglected, because otherwise additional bound- 
ary conditions would have to be imposed (see, for example, 
Ref. 4). 

We now introduce the magnetic potential cp according to 
the formula h= - V cp. To satisfy Eqs. (18) and all boundary 
conditions besides the last one, we must have 
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The expression for the logarithmic damping coefficient y 
shows that a surface wave can exist in the frequency range 
where pI(w)Ip2(w)>0 holds. In the isotropic case (for 
p 1 = p 2 ;  see Table I) there is no such restriction, since 
y = 1 kl and Eq. (21) simplifies: 

For p' # 0 (gyroptropy) the wave is nonreciprocal: 
w(k)+ w(-k). This property, which is well known for 
ferromagnets? arises in antiferromagnets only if H f  0. For 
H=O there is no gyrotropy ( p '  =O), and irrespective of the 
direction of propagation of the wave (sign of k) the fre- 
quency of the wave (which we denote by w,) is 

Nonreciprocity appears for 0 < H C HsF 

The anisotropy of the magnetic susceptibility complicates the 
problem, and for this reason for HsF < H S HE Eq. (21) gives 
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FIG. 4. Schematic plot of the frequency of a surface magnetostatic wave 
versus the magnetic field. 

a cubic equation for w .  We shall not analyze this equation. 
We merely note that for H S F 4 H < H E  the anisotropy can be 
neglected and 

Hence, according to Eq. (22),  ws= and it would seem that 
the wave exists for both k>O and k<O. A more accurate 
analysis shows that for k<O the exact equation (21) has no 
solution. Moreover, it can be shown that the frequency w ,  is 
continuous at the point H = HE . 

Finally, for H S H E  a surface magnetostatic wave exists 
only for k> 0  and 

This is the standard Damon-Eshbach wave5 in a ferro- 
magnet with a magnetic moment 2M per unit volume. The 
function ws= w s ( H )  is displayed schematically in Fig. 4. 

FIG. 5. Quasistatic oscillations in a plate. 

4. QUASISTATIC OSCILLATIONS IN A PLATE 

The spectrum of oscillations in an antiferromagnetic 
plate is very complicated. Here, we shall not make a com- 
plete and detailed investigation of the spectrum. We confine 
our attention to determining how a surface wave concen- 
trated near one boundary (y = 0) is modified by the presence 
of a second boundary (y = L ) .  

Interference of the waves reflected from the boundaries 
of the plate causes the frequency of the wave to depend on 
the wave vector, and as a result, the group velocity of the 
wave is different from zero ( u , = d w , l d k  # 0 ) .  

We recall that if the spatial dispersion and retardation are 
neglected, the frequency of quasistatic oscillations does not 
depend on the wave vector and hence such oscillations do 
not carry energy ( v , = O ) .  So as not to complicate the analy- 
sis, we confine our attention to the isotropic case, i.e., we 
exclude the interval of fields (HsF , H E ) .  As shown in the 
preceding section, for H s F 4  H < H E  the anisotropy is small 
and the expressions obtained here describe (albeit, only ap- 
proximately) this interval also. 

If we can assume pl = p 2 ,  then the magnetic potential 
cp in the plate is a superposition of functions of the form 

TABLE 111. 
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The potential outside the plates decays exponentially with 
damping rate I kl . If all the required boundary conditions are 
satisfied, we can easily derive the following dispersion rela- 
tion: 

where L is the thickness of the plate. It is obvious that Eq. 
(27) describes an invertible wave. In the limit IklL-+m the 
equation decomposes into two equations [compare with Eq. 
(22)l: 

l+p+,u '=O, l f p - p f = O .  (28) 

Each equation describes a surface wave on one side of the 
plate. A wave propagating in the positive direction along the 
x-axis is concentrated near y = 0 and a wave propagating in 
the negative direction is concentrated near y = L (see Fig. 5). 
The direction of propagation is determined by the vector 
[kn], where the vector n is normal to the surface of the 
sample. 

For IklL* 1 the potential cp and hence also h and m are 
virtually uniform over the thickness of the plate. Such a 
wave can still be regarded as a surface wave, since it decays 
exponentially away from the surface of the plate (along the 
y-axis). The formulas for H=O are especially simple. The 
equation determining w = o(k) becomes 

whence, according to Table I, 

One can see that for any value of lklL the frequency of the 
wave is near the frequency of a uniform oscillation of the 
magnetic moment. For O<H<HsF there exist two frequen- 
cies of uniform oscillations and, correspondingly, two sur- 
face waves in the plate. It is easy to calculate v = doldk 
from Eq. (29') or similar formulas for other field intervals. 
In order of magnitude v - RsFL I S for 1 k 1 L - 1. 

5. SURFACE MAGNETIC POLARITON 

The solutions of the complete system of Maxwell equa- 
tions (1) together with the constitutive equations (2) and (3) 
for a half-space include solutions which decay exponentially 
in both directions from the boundary (along the y-axis) and 
represent a traveling wave (meikx) along the x-axis. Accord- 
ing to Eq. (1) the penetration depth in a magnet is 

and in vacuum 

The continuity of the tangential components of the vectors e 
and h makes it possible to derive a dispersion relation which 
establishes a relation between o and k: 

FIG. 6. Schematic plot of for a surface magnetic ~olariton: a-H=O. 

All quantities appearing in the expressions (30)-(32) are de- 
fined in Table I. 

The formulas (31) and (32) show that surface magnetic 
polaritons exist only if 

Analysis shows, however, that the limiting points at which a 
magnetic polariton exists do not always lie on the curves 
yo(o,k) = 0 and y(o,k) = 0. 
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In Eq. (32) the coefficient of the term linear in k includes 
the ratio p ' l p l ,  which is different from zero when H Z  0. In 
a magnetic surface polariton, just as in a magnetostatic sur- 
face wave, nonreciprocity occurs only when H Z  0. The val- 
ues of pllpl for different values of the magnetic field are 
presented in Table 111. 

Figures 6a-c display the results of an analysis of Eq. 
(32). The schematic dependence of the frequency of a sur- 
face magnetic polariton on the wave vector is the same in the 
field intervals HsF<H ==Z HE and H 3 H E .  We have confined 
our attention to presenting this dependence and the values of 
the characteristic frequencies and wave vectors for the inter- 
val H 3 H E ,  since in the interval HSF<H==ZHE the expres- 
sions for the characteristic frequencies and wave vectors are 
often very complicated. 

Surface magnetic polariton were first studied, we be- 
lieve, in Ref. 4. In those cases when a magnetic-field- 
induced static magnetic moment (H>HsF) is present in the 
antiferromagnet, the dispersion relation for a magnetic polar- 
iton in an antiferromagnet is very similar to the that for a 
magnetic polariton in a ferromagnet. 

%o circumstances require additional comments. 
1) Some expressions for the characteristic points contain 

E - 1 in the denominator (see, for example, the values of 
WA,B in the caption to Fig. 6b and c) and they do not admit 
the limit 8 4 1 .  Moreover, in the analysis we assumed 
E - 1 % 116. The case e - 14 116 requires a special analysis 
(compare Refs. 4 and 6). 

2) For k=kg, (see Fig. 6 c) the penetration depth y-l 
vanishes and the macroscopic analysis is formally inappli- 
cable. As shown in Ref. 4, taking into account the spatial 
dispersion of the magnetic permeability changes the numeri- 
cal values of the parameters very little, so that the macro- 
scopic approach is justified. 

CONCLUSIONS 

The main objective of the present analysis was to show 
that the equations of macroscopic electrodynamics can be 
used to analyze the magnetic and electromagnetic excitations 
in bounded magnets. If the structure of the magnetic material 
is more complicated (if several sublattices are present, and so 
on) the frequency dependence of the components of the ten- 
sor pik will, of course, be more complicated. As a result, 
numerical analysis, which is made feasible by the existence 
of computers, may be required. 

For HSHsF the properties of antiferromagnets are close 
to those of ferromagnets. This also came out in our analysis 
(see above). For H=HsF, when the distinguishing proper- 
ties of antiferromagnets are especially clearly manifested, all 
characteristic frequencies are close to one another (their dif- 
ferences are of order (4 n-IS) RsFGfisF), and different 
types of excitations can be identified not so much according 
to the values of the characteristic frequencies as according to 
the properties of the characteristic modes (polarization, non- 
reciprocity, and so on). 

Neglecting dissipative processes, of course, imposes 
stringent requirements on the quality of a sample and on the 
temperature: The differences A w  of the characteristic fre- 
quencies must be greater than the inverse lifetime of the 
oscillations: A w> 117. If 8% 1 holds, the stronger inequality 
~ 7 %  6 probably must be satisfied. However, we did not spe- 
cially analyze the role of dissipative processes. 

One would like to think that the results obtained in this 
paper will be used in experimetal investigations of antiferro- 
magnets. It seems to us that surface waves can be observed 
by investigating scattering from the surface of a magnet (see, 
for comparison, Ref. 7) and the nonreciprocity of the waves 
for H f  0 [w(k)# w(-k)] provides a reliable method of 
identifiation. 

In conclusion, we wish to express o~r~sincere apprecia- 
tion to A. S. Borovik-Romanov, N. M. Kreines, L. A. Prozo- 
rova, and S. S. Sosin for stimulating discussions. One of us 
(M. I. K.) thanks the George Soros International Science 
Fund for financial support. 
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