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Application of the saddle-point approximation of the slave-boson approach to tunneling between 
two strongly correlated systems is shown to result in a Bardeen-like formula with 
renormalized tunneling matrix elements, which generally contain additional angular dependences 
due to the vector boson field. O 1995 American Institute of Physics. 

Spin-polarized tunneling between two weakly coupled, 
magnetically ordered systems of noninteracting electrons is 
described by a Bardeen-like formula,' which can be written 
as2y3 

where bL,R(&) is the local density of states in the left ( L )  and 
right ( R )  systems, f,,,,, is the tunneling matrix element 
between these systems, and fR,L(&) are the Fermi distribution 
functions with the chemical potentials ,uL and ,uR chosen in 
such a way that pL - ,u~= eV, where V is the applied volt- 
age. The local densities of states for free spin-polarized elec- 
trons can be written as  follow^:^ 

where POL,, and p,,,, are the spin-independent and spin- 
dependent parts of the density of states, respectively, and 
ML,R is the local magnetization vector. The tunneling matrix 
element TLR,,, is a one-particle hopping integral, which is 
assumed to be diagonal in spin. Calculation of the trace over 
the spin indices in Eq. (1) 

The second term in Eq. (3) describes the spin-dependent con- 
tribution to the tunneling current, which is sensitive to the 
relative orientation of the electron spins in the left and right 
systems. Higher orders of the perturbation theory in the tun- 
neling matrix elements give rise to the terms in the tunneling 
current which are biquadratic in magnetization.4 

Equations (2) and (3) contain the equilibrium magneti- 
zations of noninteracting left and right systems, although the 
tunnel coupling may perturb their values. For example, 6M, 
is of the order E T ~ ~ M , ,  since T~,M, plays the role of a 
weak, exterhal, magnetic field that shifts the equilibrium 
magnetization. The tunnel current is proportional to TZ, so 
that the corrections to the current induced by changes in the 
magnetization due to tunnel coupling are proportional to T:, 
and, therefore, are of the next order in small parameter TLR . 

Thus, for weak tunnel coupling the current has the same 
structure as in Eq. (3), which contains the equilibrium mag- 
netization of the isolated systems. 

Equation (2) was obtained under the assumption that 
electrons in each system are described by single-particle 
Hamiltonians. The magnetic ordering, however, arises as a 
result of the electron-electron interaction; therefore, applica- 
bility of Eq. (2) to real interacting systems is questionable. 
For example, Coulomb interaction can result in separation of 
the charge and spin degrees of freedom. In the latter case the 
spinons and holons can be considered as "good" 
quasiparticles.5 At the same time, tunneling between two 
weakly coupled systems involves transfer of a real particle 
(an electron with its spin and charge), which is a superposi- 
tion of "good" quasiparticles, rather than an eigenstate of the 
interacting system. 

The goal of this study was to consider the tunneling 
between two magnetically ordered, strongly correlated sys- 
tems in the saddle-point approximation of the slave-boson 
approach.6 

We assume that the electrons in the L and R  systems are 
described by the Hubbard ~ami l tonian~ (we omit subscripts 
L  and R  whenever possible): 

H=Z tijfi',fju+~Z fTufiuf:- fi-,,, (5 )  
iiu I 

where tij is the hopping integral, f: is the electron creation 
operator, and U is the Coulomb repulsion. 

To describe the four atomic states lo), If), /I), and Iql), 
additional boson fields 2, $,, and 2 must be intr~duced.~ The 
physical states in the extended space are obtained by apply- 
ing new fermionic ?+ and bosonic d+, $:, d f  creation op- 
erators to the vacuum state. To preserve the operator equiva- 
lence between the original Hamiltonian and the new one that 
act in the extended space, additional constraints on the Bose 
and Fermi operators are introduced. The site states are ob- 
tained as 

The singly occupied states la) possess spin-112, which results 
from the addition of the vector boson (spin-1) p+, and a new 
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spin-112 fermion i: . Equation (6) for a singly occupied site 
follows from the angular momentum addition formula (see, 
e.g., Ref. 8): 

where 12112) are the fermion states with spin projections 
+1/2, and IM2112) are the boson states with spin projec- 
tions 0,1-1. The original fermionic operators j';L can be rep- 
resented by combinations of new fermionic and bosonic op- 
erators with the moment projection M=0,+1 @of, I;:,, 
respectively): 

^ +  ̂ +  j+- T - - t T + l ; O + + f i ~ ~ ~ + ~ ,  

jl=~;$O+-fiiT+b:~. (8) 

Expressing the operators with definite moment projections in 
terms of their Cartesian counterparts? we obtain 

Multiplying both sides of Eq. (9) by -1, we obtain 

Adding a spinless boson field b;, which transforms as a 
scalar and taking into account Eq. (lo), we obtain Eq. (6). 
Expressions (6) were derived in Ref. 7 in a less transparent 
way. Thus, the spin of new fermions in the slave-boson ap- 
proach turns out to be rigidly coupled to the vector boson 
moment. 

The operator equivalence of the new Hamiltonian acting 
in the extended space is preserved by imposing the following 
constraints: 

Completeness 

Equivalence of the two ways of counting fermions 

Total spin conservation 

Introduction of the Bose fields allows linearization of the 
Coulomb interaction term so that in the new representation 
the Hamiltonian  become^^'^ 
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The operators 2 in the hopping matrix elements are intro- 
duced to preserve the Hamiltonian equivalence and describe 
the following processes: (empty site-+singly occupied site), 
(doubly occupied site+singly occupied site with time- 
reversed spin); explicitly they are given by the formulas 

Constraints (11-13) are accounted for by introducing into 
the Hamiltonian the Lagrange factors 

The partition function is calculated by performing functional 
integration over the fermionic fields which appear in the 
Hamiltonian only bilinearly. Integration over the bosonic 
fields is carried out in the saddle-point approximation (as- 
suming that the bosonic fields are time-independent and can 
be in fact replaced by their values at the saddle point). 

Our task is to calculate the tunnel current between the 
two magnetically ordered systems (L and R). The tunneling 
Hamiltonian can be written as follows: 

?=c ( ~ U i j f l i u j R j u + f ~ ~ u j L i u ~ R ~ i ) ~  (17) 
iju 

where TLRij is the hopping integral which couples the sites 
that belong to the two systems. The tunnel current operator 
in the original representation has a standard form 

ie 
i ( t ) =  ?; (~LRij.fTidt)jRju(~) 

iju 

In the new representation it transforms to 

The tunnel current itself can be calculated by evaluating the 
average of the operator (19), employing the following func- 
tional integral representation: 

where LL,R are the Lagrangians of the left (L) and right (R) 
systems, and ? is the tunneling Hamiltonian in the slave- 
boson representation. Time integration in the exponential is 
performed over the closed-path cont~ur . '~ - '~  

After the exponential is expanded to the first order in f, 
the operators which are related to the left and right systems 
can be averaged independently, yielding 
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Equation (21) can be transformed to 

In deriving the last formula we replaced the bosonic fields by 
their saddle-point values and introduced the matrix notation 

and similarly for i:.>. The retarded Green's function (GF) 
is the inverse matrix of the Hamiltonian (14), where the 
bosonic operators are replaced by their saddle-point values, 
so that 

i r ( & ) = ( & - H + i o ) - l .  (24) 

After the Fourier transform, the Keldysh GF are defined as 

The retarded GF ir is a linear combination of the Pauli ma- 
trices, since H contains the terms of the i+ij type in the 
hopping integrals 

If the subscripts i and j  refer to the same site, the vector Mi, 
has the meaning of magnetization. According to Eqs. (24)- 
(26), the Keldysh GF can be represented in the form 

ML,R={ML,R~~}. (27) 

Finally, taking into account Eqs. (26) and (27), we obtain for 
the tunnel current a formula similar to that for noninteracting 
electrons, but with spin-dependent tunneling matrix ele- 
ments: 

2 r e  
I =  \ ~ET~{FRLRLBL(E)FLRBR(E)}[~LL(E)-~R(E)I, 

(28) 

where 

Physically, the tunneling matrix element renormalization can 
be explained in the following way. In the slave-boson ap- 
proach (in the saddle-point approximation) the new fermions 
are the free quasiparticles (eigenstates of the interacting sys- 
tem). Bosonic fields play the role of a spin-dependent poten- 
tial, where the spin of a new fermion is rigidly coupled to the 
vector boson spin. However, tunneling involves transfer of a 
real particle (electron with its spin and charge), which is a 
superposition of a new fermion and vector boson, rather than 
an eigenstate of the interacting system. The original fermion 
spin can also be obtained by adding the moments of a new 
fermion and the vector boson, so that tunneling results in the 
transfer of the vector boson spin together with the spin of a 
new fermion, which is manifested in the tunneling matrix 
element renormalization. 

For ferro- and antiferromagnetic ordering the vector P is 
real. If the magnetization direction does not depend on the 
site, then M(IP. Expanding the double vector products in Eq. 
(28), we find that under these conditions the tunnel current 
structure is similar to that for free electrons; i.e., the spin- 
dependent contribution to the tunnel current is proportional 
to the scalar product of magnetizations IsmML .MR.  

For a nonuniform magnetization distribution, the spin- 
dependent contribution in the case of noninteracting elec- 
trons due to tunneling from the site L i  to site R j  is 
ISjmzia(i ,  j)MLi.MRj . Here the amplitude a ( i ,  j )  is inde- 
pendent of the magnetization direction. For the interacting 
electrons the amplitude contains an angular dependence 
which does not reduce to the scalar product of magnetiza- 
tions. 

The physics beyond the tunneling matrix element renor- 
malization can qualitatively be understood in the following 
way. Let us first consider the origin of the scalar product of 
magnetizations which appears in the tunneling current be- 
tween the two spin-polarized free-fermion systems. Different 
orientations of magnetization in the left and right systems 
actually correspond to different choices of the spin quantiza- 
tion axes in these systems. Let the quantization axes z and z' 
(in the L and R  systems, respectively) be directed along the 
magnetization directions, where the angle between them is 0. 
The fermion states in the L system are described by the 
spinor 

which is quantized with respect to the z axis. Similarly, in the 
right system the states are described by the spinor 

where z' is the quantization axis. 
The tunneling current is proportional to the absolute 

value of the square of the scalar product of these spinors 

where the trace is over the spin indices (the hopping integrals 
themselves do not depend on the spin). The spinors that ap- 
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pear in Eq. (29) should be brought to the common quantiza- 
tion axis, e.g., the axis in the left system. In the latter case 
the states in the right system, which are quantized along the 
z' axis, should be expressed in terms of the states quantized 
along the z axis. This transformation is performed with the 
spin-112 rotation matrix, 

For simplicity we assume that both 2' and z lie in the same 
plane, which is normal to the interface between the systems 
(one-dimensional tunneling). In the latter case the rotation 
matrix is known to have the form 

According to Eq. (29), the spin-dependent contribution 
to the tunneling current has the components 
C O S ( B ) ( I ' P ~ ~ ' ~ ' ~ ~ ~ ~ +  I'PLl'PRl12) [we used the known rela- 
tion cos(812)2=(l+cos(8))12]. The latter term is exactly the 
scalar product of the magnetizations. 

Physically, when tunneling occurs between the two sys- 
tems with different magnetization directions the scalar prod- 
uct appears because one should express the states which are 
quantized along the original quantization axis in terms of the 
states with the definite angular moment projection onto the z 
axis of a new coordinate system which serves as the common 
quantization axis. 

For the interacting fermions the original fermion states 
(which are no longer the system's eigenstates) are in fact the 
superpositions of the spin-1 vector boson field and the new 
spin-112 fermions. Calculating the tunneling current, we 
should bring to the common quantization axis not only the 
fermionic, but also the bosonic degrees of freedom. How- 

ever, the bosonic degrees of freedom posses different trans- 
formation properties with respect to spatial rotation (de- 
scribed by the spin-1 rotation matrix). This consideration 
results in an additional angular dependence of the expression 
for the tunneling current, which in the saddle-point approxi- 
mation reduces to the tunneling matrix element renormaliza- 
tion. 

The case of the complex vector P corresponds to the 
spin-flux states and requires special treatment. 
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